dc.contributor.author | Grande, Zbigniew | |
dc.date.accessioned | 2014-03-10T11:03:22Z | |
dc.date.available | 2014-03-10T11:03:22Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Mathematica Slovaca | en_US |
dc.identifier.uri | http://repozytorium.ukw.edu.pl/handle/item/422 | |
dc.description.abstract | Let f : R2 → R be a function with upper semicontinuous and
quasi-continuous vertical sections fx(t) = f(x, t), t, x ∈ R. It is proved that if the
horizontal sections fy(t) = f(t, y), y, t ∈ R, are of Baire class α (resp. Lebesgue
measurable) [resp. with the Baire property] then f is of Baire class α + 2 (resp.
Lebesgue measurable and sup-measurable) [resp. has Baire property]. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartofseries | 63 (2013), no. 4, 793 - 798; | |
dc.subject | lebesgue measurability | en_US |
dc.subject | Baire property | en_US |
dc.subject | Baire classes | en_US |
dc.subject | upper semi-continuity | en_US |
dc.subject | quasi-continuity | en_US |
dc.subject | sup-measurability | en_US |
dc.title | On the measurability of functions with quasi - continuous and upper semi - continuous vertical sections | en_US |
dc.type | Article | en_US |