Construction of some Finite Classes of Normal Subgroups of Hecke Groups

İsmail Naci Cangül, Osman Bizim

1. Introduction Hecke groups $H(\lambda q)$ are, basically, the discrete groups of $\operatorname{PSL}(2, R)$ which are isomrphic to the free product of two cyclic groups of orders 2 and q, where $q \geq 3$. Therefore as a Fuchsian group of the first kind they have the signature $(0 ; 2, q, \infty)$ (here ∞ means that the product of two elliptic generators is a parabolic generator). $H(\lambda q)$ is generated by R and S, where $R(z)=-1 / z, S(z)=1 /(z+\lambda q)$ and $\lambda q=2 \cos (\pi / q)$. We let $T=R \cdot S$.

For $q=3$ we obtain the well known modular group $\Gamma=H\left(\lambda_{3}\right)$. Therefore the other Hecke groups can be thought of as a generalization of the modular group. At this point a problem arises: Can we generalize the properties of Γ to other $H(\lambda q)$? The answer to the first question is yes and no, that is, some of them can be generalized in some cases. Sometimes it is possible to generalize some properties to $H(\lambda q)$. However, some results generalize to $H(\lambda q)$ with even q as well.

In this work we obtain some finite classes of normal subgroups of Hecke groups as a generalization of some results of M. Newman [3] on the modular group. First we construct this class for the most important three Hecke groups $H(\sqrt{2}), H(\sqrt{3})$ and $H\left(\lambda_{5}\right)$ obtained for $q=4,6$ and 5 , respectively. Then we obtain the generalization for
all $H(\lambda q)$. Some of these sugroups have been found, in different ways, in the Ph. D. Thesis of the author [1].

In the last part of this work we calculate the total number $\eta(q)$ of these normal subgroups for each q by means of the number of divisors function. We shall see that $\eta(q)$ is either equal to $2 \sigma(q)$ or $3 \sigma(q)$, where $\sigma(q)$ denotes the number of divisors of q.

2. Normal subgroups

2.1. $\mathrm{q}=4$ For $q=4, \lambda_{4}=\sqrt{2}$ and the corresponding group is denoted by $H(\sqrt{2})$. We first give two preliminary lemmas to obtain the main result:

Lemma 1 Let, for $1 \leq k \leq 3$,

$$
\begin{equation*}
S_{k}(\sqrt{2})=\left\langle R, S \mid R^{2}=S^{4}=I,(R S)^{k}=(S R)^{k}\right\rangle \tag{1}
\end{equation*}
$$

Then $S_{k}(\sqrt{2})$ is a finite group of order μ_{k} and for $T=R S$, the element T^{k} is central and has order e_{k}, where

k	1	2	3
e_{k}	4	4	8
μ_{k}	8	32	192

Proof. First we note that since $R^{2}=S^{4}=I$ and $T=R S$, the relation $(R S)^{k}=(S R)^{k}$ is equivalent to the relation

$$
\begin{equation*}
R T^{k}=T^{k} R \quad \text { and } \quad S T^{k}=T^{k} S \tag{3}
\end{equation*}
$$

and therefore T^{k} is a central element in $S_{k}(\sqrt{2})$. Now if e_{k} denotes the order of T^{k} in $S_{k}(\sqrt{2})$, then by $[2, \S 6,7]$

$$
\begin{equation*}
e_{k}=\frac{2 \cdot 2 \cdot 4}{t}=\frac{8}{4-k} \tag{4}
\end{equation*}
$$

since t is defined by

$$
\begin{equation*}
t=2 \cdot 4 \cdot k \cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{k}-1\right)=8-2 k \tag{5}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|S_{k}(\sqrt{2})\right|=\mu_{k}=|(2,4, k)|=\frac{8 k}{4-k} \cdot \frac{8}{4-k}=\frac{64}{(4-k)^{2}} \tag{6}
\end{equation*}
$$

for $2 \leq k \leq 3$. thus for $k \neq 1$

$$
\begin{equation*}
\mu_{k}=k e_{k}^{2} \tag{7}
\end{equation*}
$$

and for $k=1, e_{1}=4$ and $\mu_{1}=8$, since the group $S_{1}(\sqrt{2})$ is just abelianisation of $H(\sqrt{2})$.

Lemma 2 For $1 \leq k \leq 3$, let $S_{k, l}(\sqrt{2})$ be the group given by

$$
\begin{equation*}
S_{1}(\sqrt{2})=\left\langle R, S \mid R^{2}=S^{4}=T^{k l}=I, \quad R T^{k}=T^{k} R\right\rangle \tag{8}
\end{equation*}
$$

where $l \mid e_{k}$. Then $S_{k, l}(\sqrt{2})$ is of order $l \mu_{k} / e_{k}$.
Proof. Let Δ_{l} be the normal closure in $S_{k, l}(\sqrt{2})$ of $T^{k l}$. Then

$$
\begin{equation*}
S_{k, l}(\sqrt{2}) \cong S_{k}(\sqrt{2}) / \Delta_{l} \tag{9}
\end{equation*}
$$

Since T^{k} is in the center of $S_{k}(\sqrt{2}), \Delta_{1}$ is the cyclic group of order e_{k} / l generated by $T^{k l}$. Hence

$$
\begin{equation*}
\left|S_{k, l}(\sqrt{2})\right| \equiv\left|S_{k}(\sqrt{2})\right| /\left|\Delta_{l}\right|=\frac{l \mu_{k}}{e_{k}} \tag{10}
\end{equation*}
$$

Theorem 1 Let

$$
\begin{equation*}
T_{k, l}(\sqrt{2})=\Delta\left(T^{k l}, R T^{k} R T^{-k}\right) \tag{11}
\end{equation*}
$$

be the normal closure in $H(\sqrt{2})$ of $T^{k l}$ and $R T^{k} R T^{-k}$. Then

$$
\begin{equation*}
\left|H(\sqrt{2}): T_{k, l}(\sqrt{2})\right| \mu=l \mu_{k} / e_{k}<\infty \tag{12}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\left|H(\sqrt{2}) / T_{k, l}(\sqrt{2})\right| \cong S_{k, l}(\sqrt{2}) \tag{13}
\end{equation*}
$$

the results follows.
One can see that there are exactly 10 normal subgroups $T_{k, l}(\sqrt{2})$'s. Their indices, levels, parabolic class and geni for all possible values of k and l are listed below:

$$
\begin{array}{l|cccccccccc}
k & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3 & 3 \tag{14}\\
l & 1 & 2 & 4 & 1 & 2 & 4 & 1 & 2 & 4 & 8 \\
\mu & 2 & 4 & 8 & 8 & 16 & 32 & 24 & 48 & 96 & 192
\end{array}
$$

2.2. $\mathbf{q}=6$ Let us consider now the case of $H(\sqrt{3})$. As all methods used in this case are similar to the case of $H(\sqrt{2})$, then we will omit the proofs.

Lemma 3 Suppose that $k=1,2$. Let $S_{k}(\sqrt{3})$ be the group given by

$$
\begin{equation*}
S_{k}(\sqrt{3})=\left\langle R, S \mid R^{2}=S^{6}=I,(R S)^{k}=(S R)^{k}\right\rangle \tag{15}
\end{equation*}
$$

Then $S_{k}(\sqrt{3})$ is a finite group of order μ_{k} and the central element T^{k} has order e_{k}, where $T=R S$ and

k	1	2
e_{k}	6	6
μ_{k}	12	72

Lemma 4 For $k=1,2$ let $S_{k, l}(\sqrt{3})$ be the group given by

$$
\begin{equation*}
S_{k, l}(\sqrt{3})=\left\langle R, S \mid R^{2}=S^{6}=T^{k l}=I, R T^{k}=T^{k} R\right\rangle \tag{17}
\end{equation*}
$$

Then $S_{k, l}(\sqrt{3})$ is of order $l \mu_{k} / e_{k}$.

Theorem 2 Let

$$
\begin{equation*}
T_{k, l}(\sqrt{3})=\Delta\left(T^{k l}, R T^{k} R T^{-k}\right) \tag{18}
\end{equation*}
$$

Then $T_{k, l}(\sqrt{3})$ is a normal subgroup of $H(\sqrt{3})$ with index

$$
\begin{equation*}
\left|H(\sqrt{3}): T_{k, l}(\sqrt{3})\right|=\mu=l \mu_{k} / e_{k}<\infty \tag{19}
\end{equation*}
$$

and level

$$
\begin{equation*}
n=k l \tag{20}
\end{equation*}
$$

There are exactly eight $T_{k, l}(\sqrt{3})$'s. The information about them is listed below:

$$
\begin{array}{l|cccccccc}
k & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 \tag{21}\\
l & 1 & 2 & 3 & 6 & 1 & 2 & 3 & 6 \\
\mu & 2 & 4 & 6 & 12 & 12 & 24 & 36 & 72
\end{array}
$$

2.3. $\mathrm{q}=5$ Let us finally consider $H\left(\lambda_{5}\right)$ case. All the methods are also very similar to those of the case of $H(\sqrt{2})$, then we will omit the proofs.

Lemma 5 For $k=1,2,3$ let

$$
\begin{equation*}
S_{k}\left(\lambda_{5}\right)=\left\langle R, S \mid R^{2}=S^{5}=I,(R S)^{k}=(S R)^{k}\right\rangle \tag{22}
\end{equation*}
$$

Then $S_{k}\left(\lambda_{5}\right)$ is a finite group of order μ_{k} and the central element T^{k} has order e_{k}, where $T=R S$ and

k	1	2	3
e_{k}	10	5	20
μ_{k}	10	50	1200

Lemma 6 For $k=1,2,3$ let $S_{k, l}\left(\lambda_{5}\right)$ be the group given by

$$
\begin{equation*}
S_{k, l}\left(\lambda_{5}\right)=\left\langle R, S \mid R^{2}=S^{6}=T^{k l}=I, R T^{k}=T^{k} R\right\rangle \tag{24}
\end{equation*}
$$

Then $S_{k}\left(\lambda_{5}\right)$ is of order $l \mu_{k} / e_{k}$.

Theorem 3 Let

$$
\begin{equation*}
T_{k, l}\left(\lambda_{5}\right)=\Delta\left(T^{k l}, R T^{k} R T^{-k}\right) \tag{25}
\end{equation*}
$$

Then $T_{k, l}\left(\lambda_{5}\right)$ is a normal subgroup of $H\left(\lambda_{5}\right)$ with index

$$
\begin{equation*}
\left|H\left(\lambda_{5}\right): T_{k, l}\left(\lambda_{5}\right)\right| \mu=l \mu_{k} / e_{k}<\infty \tag{26}
\end{equation*}
$$

and level

$$
\begin{equation*}
n=k l \tag{27}
\end{equation*}
$$

By choosing all possible L such that $l \mid e_{k}$, we can find, in total, 12 subgroups $T_{k, l}\left(\lambda_{5}\right)$. The table gives some information about them:

$$
\begin{array}{c|cccccccccccc}
k & 1 & 1 & 1 & 2 & 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \tag{28}\\
l & 1 & 2 & 5 & 10 & 1 & 5 & 1 & 2 & 4 & 5 & 10 & 20 \\
\mu & 1 & 2 & 5 & 10 & 10 & 50 & 60 & 120 & 240 & 300 & 600 & 1200
\end{array}
$$

3. Generalization to $q \geq 7$ When $q \geq 7, \lambda_{q}$ is not "nice" as it is when $q<7$. It is an algebraic number satisfying th eminimal equation of degree $\varphi(2 q) / 2$, where φ denotes the Euler function.

As we shall see the two cases when q is odd and even show some differences when we try to find $S_{k}\left(\lambda_{q}\right)$. Therefore we will have to deal with these two cases separately.

Lemma 7 Let $g>6$ be even. For $k=1,2$ let

$$
\begin{equation*}
S_{k}\left(\lambda_{q}\right)=\left\langle R, S \mid R^{2}=S^{q}=I,(R S)^{k}=(S R)^{k}\right\rangle \tag{29}
\end{equation*}
$$

Then $S_{k}\left(\lambda_{q}\right)$ is a finite group of order μ_{k} and the central element T^{k} has order e_{k}, where $T=R S$ and

k	1	2
e_{k}	$1 q$	q
μ_{k}	$2 q$	$2 q^{2}$

Proof. A sin the proof of Lemma $1, R T^{k}=T^{k} R$ and therefore T^{k} is a central element in $S_{k}\left(\lambda_{q}\right)$ of oreder e_{k}, where

$$
\begin{equation*}
e_{k}=\frac{2 \cdot 2 q}{t}=\frac{4 q}{2(k+q)-k q} \tag{31}
\end{equation*}
$$

Now since $t>0$ and $q>6$, then

$$
\begin{equation*}
k<\frac{2 q}{q-2} \tag{32}
\end{equation*}
$$

The fact that $\mu_{k}=k e_{k}^{2}$ for $k=2$ and that $e_{l}=q, \mu_{l}=2 q$ can be proved in the same wa as in the proof of Lemma 1.

Lemma 8 Let $g>6$ be odd. For $k=1,2$ let

$$
\begin{equation*}
S_{k}\left(\lambda_{q}\right)=\left\langle R, S \mid R^{2}=S^{q}=I,(R S)^{k}=(S R)^{k}\right\rangle . \tag{33}
\end{equation*}
$$

Then $S_{k}\left(\lambda_{q}\right)$ is a finite group of order μ_{k} and the central element T^{k} has order e_{k}, where $T=R S$ and

k	1	2
e_{k}	$1 q$	q
μ_{k}	$2 q$	$2 q^{2}$

Lemma 9 Let $q>6$. For $k=1,2$ let $S_{k, l}\left(\lambda_{q}\right)$ be the group given by

$$
\begin{equation*}
S_{k, l}\left(\lambda_{q}\right)=\left\langle R, S \mid R^{2}=S^{q}=T^{k l}=I, \quad R T^{k}=T^{k} R\right\rangle \tag{35}
\end{equation*}
$$

where $l \mid e_{k}$. Then $S_{k, l}\left(\lambda_{q}\right)$ is of order $l \mu_{k} / e_{k}$.
Theorem 4 Let k and l be chosen as above. Let

$$
\begin{equation*}
T_{k, l}\left(\lambda_{q}\right)=\Delta\left(T^{k l}, R T^{k} R T^{-k}\right) \tag{36}
\end{equation*}
$$

Then $T_{k, l}\left(\lambda_{q}\right)$ is a normal subgroup of $H\left(\lambda_{q}\right)$ with index

$$
\begin{equation*}
\left|H(\sqrt{3}): T_{k, l}(\sqrt{3})\right|=\mu=l \mu_{k} / e_{k}<\infty \tag{37}
\end{equation*}
$$

and level

$$
\begin{equation*}
n=k l \tag{38}
\end{equation*}
$$

Proof is exactly the same as the proof of Theorem 1.
By comparing the group representations we can obtain the following result:

$$
S_{l}\left(\lambda_{q}\right)= \begin{cases}T_{l, q}\left(\lambda_{q}\right) & \text { if } q \text { is even } \tag{39}\\ T_{l, 2 q}\left(\lambda_{q}\right) & \text { if } q \text { is odd }\end{cases}
$$

\qquad
\qquad

For $k=1$ the relations

$$
\begin{equation*}
R^{2}=S^{q}=I, \quad R S=S R \tag{40}
\end{equation*}
$$

hold in the the quotient group $H(\lambda q) / S_{1}\left(\lambda_{q}\right)$. Therefore this quotient is isomorphic to $C_{2} \times C_{q}$, the direct product of the two cyclic groups of order 2 and order q. It follows that

$$
\begin{equation*}
S_{1}\left(\lambda_{q}\right) \cong H^{\prime}(\lambda q) \tag{41}
\end{equation*}
$$

4. Enumerating the number of the subgroups $T_{k, l}\left(\lambda_{q}\right)$ Let $q \geq 3$ be given. Let $\eta(q)$ denote the number of $T_{k, l}\left(\lambda_{q}\right)$. Therefore we must consider the conditions on k and l. In the proof of Lemma 7 we obtained the upper and lower bounds for k i. e.

$$
\begin{equation*}
1 \leq k \leq \frac{2 q}{q-2} \tag{42}
\end{equation*}
$$

It follows then that all possible values for k are $1 \leq k \leq 5$ for $q=3$ and $1 \leq k \leq 3$ for $q=4$ and $1 \leq k \leq 2$ for $q \geq 6$.

Since l can be chosen in the way that $l \mid e_{k}$, then the number of l 's equals to the sum of the number of divisors of e_{k} 's, denoted by $\sigma\left(e_{k}\right)$ for all possible k 's. Therefore

$$
\begin{equation*}
\eta(q)=\sum_{1 \leq k<\frac{2 q}{q-2}} \sigma\left(e_{k}\right) . \tag{43}
\end{equation*}
$$

Recall that $\eta(4)=10, \eta(5)=12$ and $\eta(6)=8$. Now let $q>6$ be even. Then $k=1$ or $k=2$ and $e_{1}=q=e_{2}$. Therefore

$$
\begin{equation*}
\eta(q)=\sum_{k=1}^{2} \sigma\left(e_{k}\right)=3 \sigma(q) . \tag{44}
\end{equation*}
$$

REFERENCES

[1] I. N. Cangül, Normal Subgroups of Hecke groups, Ph. D. Thesis, Southhampton University, 1994,
[2] H. S. M. Coxeter, W. O. J. Moser, Generators and relations for discrete groups, Springer Verlag, Berlin, 1957,
[3] M. Newman, Classification of normal subgroups of the modular groups, Trans. A. M. S. 126 (1967) p. 267-277.

University of Uludağ DEPARTMENT OF MATHEMATICS
Bursa
Turkey

