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On the Continuity, Discontinuity and Nonmeasurability of Locally Relatively Continuous Functions
Ryszard Jerzy Pawlak, Andrzej Rychlewicz

In paper [2] the authors introduced the notion of a relatively conti
nuous function: A function / : X  — > Y  is called relatively continuous 
at X  € X  if, for any open set V  С  Y , where f ( x )  € V, the set 

is open in the subspace f ~ l ( k )  ■ If this condition is satisfied for each 

X € X ,  then / is said to be relatively continuous. In paper [5], this 
notion was generalized in the following way: A function / : X  — > Y  
is locally relatively continuous1 if there exists an open base В for the 
topology on Y  such that f ~ x( V )  is open in the subspace f ~ l (V ) for 

any V  € B. In [5] the authors also investigated the principal properties 
of l.r.c. transformations, connected with the continuity and sections 
of functions, with that they often assumed the considered functions to 
be connected. The purpose of the following paper is to complete and 
extend the results included in [5]. Especially, we shall show that l.r.c. 
functions may have “rather disorderly” properties and, what is more, 
that the situation is typical (in the topological sense)2 for this kind

Tn  the further part o f the paper we shall use the abbreviation l.r.c. instead of 
the extended name “ locally relatively continuous” .

2i.e. the set o f all l.r.c. functions which do not possess those properties is small 
in the topological sense - see the considerations in chapter X III  o f monograph [1].
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of functions. Theorem 2 from paper [5] is also analysed with respect 
to the possibilities of replacing the connectedness o f the considered 
transformations with the Darboux properties of them.

We shall use the standard notions and notations. By R, Q and N 
we denote respectively the sets: of all real numbers, rational numbers, 
positive integers.

A  subset L С X  is called an arc if there exists a homeomorphism 
h : [0,1] — > Ł. The elements h (0) and h ( l )  will be called the endpoints 
of Ł. The arc with endpoints x and у is denoted by L (x ,y ) .  I f Ł is 
an arc and a, b G Ł, then the symbol L^ (a ,b )  denotes the arc with 
endpoints at a and 6, which is contained in Ł.

The open ball with centre at x and radius r  >  0 will be denoted by 
K ( x , r ) .  S ( x 0, r )  =  {x  : g (x0,x )  =  r }  where g denotes the metric in 
the space considered. The symbols A  and Int (A )  stand for the closure 
and the interior of A , respectively.

Assume that X  is an arbitrary topological space. We say that a 
nonempty closed set К  cuts a space X  (onto the sets U  and V , between 
nonempty sets A  and B )  if X \ I <  — U l ) V  where U  and V  are disjoint, 
open and nonempty sets (and A  С U  and В  С V ).

Let / be a function. I f  а ф b, we shall write f (a ,  b), / (a, 6], / _ 1 [a, b) 
etc. instead of f ( ( a , b ) ) , f ( ( a , b ] ) , f ~ 1( [a,b) ) , omitting the dispensable 
double brackets.

By Cf  we shall denote the set of all continuity points of /.
If / : X  x Y  — У Z , then by f x ( f y) we shall denote an x — section 

(y -  section) of /, i.e. f x( t )  =  f { x , t )  ( f v( t ) =  f ( t , y ) ) .
A function / : X  — » Y  is said to be quasi-continuous ([4]) at x 

if, for each neighbourhood W  of f ( x )  and each neighbourhood U  of 
x, the set Int ( U  П is nonempty. The function / is said to be
quasi-continuous if it is quasi-continuous at each point of its domain.

The notions and symbols we use, connected with porosity, come 
from papers [10 ], [1 1 ] and [12 ].

Let X  be a metric space. Let M  С X ,  x € X  and S >  0. Then we 
denote by 7 ( 2 , S, M )  the supremum of the set of all r  >  0 for which 
there exists z G X  such that K ( z , r ) С K ( x , S ) \ M.

I f p ( M , x )  =  2 • limsup5^.0+ ifeiLMI >  0, then we say that M  is
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porous at x.
I f there exists s >  0 such that p (M ,  z) >  s for 2 E X ,  then we say 

that M  is uniformly porous.

The authors’ considerations contained in [5] suggest the question: 
Do the l.r.c. functions which are not continuous at any point of their 
domain exist? The answer is positive (Proposition 1). What is more, 
the authors proved in [5] (Theorem 3): Let X  be a locally connec
ted space and let Y  and Z  be topological spaces. Suppose a function 
/ : X  x Y  — > Z  has continuous x-sections and connected y-sections. 
Then / is continuous if / is l.r.c. Proposition 1 will show that (under 
pretty natural assumptions on the spaces considered) there exist l.r.c. 
functions / : X  x Y  — > R discontinuous at every point, whose proper
ties are close to the assertion of the above theorem (the connectedness 
of y-sections is replaced by the Radakovic property3).

Proposition 1 Let (X , g) be a nonsingleton and connected metric 
space and Y  - an arbitrary metrizable topological space. Then there 
exists an l.r.c. function f  : X  X Y  — У R whose all x-sections are 
continuous and y-sections possess the Radakovic property, such that
Cf = 0.

Proo f. Let x 0 Ç X.  Without loss of generality we may assume 
that X  \ K ( x 0, 1 ) ф 0. O f course, S (x 0, L ) is a nonempty closed set 

for n =  1,2,.... Let £ : N Q \ {0 }  be a bijection.
In the set R \ ( {L  : n =  1, 2 ,...} U {0 } )  we define an equivalence 

relation * in the following manner:

d *  t <£=>- d — t 6 Q.

Let W  be the set of all equivalence classes of the relation *. Then there 
exists a bijection g : W  R \ Q.

3A  function g is connected if  the image o f an arbitrary connected set is also a 
connected set. I f  we assume that the closure o f the image o f a connected set is a 
connected set (which coincides with the T . Radakovic idea from paper [9]), then 
we say ([3], [6], [8]) that the considered transformation possesses the Radakovic 
property.
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Define a function / : X  x Y  — > R by the following formula:

(0 if x — x0;
i { n )  if x € S (x 0,£ ) for n =  1 , 2 ,...;

rj(Ex) if g(x0, x )  G Ex G W .

We shall prove that / has the required properties.
To this end, let us notice that

( 1 ) / is an l.r.c. function.
Indeed, let ß — { ( p ,q ) : p, q G Q \ { 0 } }  be a base for the space R

and (p0,Ço) some element of it. Let nPo,n qo G N be such that £(nPo) =
p0 and £(nîo) =  q0 and, moreover, let (z0, y0) G f ~ 1(Po, q0)- Then there 
exists S0 >  0 such that ( I\ (z0,yo),So) x Y )  П f ~ l [p0,q0] С f ~ 1(p0,q0)- 
This implies condition (1).

O f course,
(2) f x is a continuous function for x € X.

Now, we shall show that
(3) f y is a function which possesses the Radakovic property, for y G У. 

Let y0 G Y  and let С  be a connected subset of W x {yo }- Consider
two possibilities:
1) С  С S ( ( x o,y0) , r )  С X  X  { y 0}  for some r  >  0 or С  =  { ( x o,y0) } .  
Then, of course, f y( C ) is a singleton.
2 ) С \ S ( ( x o,y0) , r )  ф 0 for any r >  0 and С  ф { ( x o,y0) } .  Let a G 
R \ Q. Then there exists W  G W  such that r/(W) =  a. In virtue 
of the connectedness of С , we can easily observe that there exists 
к G С  fi { ( x , y 0) : g (x 0,x )  G W } .  Then f ( k )  =  q ( W )  =  a. We have 
proved that R \ Q С f(C ), what means that / (C ) =  R. This implies 
condition (3).

In virtue of (1 ),(2 ),(3 ), the proof of Proposition 1 will be finished 
when we show the discontinuity of the function / at any point. Let 
(a, b) 6 X  x Y  and S >  0. Then {x  G K (a ,6 )  : g (x0,x )  G T }  ф 0 for 
any T  G W . This implies that R \ Q  С f(K (a , 8) x {b } ) ,  what means 
that R \ Q  С f (V ) for any open neighbourhood V  of (a, b) G X  x Y. 
The proof of Proposition 1 is completed.

The above proposition incites one to pose the next question: If we 
additionally assume that the considered functions are close to conti
nuity (e.g. quasi-continuous), do there exist Lebesgue nonmeasurable
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l.r.c. functions? If the answer to this question is positive, is this situ
ation incidental or is it typical (in the topological sense)? The answer 
is included in the following theorem:

T h eo rem  1 In the space C f R of bounded quasi-continuous l.r.c. func
tions f  : R — > R, with the metric of  uniform convergence, measurable 
functions (in the Lebesgue sense) constitute a uniformly porous set.

P ro o f. Let Cf*R denote a subset of C f R consisting of nonmeasu- 
rable functions and let g* be a metric of uniform convergence. Let 
/ € C f R be an arbitrary function and у >  0. Let then [xo,y0\ be an 
interval such that x0 <  y0 and f [ x o,y0] С ( a 0 — | ,a 0 +  § ) where a 0 is 
some real number.

Denote by С the Cantor set with positive Lebesgue measure inc
luded in the interval [x0,yo] such that x0,yo € С. The set С is con
structed by “removing” some open intervals from the interval [ж0,Уо]- 
Let A\ be the interval removed in the first step of the construction 
of the set C; A 2 - the union of two intervals removed in the second 
step of the construction of the set C, etc. In this way we shall form 
a sequence of open sets, such that A n =  [xo,y0] \C.
Denote by C* some nonmeasurable subset of С such that x 0, yo ^  C* 
and С* П U“  r Ä T  =  0.

Now, let В denote an open base for the space R, such that f ~ 1(U )  
is an open set in the subspace f ~ l {U )  for each Ü7 G В .

Now, we shall define local bases B (x )  at x 6 R. Consider the follo
wing cases:
A )  x € let

*7 i3 . + 0С

( —00, a0 — |). Then

в(х) = I и eB : x e u  л и п

B ) x 6 (a 0 +  I , + 00)  . Then, let

B (x )  =  jt/  £ В : i  G L  A l /П

C ) x =  a0 — Let U\ € В be a set such that x € U\,

Ui П ^ - 00, a 0 -  ^ С ^a0

A 4-
3. >}•

-  1 .
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ux n ctn -, +00  С

and f ( x 0), f ( y Q) £ IR. Put ßi € Ui П (a 0 -  §, + 00)  . Now, let U2 6 В 
be a set such that

X G U2 С Ui, U2 0 ( —00, a 0 — 1
3j

С a,
3 2 ’ a° 3J

U2 П «0 -  2 ’ + ° ° С
V ßi +  a 0 -  I  ' 

00 3 ’ 2

Let then ß2 £ U2 Г) ( « 0 — | ,+ oo ). Continuing this process, we shall 
dehne a sequence { U n}™=1 С В such that Un+i С Un (n =  1,2,...), 
D“= i Un -  { a 0 -  § },  / (x o),/ (y 0) # Un (n =  1,2,...) and choose a 
sequence { ß n } ^ !  such that ßn G Un П ( a 0 -  |, a0) and ßn \  a 0 -  |. 
Let us adopt B (a 0 — |) =  {U n : n — 1 ,2 ,...}.
D) X  = a0 + | .  In a similar way as above we shall dehne a sequence 

(K }£ °=  1 С В such that x G V„ (n =  l ,2 ,. . . ) ,K + i С Vn, fl^Lx К  =  
{ a 0 +  § } ,  К  С (cq>, + 00), f ( x o) , f ( y 0) Vn (n =  1,2,...) and choose 
a sequence { 7 n}£Li such that G Vn П (a 0, a 0 +  § ) and /* a 0 +  2 . 
Let us adopt B(a0 +  |) =  {V^ : n =  1 ,2 ,...}.
E ) x G  (a 0 — §,or0 +  |). Then, let B(x) be the family of those sets U, 
for which:

x e U  e B ,  U  С OLn V , v
~ 5 a o +  77

and the sets U \ { x }  and

( { ß n : n e  N } U ( 7„ : n G N } U |a 0 -  a 0 +  / (x 0) , / (y0) j )

are disjoint.

The family B* =  UJ,eR'^(x ) a base of our topology in R.

Now, dehne a function g : R — > R in the following way:
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' f ( x ) if ж G ( - 00, x0] U [y0, + 00);

ao +  3 if ж G С*;
if с € С \ (С* U и ~ 1  U {ж0, у0} ) ;

/(®o) if х £ ^ 4n for п — 1 , 2 ,

/(Уо) if X G A j„_ i for n =  1,2,...;

Ain- 2 if X G A 4n_2 for n =  1,2,...;

, Tin—3 if ж G А 4п_з for n =  1,2,... .

It is obvious that g is a nonmeasurable and quasi-continuous func
tion.

Now, we shall show that g is an l.r.c. function.
Let U  G Б*. Denote V  =  g~l (U )  and V~ — g~l (U ) .  Let v G V. Let 

us analyse the following possibilities:
1) v G ( —00, x0) U (yo, +oo ). Then there exists 6V >  0 such that

and (v — Sv, v +  Sv) С  ( —oo, x 0) U (yo, + 00). Then

(v -  5v,v  +  Sv)  П V~  С  f ~ l { U ) П ( ( —00, x0) U (y0, + 00) )  С  V.

2) v =  x 0. Then U  G В , f { x 0) =  g ( x 0) € U,

( Ü \ { f ( x 0) } )  П

({/ ? »: n G N } U { 7n : n G N } U j a 0 — ^ ,a Q +  - , f ( y 0)|^ =  0

and U  С (a 0 — |, a0 +  |). Besides, it is known that there exists S0 >  0 
such that (v -  60, и ] П к ' С ( и  -  80, v] П f ~ l { U ) С V  and v +  S0 <  y0. 
At the same time, V~  fl(w, v +  60) С g~l ( f ( x 0) )  С V, therefore, indeed, 
( w - ( i 0, «  +  <So) n r  С V.

3 ) v =  y0. Our considerations are similar to those in 2 ).
4) v G A n (n =  1,2,...). Then V~  П ( x 0, y0) =  V  П ( x OJ y0) С  V  is 

an open set in V~.
5) v G C*. Then g (v )  =  a 0 +  § and (ж0, y0) П к "  =  (x 0, y0) П V.
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6 ) V 6 С \ (С* U U~ 1  A n U { x 0, y0} ) .  The reasoning is analogous to 
that in 5).

The arbitrariness of choice of v proves that V  is open in V ~ .
The proof that g is an l.r.c. function is completed.

Now, we consider the ball K (g ,  \). Since Q*(f ,g )  <  \g, therefore 
K (9 i  4) С K(f, 77). It is not difficult to notice that if h £ K ( g , |), then 
it is a nonmeasurable function, what proves that K (g ,  С Cf*R. In 
turn, this implies that p (C f R \ Cf*R, f )  >  |, what, by the arbitrariness 
of the choice of /, ends the proof of the theorem.

In paper [5] the authors proved (Theorem 2) that (under some 
assumptions concerning the domain of the considered transformations) 
if / is an l.r.c. and connected function, then it is continuous. It turns 
out, however, that, in the case of functions defined in Rn, we can 
replace the connectedness by the Darboux property4, and even make 
use of the local Darboux property5:

Definition 1 Let f  : X  — y Y  where X ,  V  are topological spaces. We 
say that a point x0 G X  is a Darboux point of  the third kind of f  if, 
fo r  each arc L  =  L ( x 0,a) , the following condition is fulfilled: 
i f  К  is a set such that, fo r  some net С L fo r  which
x0 € linvgs^V; К  cuts Y  between { f ( x 0) }  and the set 
{/ (* «7) : o- 6 S }  U acpa^ f ( x ir),6 
then К  П f ( L ^ ( x 0, x a) )  /  0 for  any a € S.

Theorem 2 Let f  : Rn — У Y  be an l.r.c. function 
connected regular topological space. Then the following 
equivalent:
(г) x 0 is a Darboux point of  the first kind of f .

4i.e. (see [7]), the image o f every arc is a connected set.
5In the theorem below we use the definition o f a Darboux point o f the third 

kind only, therefore we shall quote it in full here. The definitions o f Darboux points 
o f the first and the second kinds are pretty long([7], [8]), so we shall not quote 
them - in the proof o f theorem, for this kind o f points, we make direct use o f the 
result included in the papers cited above.

6By acpCT6s / (x CT) we denote the set o f all accumulation points o f { f { x a) } aes-

where Y  is a 
conditions are
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( i i )  x0 is a Darboux point of  the second kind of f .
( in )  x 0 is a Darboux point of  the third kind of f .
( iv) x0 € Cf.

Proof. In view of the results included in papers [7] and [8], it 
suffices to prove the implication ( i i i )=^(iv).

Suppose that x0 ^  Cj.  Then there exists an open neighbourhood 
У  of a point f ( x 0), such that

f ( K ( x 0,S) )  \ V  7  ̂0 for any 5 >  0.

This means that there exists a sequence such that

g (x0, x n) \  0 and f ( x n) £ V, for n G N

Let, for an arbitrary n — 1,2,..., tn G ( g ( x 0lx n), g (x0, x n+1 )). Denote 
I*  (/**) an interval, one endpoint of which is xn (x n+1), but the other 
endpoint lies on the sphere S ( x 0ltn)i with that we demand that the 
lenght of I *  (/**) is equal to g (S (x 0, tn), xn) ( g (S ( x 0, tn), z n+1)). Mo
reover, let /*** С S ( x 0, tn) be an arc which endpoints belong to /* and

Let Ł =  { x 0}  U U ^ri(7 *U/**U /***). Then L is an arc, one endpoint 
of which is x0.

Let В be a base of the space Y  such that
(4) f - \ U )  is an open set in / - 1 (t/), for U  G B. Choose U0 G В such 
that f ( x 0) € U0 С U0 С V  (this choice is possible because X  is a 
Тз-space).

Denote F  =  F r ( U 0). Then F  ф 0 in virtue of the connectedness 
o f У, and this means that F  cuts V  between { f ( x 0) }  and the set 
{ f ( x n) : n € N } U acp (f(xn)). Since x 0 is a Darboux point of the third 
kind of /, we can infer that x0 G f ~ 1( F ) .  This fact implies (according 
to the fact that U0 is an open set) that / _1([/0) is not an open set in 
f ~ 1(U0), what contradicts to ( 1 ). The obtained contradiction ends the 
proof of the theorem.
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