The Sum of 1-improvable Functions

Aleksandra Katafiasz, Genowefa Rzepecka

Definition 1 For each function $f : \mathbb{R} \longrightarrow \mathbb{R}$, by L(f) we denote the set of all points at which there exists a limit of the function f. Furthermore, let

$$C(f) = \left\{ x \in L(f); \lim_{t \to x} f(t) = f(x) \right\};$$

$$U(f) = \left\{ x \in \mathbb{R}; \lim_{t \to x} f(t) \neq f(x) \right\}.$$

We define the functions $f_{(\alpha)}$ for all ordinal numbers.

Definition 2 Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and let $f_{(0)}(x) = f(x)$ for each $x \in \mathbb{R}$. For every ordinal number α , let

$$f_{(\alpha)}(x) = \begin{cases} f(x) & \text{if} & \left\{ \gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right) \right\} = \emptyset, \\ \lim_{t \to x} f_{(\gamma_0)}(t) & \text{if} & x \in U\left(f_{(\gamma_0)}\right), \\ & \text{where } \gamma_0 = \min\left\{ \gamma < \alpha; \ x \in U\left(f_{(\gamma)}\right) \right\}. \end{cases}$$

Definition 3 For each ordinal number α , we denote

$$\mathcal{A}_{\alpha} = \left\{ f : \mathbb{R} \longrightarrow \mathbb{R}; \ C\left(f_{(\alpha)}\right) = \mathbb{R} \right\}.$$

We can state the following remark:

Remark 1 The family $(A_{\alpha})_{\alpha>0}$ has the following properties:

- (1) A_0 is the family of all continuous functions on D;
- (2) for each ordinal number $\alpha < \omega_1, \ \bigcup_{0 < \beta < \alpha} \mathcal{A}_{\beta} \subset \mathcal{A}_{\alpha}$.

Definition 4 If a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ belongs to $\mathcal{A}_{\alpha} \setminus \left(\bigcup_{0 \leq \beta < \alpha} \mathcal{A}_{\beta} \right)$, then it will be called an α -improvable discontinuous function.

It is easy to see the following remark:

Remark 2 Let $W \subset \mathbb{R}$ and let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the characteristic function of the set W such that $f \in \mathcal{A}_{\alpha} \setminus \bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$ for some ordinal number $\alpha < \omega_1$. Then each function $g : \mathbb{R} \longrightarrow \mathbb{R}$ such that for each $x \in \mathbb{R}$, $0 \le g(x) < f(x)$ belongs to \mathcal{A}_{α} .

For any subset K of \mathbb{R} by K^d we shall denote the set of all accumulation points of the set K.

Theorem 1 For each ordinal number $\alpha < \omega_1$ there exist functions f, g belonging to A_1 such that $f + g \in A_{\alpha}$.

Proof. For each set $A \subset \mathbb{R}$ and $a,b \in \mathbb{R}$ we denote $aA+b=\{ax+b; x \in A\}$.

Let $\alpha < \omega_1$ be an ordinal number. By the transfinite induction, we shall define a sequence of sets $(W_\beta)_{\beta \leq \alpha}$ in the following way: let $W_0 = \{0\}$ and let $W_1 = \left\{\frac{1}{2^n}; n \in \mathbb{N}\right\}$ and, for each ordinal number β (where $3 \leq \beta \leq \alpha$).

1. if $\beta = \gamma + 2$, where β is an ordinal number, then put

$$W_{\beta} = \bigcup_{n=1}^{\infty} \left(\frac{1}{2^n} W_{\gamma} + \frac{1}{2^n} \right),$$

2. if β is a limit ordinal number, then we can choose a sequence $(\beta_n)_{n=1}^{\infty}$ of ordinal numbers such that $\lim_{n\to\infty} \beta_n = \beta$ and, for each $n \in \mathbb{N}$, $\beta_n < \alpha$, thus we put

$$W_{\beta} = \bigcup_{n=1}^{\infty} \left(\frac{1}{2^n} W_{\beta_n} + \frac{1}{2^n} \right),$$

3. if $\beta = \gamma + 1$, where γ is a limit ordinal number, then

$$W_{\beta} = W_{\gamma} \cup \{0\}.$$

Notice that $W_{\gamma} \cap W_{\xi} = \emptyset$ whenever $\gamma \neq \xi$ and $W_{\gamma} = W_{\gamma+1}^d$ for each $\gamma \leq \alpha$.

Now, we define a sequence of functions $(f_{\beta})_{\beta \leq \alpha}$ and $(g_{\beta})_{\beta \leq \alpha}$ in the following way: let $f_0(x) = 0$ and $g_0(x) = 0$ for each $x \in \mathbb{R}$; let f_1 be the characteristic function of the set W_0 and $g_1 = g_0$ and let $f_2 = f_1$ and $g_2 = \frac{1}{2}\chi_{W_1}$. Assume that β is an ordinal number such that $3 \leq \beta < \alpha$ and assume that, for each ordinal number γ (where $3 \leq \gamma < \beta$), we have defined functions f_{γ}, g_{γ} , then

- 1. if $\beta = \gamma + 2$, where γ is an ordinal number, we have to consider two possibilities:
 - let β be an odd number, then put

$$f_{\beta}(x) = \begin{cases} \frac{1}{2^n} g_{\gamma+1}(2^n x - 1) & \text{if } x \in \frac{1}{2^n} W_{\gamma} + \frac{1}{2^n}, \\ f_{\gamma+1}(x) & \text{if } x \in \mathbb{R} \setminus W_{\gamma+1} \end{cases}$$

and $g_{\beta} = g_{\gamma+1}$;

• let β be an even ordinal number, then put $f_{\beta} = f_{\gamma+1}$ and

$$g_{\beta}(x) = \begin{cases} \frac{1}{2^n} f_{\gamma+1}(2^n x - 1) & \text{if } x \in \frac{1}{2^n} W_{\gamma} + \frac{1}{2^n}, \\ g_{\gamma+1}(x) & \text{if } x \in \mathbb{R} \setminus W_{\gamma+1}; \end{cases}$$

2. if β is a limit ordinal number, then we put

$$f_{\beta}(x) = \begin{cases} \frac{1}{2^n} f_{\beta_n}(x) & \text{if } x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right), \\ 0 & \text{otherwise} \end{cases}$$

and

$$g_{\beta}(x) = \begin{cases} \frac{1}{2^n} g_{\beta_n}(x) & \text{if } x \in \left[\frac{1}{2^{n+1}}, \frac{1}{2^n}\right), \\ 0 & \text{otherwise,} \end{cases}$$

where the sequence $(\beta_n)_{n=1}^{\infty}$ was chosen when we were constructing the set W_{β} ;

3. if $\beta = \gamma + 1$, where γ is a limit ordinal number, then put

$$f_{\beta}(x) = \begin{cases} 1 & \text{if } x \in W_0, \\ f_{\gamma} & \text{otherwise} \end{cases}$$

and $g_{eta}=g_{\gamma}.$

First we show that $f_{\alpha} \in \mathcal{A}_1$. Observe that

$${x \in \mathbb{R} ; f(x) > 0} \subset \bigcup_{\beta < \alpha} W_{\beta}.$$

Since cl $\left(\mathbb{R} \setminus \bigcup_{\beta < \alpha} W_{\beta}\right) = \mathbb{R}$ and $\mathbb{R} \setminus \bigcup_{\beta < \alpha} W_{\beta} \subset \{x \in \mathbb{R}; \ f(x) = 0\}$, we have $\left\{x \in \mathbb{R}; \ \liminf_{t \to x} f_{\alpha}(t) = 0\right\} = \mathbb{R}.$

Consider three possibilities:

1. Let $\alpha = \beta + 2$, where β is an ordinal number. Let $x \in \mathbb{R}$. If there exists $\gamma < \alpha$ such that γ is an odd ordinal number and $x \in W_{\gamma}$, then $f_{\alpha}(x) > 0$. Thus there exists a sequence $(x_n)_{n=1}^{\infty} \subset W_{\gamma+1}$ such that $\lim_{n\to\infty} x_n = x$. Since for each $n \in \mathbb{N}$, $f_{\alpha}(x_n) = 0$, we have $\lim_{n\to\infty} f_{\alpha}f(x_n) = 0$. By the definition of the function f_{α} , we infer that for each sequence $(x_n)_{n=1}^{\infty}$ in $\bigcup_{\gamma+1<\xi<\alpha} W_{\xi}$, $\lim_{n\to\infty} f_{\alpha}(x_n) = 0$. Thus there exists $\lim_{t\to x} f_{\alpha}(t)$ and $\lim_{t\to x} f_{\alpha}(t) = 0$. Hence $x \in U(f_{\alpha})$ and $x \in C((f_{\alpha})_{(1)})$.

If there exists $\gamma < \alpha$ such that γ is an even ordinal number and $x \in W_{\gamma}$, then $f_{\alpha}(x) = 0$. Then since $W_{\gamma} = W_{\gamma+1}^d$, there exists a sequence $(x_n)_{n=1}^{\infty} \subset W_{\gamma+1}$ such that $\lim_{n\to\infty} x_n = x$. Since for each $n \in \mathbb{N}$, $f(x_n) > \frac{1}{2^n} > 0$ for some $n \in \mathbb{N}$, we have

 $\lim_{n\to\infty} f_{\alpha}(x_n) > 0$. Since $\gamma + 1$ is an odd ordinal number, for each $n \in \mathbb{N}$, $x_n \in U(f_{\alpha})$, hence $x \in C((f_{\alpha})_{(1)})$.

If $x \in \mathbb{R} \setminus \bigcup_{\gamma < \alpha} W_{\gamma}$, then there exists no ordinal number $\gamma < \alpha$ such that $x \in W_{\gamma}^d$. Thus $\lim_{t \to x} f_{\alpha}(t) = 0$. Hence $x \in C(f)$. Thus $f_{\alpha} \in \mathcal{A}_1$.

- 2. Let α be a limit ordinal number. Then we can show analogously that for each $n \in \mathbb{N}$, the function $(f_{\alpha})_{\mid \left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right)} \in \mathcal{A}_{1}$, hence $f_{\alpha} \in \mathcal{A}_{1}$.
- 3. Let $\alpha = \beta + 1$, where β is a limit ordinal number. Then we can show similarly to above that $(f_{\alpha})_{|(\mathbb{R}\setminus\{0\})} \in \mathcal{A}_1$. Since for each sequence $(x_n)_{n=1}^{\infty}$ such that $\lim_{n\to\infty} x_n = 0$ and for each $n \in \mathbb{N}$, $f(x_n) > 0$ we have $\lim_{n\to\infty} f_{\alpha}(x_n) = 0$, so $0 \in U(f_{\alpha})$. Thus $f_{\alpha} \in \mathcal{A}_1$.

Similarly to above we can show that $g_{\alpha} \in \mathcal{A}_1$.

Put $h_{\alpha} = f_{\alpha} + g_{\alpha}$.

Analogously to the proof of Theorem 13 (see [1]) we can show that $\chi_{W_{\alpha}} \in \mathcal{A}_{\alpha}$.

Since for each $x \in \mathbb{R}$, $0 \le h_{\alpha}(x) \le 2\chi_{W_{\alpha}}(x)$, we have by Remark 1 that $h_{\alpha} \in \mathcal{A}_{\alpha}$. It is easy to see that $h_{\alpha} \notin \bigcup_{\beta < \alpha} \mathcal{A}_{\beta}$. Thus the proof is completed.

REFERENCES

A. Katafiasz, *Improvable Functions*, Real Anal. Ex., Vol. 21, No. 2, (1995-1996), p. 407 – 424.

Wyższa Szkoła Pedagogiczna Instytut matematyki • Chodkiewicza 30 85 064 Bydgoszcz, Poland

Uniwersytet Łódzki Instytut matematyki Banacha 22 90–238 Łódź, Poland