The Sum of 1-improvable Functions

Aleksandra Katafiasz, Genowefa Rzepecka

Definition 1 For each function $f: \mathbb{R} \longrightarrow \mathbb{R}$, by $L(f)$ we denote the set of all points at which there exists a limit of the function f. Furthermore, let

$$
\begin{aligned}
& C(f)=\left\{x \in L(f) ; \lim _{t \rightarrow x} f(t)=f(x)\right\} ; \\
& U(f)=\left\{x \in \mathbb{R} ; \lim _{t \rightarrow x} f(t) \neq f(x)\right\} .
\end{aligned}
$$

We define the functions $f_{(\alpha)}$ for all ordinal numbers.
Definition 2 Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and let $f_{(0)}(x)=f(x)$ for each $x \in \mathbb{R}$. For every ordinal number α, let

$$
f_{(\alpha)}(x)=\left\{\begin{array}{llc}
f(x) & \text { if } & \left\{\gamma<\alpha ; x \in U\left(f_{(\gamma)}\right)\right\}=\emptyset, \\
\lim _{t \rightarrow x} f_{\left(\gamma_{0}\right)}(t) & \text { if } & x \in U\left(f_{\left(\gamma_{0}\right)}\right), \\
& \text { where } \gamma_{0}=\min \left\{\gamma<\alpha ; x \in U\left(f_{(\gamma)}\right)\right\} .
\end{array}\right.
$$

Definition 3 For each ordinal number α, we denote

$$
\mathcal{A}_{\alpha}=\left\{f: \mathbb{R} \longrightarrow \mathbb{R} ; C\left(f_{(\alpha)}\right)=\mathbb{R}\right\} .
$$

We can state the following remark:
Remark 1 The family $\left(\mathcal{A}_{\alpha}\right)_{\alpha \geq 0}$ has the following properties:
(1) \mathcal{A}_{0} is the family of all continuous functions on D;
(2) for each ordinal number $\alpha<\omega_{1}, \cup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta} \subset \mathcal{A}_{\alpha}$.

Definition 4 If a function $f: \mathbb{R} \longrightarrow \mathbb{R}$ belongs to $\mathcal{A}_{\alpha} \backslash\left(\bigcup_{0 \leq \beta<\alpha} \mathcal{A}_{\beta}\right)$, then it will be called an α-improvable discontinuous function.

It is easy to see the following remark:
Remark 2 Let $W \subset \mathbb{R}$ and let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the characteristic function of the set W such that $f \in \mathcal{A}_{\alpha} \backslash \bigcup_{\beta<\alpha} \mathcal{A}_{\beta}$ for some ordinal number $\alpha<\omega_{1}$. Then each function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that for each $x \in \mathbb{R}, 0 \leq g(x)<f(x)$ belongs to \mathcal{A}_{α}.

For any subset K of \mathbb{R} by K^{d} we shall denote the set of all accumulation points of the set K.

Theorem 1 For each ordinal number $\alpha<\omega_{1}$ there exist functions f, g belonging to \mathcal{A}_{1} such that $f+g \in \mathcal{A}_{\alpha}$.

Proof. For each set $A \subset \mathbb{R}$ and $a, b \in \mathbb{R}$ we denote $a A+b=$ $\{a x+b ; x \in A\}$.

Let $\alpha<\omega_{1}$ be an ordinal number. By the transfinite induction, we shall define a sequence of sets $\left(W_{\beta}\right)_{\beta \leq \alpha}$ in the following way: let $W_{0}=\{0\}$ and let $W_{1}=\left\{\frac{1}{2^{n}} ; n \in \mathbb{N}\right\}$ and, for each ordinal number β (where $3 \leq \beta \leq \alpha$).

1. if $\beta=\gamma+2$, where β is an ordinal number, then put

$$
W_{\beta}=\bigcup_{n=1}^{\infty}\left(\frac{1}{2^{n}} W_{\gamma}+\frac{1}{2^{n}}\right)
$$

2. if β is a limit ordinal number, then we can choose a sequence $\left(\beta_{n}\right)_{n=1}^{\infty}$ of ordinal numbers such that $\lim _{n \rightarrow \infty} \beta_{n}=\beta$ and, for each $n \in \mathbb{N}, \beta_{n}<\alpha$, thus we put

$$
W_{\beta}=\bigcup_{n=1}^{\infty}\left(\frac{1}{2^{n}} W_{\beta_{n}}+\frac{1}{2^{n}}\right)
$$

3. if $\beta=\gamma+1$, where γ is a limit ordinal number, then

$$
W_{\beta}=W_{\gamma} \cup\{0\} .
$$

Notice that $W_{\gamma} \cap W_{\xi}=\emptyset$ whenever $\gamma \neq \xi$ and $W_{\gamma}=W_{\gamma+1}^{d}$ for each $\gamma \leq \alpha$.

Now, we define a sequence of functions $\left(f_{\beta}\right)_{\beta \leq \alpha}$ and $\left(g_{\beta}\right)_{\beta \leq \alpha}$ in the following way: let $f_{0}(x)=0$ and $g_{0}(x)=0$ for each $x \in \mathbb{R}$; let f_{1} be the characteristic function of the set W_{0} and $g_{1}=g_{0}$ and let $f_{2}=f_{1}$ and $g_{2}=\frac{1}{2} \chi_{w_{1}}$. Assume that β is an ordinal number such that $3 \leq \beta<\alpha$ and assume that, for each ordinal number γ (where $3 \leq \gamma<\beta$), we have defined functions f_{γ}, g_{γ}, then

1. if $\beta=\gamma+2$, where γ is an ordinal number, we have to consider two possibilities:

- let β be an odd number, then put

$$
f_{\beta}(x)=\left\{\begin{array}{lll}
\frac{1}{2^{n}} g_{\gamma+1}\left(2^{n} x-1\right) & \text { if } & x \in \frac{1}{2^{n}} W_{\gamma}+\frac{1}{2^{n}} \\
f_{\gamma+1}(x) & \text { if } & x \in \mathbb{R} \backslash W_{\gamma+1}
\end{array}\right.
$$

and $g_{\beta}=g_{\gamma+1}$;

- let β be an even ordinal number, then put $f_{\beta}=f_{\gamma+1}$ and

$$
g_{\beta}(x)= \begin{cases}\frac{1}{2^{n}} f_{\gamma+1}\left(2^{n} x-1\right) & \text { if } \\ g_{\gamma+1}(x) & \text { if } \\ x \in \mathbb{R} \backslash \frac{1}{2^{n}} W_{\gamma}+\frac{1}{2^{n}} \\ W_{\gamma+1}\end{cases}
$$

2. if β is a limit ordinal number, then we put

$$
f_{\beta}(x)= \begin{cases}\frac{1}{2^{n}} f_{\beta_{n}}(x) & \text { if } x \in\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
g_{\beta}(x)= \begin{cases}\frac{1}{2^{n}} g_{\beta_{n}}(x) & \text { if } x \in\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right) \\ 0 & \text { otherwise }\end{cases}
$$

where the sequence $\left(\beta_{n}\right)_{n=1}^{\infty}$ was chosen when we were constructing the set W_{β};
3. if $\beta=\gamma+1$, where γ is a limit ordinal number, then put

$$
f_{\beta}(x)= \begin{cases}1 & \text { if } x \in W_{0} \\ f_{\gamma} & \text { otherwise }\end{cases}
$$

and $g_{\beta}=g_{\gamma}$.
First we show that $f_{\alpha} \in \mathcal{A}_{1}$.
Observe that

$$
\{x \in \mathbb{R} ; f(x)>0\} \subset \bigcup_{\beta<\alpha} W_{\beta}
$$

Since $\mathrm{cl}\left(\mathbb{R} \backslash \bigcup_{\beta<\alpha} W_{\beta}\right)=\mathbb{R}$ and $\mathbb{R} \backslash \bigcup_{\beta<\alpha} W_{\beta} \subset\{x \in \mathbb{R} ; f(x)=0\}$, we have

$$
\left\{x \in \mathbb{R} ; \liminf _{t \rightarrow x} f_{\alpha}(t)=0\right\}=\mathbb{R}
$$

Consider three possibilities:

1. Let $\alpha=\beta+2$, where β is an ordinal number. Let $x \in \mathbb{R}$. If there exists $\gamma<\alpha$ such that γ is an odd ordinal number and $x \in W_{\gamma}$, then $f_{\alpha}(x)>0$. Thus there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset W_{\gamma+1}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since for each $n \in \mathbb{N}$, $f_{\alpha}\left(x_{n}\right)=0$, we have $\lim _{n \rightarrow \infty} f_{\alpha} f\left(x_{n}\right)=0$. By the definition of the function f_{α}, we infer that for each sequence $\left(x_{n}\right)_{n=1}^{\infty}$ in $\bigcup_{\gamma+1<\xi<\alpha} W_{\xi}, \lim _{n \rightarrow \infty} f_{\alpha}\left(x_{n}\right)=0$. Thus there exists $\lim _{t \rightarrow x} f_{\alpha}(t)$ and $\lim _{t \rightarrow x} f_{\alpha}(t)=0$. Hence $x \in U\left(f_{\alpha}\right)$ and $x \in C\left(\left(f_{\alpha}\right)_{(1)}\right)$.
If there exists $\gamma<\alpha$ such that γ is an even ordinal number and $x \in W_{\gamma}$, then $f_{\alpha}(x)=0$. Then since $W_{\gamma}=W_{\gamma+1}^{d}$, there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset W_{\gamma+1}$ such that $\lim _{n \rightarrow \infty} x_{n}=x$. Since for each $n \in \mathbb{N}, f\left(x_{n}\right)>\frac{1}{2^{n}}>0$ for some $n \in \mathbb{N}$, we have
$\lim _{n \rightarrow \infty} f_{\alpha}\left(x_{n}\right)>0$. Since $\gamma+1$ is an odd ordinal number, for each $n \in \mathbb{N}, x_{n} \in U\left(f_{\alpha}\right)$, hence $x \in C\left(\left(f_{\alpha}\right)_{(1)}\right)$.
If $x \in \mathbb{R} \backslash \bigcup_{\gamma<\alpha} W_{\gamma}$, then there exists no ordinal number $\gamma<\alpha$ such that $x \in W_{\gamma}^{d}$. Thus $\lim _{t \rightarrow x} f_{\alpha}(t)=0$. Hence $x \in C(f)$.
Thus $f_{\alpha} \in \mathcal{A}_{1}$.
2. Let α be a limit ordinal number. Then we can show analogously that for each $n \in \mathbb{N}$, the function $\left(\left.f_{\alpha}\right|_{\left[\frac{1}{2^{n+1}}, \frac{1}{2^{n}}\right)} \in \mathcal{A}_{1}\right.$, hence $f_{\alpha} \in \mathcal{A}_{1}$.
3. Let $\alpha=\beta+1$, where β is a limit ordinal number. Then we can show similarly to above that $\left(f_{\alpha}\right)_{\mid(\mathbf{R} \backslash\{0\})} \in \mathcal{A}_{1}$. Since for each sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} x_{n}=0$ and for each $n \in \mathbb{N}$, $f\left(x_{n}\right)>0$ we have $\lim _{n \rightarrow \infty} f_{\alpha}\left(x_{n}\right)=0$, so $0 \in U\left(f_{\alpha}\right)$. Thus $f_{\alpha} \in \mathcal{A}_{1}$.
Similarly to above we can show that $g_{\alpha} \in \mathcal{A}_{1}$.
Put $h_{\alpha}=f_{\alpha}+g_{\alpha}$.
Analogously to the proof of Theorem 13 (see [1]) we can show that $\chi_{w_{\alpha}} \in \mathcal{A}_{\alpha}$.

Since for each $x \in \mathbb{R}, 0 \leq h_{\alpha}(x) \leq 2 \chi_{w_{\alpha}}(x)$, we have by Remark 1 that $h_{\alpha} \in \mathcal{A}_{\alpha}$. It is easy to see that $h_{\alpha} \notin \bigcup_{\beta<\alpha} \mathcal{A}_{\beta}$. Thus the proof is completed.

REFERENCES

[1] A. Katafiasz, Improvable Functions, Real Anal. Ex., Vol. 21, No. 2, (1995-1996), p. 407-424.

Wyższa SzkoŁa Pedagogiczna Uniwersytet Łódzki Instytut matematyki
- Chodkiewicza 30
85064 Bydgoszcz, Poland
INSTYTUT MATEMATYKI
Banacha 22
90-238 Lódź, Poland

