Problemy Matematyczne
11 (1989), 21-30

On algebra generated by derivatives of interval functions

Aleksander Maliszewski

0.1 Introduction.

In 1982 D. Preiss [4] proved the following
Theorem 0.1.1 Whenever $u: \mathbb{R} \longrightarrow \mathbb{R}$ is a function of the first class, there are functions f, g and h possessing finite derivative everywhere such that $u=f^{\prime} \cdot g^{\prime}+h^{\prime}$. Moreover, one can find such a representation that g^{\prime} is bounded and h^{\prime} is Lebesgue and in case u is bounded, such that f^{\prime} and h^{\prime} are also bounded,
which was the solution of A . Bruckner's problem concerning the algebra generated by derivatives (it is exactly the first class).

In this article we generalize this theorem changing the domain of u. However, we obtain the generalization only for bounded functions. In the proof we use the Preiss's method.

0.2 Preliminaries.

In this section we develop notation and state some known results to which we shall refer.

The real line $(-\infty,+\infty)$ we denote by \mathbb{R} and the set of positive integers by N . Throughout this article m is fixed positive integer and the word function means mapping from \mathbb{R}^{m} into \mathbb{R} unless otherwise explicitly stated.

A function is said to be in the first class of Baire (\mathcal{B}^{1}) if it is a pointwise limit of a sequence of continuous functions (with respect to natural topology). We denote by \mathcal{L} the family of all Lebesgue measurable subsets of \mathbb{R}^{m}. The Euclidean distance of two points in \mathbb{R}^{m}, of a point in \mathbb{R}^{m} and a subset of \mathbb{R}^{m} and of two subsets of \mathbb{R}^{m} are denoted respectively by $\Omega(x, y)$, $\varrho(x, A)=\inf \{\varrho(x, y): y \in A\}$ and $\varrho(A, B)=\inf \{\varrho(x, y): x \in A, y \in B\}$. For each $A \subset \mathbb{R}^{m}$ we denote by $|A|$ its outer Lebesgue measure, by diam A its diameter and by χ_{A} its characteristic function. A differentiation basis is a pair $(\mathcal{I}, \Rightarrow)$, where $\mathcal{I} \subset \mathcal{L}$ is composed of sets of positive finite Lebesque measure and \Rightarrow is a relation (called the convergency relation) between sequences of elements of \mathcal{I} and points of $\mathbb{I R}^{n}$, such that the following two conctitions hold:

1. for each $x \in \mathbb{R}^{m}$ there is a sequence $\left\{I_{n}: n \in \mathbb{N}\right\}$ of elements of \mathcal{I} convergent to x.
2. each subsequence of a sequence convergent to some x is also convergent to x.

If $P: I \longrightarrow \mathbb{R}$ then the notation $\lim _{l \rightarrow x} P(I)=a$ means "for each sequence $\left\{I_{n}: n \in N^{*}\right\} \subset \mathcal{I}$, if $\left\{I_{n}: n \in N\right\} \Rightarrow x$, then $\lim _{n \rightarrow \infty} P\left(I_{n}\right)=a$." Wic call function f a derivative (with respect to the differentiation basis $(\mathcal{I}, \Rightarrow)$) iff there exists an additive function $F: \mathcal{I} \longrightarrow \mathbb{R}$ such that $\lim _{I \rightarrow x} F(I) /|I|=f(x)$ for each $x \in \mathbb{R}^{m}$. We say that f is a Lebesgue function (w.r.t. ($\mathcal{I} . \Rightarrow$)) iff $\lim _{I \Rightarrow x} \int_{l}|f(t)-f(x)| d t /|I|=0$ for each $x \in \mathbb{R}^{m}$. (We recall that cach Lebesgue function is approximately continuous and each bounded approximately continuous functions is Lebesguc.) Point $x \in \mathbb{R}^{m}$ is a density point of $A \in E$ (w.r.t. $\left(\mathcal{I}, \Rightarrow\right.$) iff $\lim _{l \rightarrow x}|A \cap I| / \mid I=1$. By $A<B$ we denote that $A \subset B$ and each $x \in A$ is a density point of B. We call function f approximately continuous iff for each $x \in \mathbb{R}^{m}$ and each $\equiv>0 . x$ is a density point of $\left\{y \in \mathbb{R}^{m}:|f(?)-f(x)|<E\right\}$. We denote h, a $\vee b(a \wedge b)$ not smaller (not greater of real mombers a and b. respertively $\| f$ is an! function and $x \in \mathbb{R}^{n}$

 By sent we demote the sign fanction

iff $\{x\}=\bigcap_{n=1}^{x} I_{n}, \lim _{n \rightarrow \infty} \operatorname{diam}_{n}=0$ and $\left.\limsup { }_{n \rightarrow \infty}\left(\operatorname{diam} I_{n}\right)^{m} /\left|I_{n}\right|<\infty\right)$ and terms ferisative. Lebesgue function, approximately continuous function and lensity point are used with respect to this basis.

The following three theorems are che to M. Chaika [1] and Z. Grande [2].
Theorem 0.2.1 Assume that $A \in \mathcal{L}$. F is closed and $F<A$. Then there is a closed set $B \subset A$ such that $F \prec B$.

Theorom 0.2.2 Assume that $E . F$ are disjoint sets of type G_{δ}, such that the sets $\mathbb{R}^{m} \backslash E$ and $\mathbb{R}^{m} \backslash F$ contain only the density points of themselves. Then there cxists an approrimatcly continuous function f such that:

- $f(x)=0$, if $x \in E$.
- $f(x)=1$. if $x \in F$.
- $0<f(x)<1$, if $x \notin(E \cup F)$.

Theorem 0.2.3 Whenever $f \in \mathcal{B}^{1}$ and $E \subset \mathbb{R}^{m}$ is a null set, there is an approximately continuous function g such that $f(x)=g(x)$ for $x \in E$.

0.3 Auxiliary lemmas and main results.

Lemma 0.3.1 Suppose that $B \in \mathcal{L} . F_{1}, \ldots, F_{n}$ are pairwise disjoint, closed subsels of B. such that $F_{i} \prec B$ for $i=1, \ldots, n$ and $c_{1}, \ldots, c_{n} \in \mathbb{R}$. Then there is a Lebesque function f such that $f(x)=c_{i}$ if $x \in F_{i}, i=1, \ldots, n$, $\int(x)=0$ if $x \notin B$ and $\|f\| \leq \max \left\{c_{i}: i=1 \ldots, n\right\}$.

Proof. For $i=1, \ldots, n$ we put $d_{i}=\left\{\varrho\left(x, F_{j}\right): j=1, \ldots, n, j \neq i\right\}$ and $A_{1}=\left\{x \in B: \underline{g}\left(x, F_{1}\right)<d_{1}\right\}$. Then $F_{i}<A_{i}$, since if $x \in F_{i}, x \in I \in \mathcal{I}$ and diam $I<d_{i}$, then $I \cap A_{i}=I \cap B$. Let $B_{i} \subset A_{i}$ be closed and such that $F_{i}<B_{i}$ (Theorem 0.2.1). Find a C_{i} set C_{1} containing all points of B_{i} that are not points of density of B_{i}. such that $\left|C_{i}\right|=0$ and $C_{i} \cap F_{i}=0$. Apply Theorem 0.2.2 to find an approximately contimous function f_{i} such that:

- $f(x)=0$. if $x \in \mathbb{R}^{m} \backslash\left(B_{i} \backslash C_{i}\right)$,
- $f_{2}(x)=1$. if $x \in F_{i}$.
- $0 \leq i_{1} \leq 1$ on \mathbb{R}^{m}.

Put $f=c_{1} \cdot f_{1}+\cdots+c_{n} \cdot f_{n}$. This function satisfies claimed conditions since the sets B_{1}, \ldots, B_{n} are pairwise disjoint.

Lemma 0.3.2 Suppose that the set $A \subset \mathbb{R}^{m}$ is nonvoid, bounded and measurable, and function v is measurable, such that $\left\|v \cdot \chi_{A}\right\| \leq c<\infty$. Then for each $\varepsilon>0$ there exist approximately continuous functions f and g, such that
i) $f(x)=g(x)=0$ for $x \notin A$,
ii) $\|f\| \leq c \vee \sqrt{c},\|g\| \leq 1 \wedge \sqrt{c}$,
iii) $\left|\int_{I} f(t) d t\right| \leq \varepsilon,\left|\int_{I} g(t) d t\right| \leq \varepsilon$ for every interval $I \in \mathcal{I}$,
iv) $\int_{A}|v(t)-f(t) \cdot g(t)| d t \leq \varepsilon$.

Proof. Represent A as a union of nonempty, pairwise disjoint measurable sets A_{1}, \ldots, A_{n}, such that

$$
\operatorname{diam} A_{i} \leq \frac{\varepsilon \cdot(1 \vee \operatorname{diam} A)^{1-m}}{3 m \cdot(1 \vee c)} \quad \text { and } \quad \omega\left(v, A_{i}\right) \leq \frac{\varepsilon}{3|A|+1}
$$

for $i=1, \ldots, n$. For $i=1, \ldots, n$, find closed, pairwise disjoint sets $P_{i}, Q_{i} \prec A_{i}$ such that $\left|P_{i}\right|=\left|Q_{i}\right|$ and $\left|A_{i}\right|\left(P_{i} \cup Q_{i}\right) \mid \leq \varepsilon /(3 n \cdot(1 \vee c))$. Choose also any $x_{i} \in A_{i}$. Put $a_{i}=\left|v\left(x_{i}\right)\right| \vee \sqrt{\left|v\left(x_{i}\right)\right|}$ and $b_{i}=\left(1 \wedge \sqrt{\left|v\left(x_{i}\right)\right|}\right) \cdot \operatorname{sgn}\left(v\left(x_{i}\right)\right)$. Let f and g be Lebesgue functions such that:

- $f(x)=a_{i}, g(x)=b_{i}$, if $x \in P_{i}, i=1, \ldots, n$,
- $f(x)=-a_{i}, g(x)=-b_{i}$, if $x \in Q_{i}, i=1, \ldots, n$,
- $f(x)=0, y(x)=0$, if $x \notin A$,
- $\|f\| \leq c \vee \sqrt{c},\|g\| \leq 1 \wedge \sqrt{c}$.
(We use Lemma 0.3.1.) Then i) and ii) are obviously satisfied. Since for $i=1, \ldots, n$

$$
\left|\int_{A_{1}} f(t) d t\right|=\left|\int_{A_{1} \backslash\left(P_{1} \cup Q_{1}\right)} f(t) d t\right| \leq \frac{(c \vee \sqrt{c}) \cdot \varepsilon}{3 n \cdot(1 \vee c)} \leq \frac{\varepsilon}{3 n}
$$

whorery interal $/$

$$
\begin{aligned}
\left|\int_{l} f(t) d t\right| & =\left|\int_{I \cap A} f(t) \cdot l t\right| \\
& \leq \sum_{i=1}^{n}\left|\int_{A_{1}} f(t) d t\right|+\sum_{A, \backslash l \neq \emptyset}\left|\int_{I \cap A_{1}} f(t) d t\right| \\
& \leq n \cdot \varepsilon /(3 n)+\int_{i \cap \bigcup_{A, V \neq \emptyset}}|f(t)| d t \leq \varepsilon / 3+\left||f \| \cdot| I \cap \bigcup_{A, \backslash l \neq \theta} A_{i}\right| \\
& \leq \varepsilon / 3+(c \vee \sqrt{c}) \cdot 2 m \cdot \max \left\{\operatorname{diam} A_{i}: i=1, \ldots, n\right\} \cdot(\operatorname{diam} A)^{m-1} \\
& \leq \varepsilon / 3+2 m \cdot(c \vee \sqrt{c}) \cdot(\operatorname{diam} A)^{m-1} \cdot \frac{\varepsilon \cdot(1 \vee \operatorname{diam} A)^{1-m}}{3 m \cdot(1 \vee c)} \leq \varepsilon .
\end{aligned}
$$

Similarly $\left|\int_{A} g(t) d t\right| \leq \varepsilon /(3 n)$ for $i=1 \ldots, n$ and $\left|\int_{I} g(t) d t\right| \leq \varepsilon$ for every interval I. Clearly

$$
\begin{aligned}
& \int_{A}|v(t)-f(t) \cdot g(t)| d t=\sum_{i=1}^{n} \int_{A_{1}}|c(t)-f(t) \cdot g(t)| d t \\
& \quad \leq \sum_{i=1}^{n} \int_{P_{1} \cup Q_{1}}|r(t)-f(t) \cdot g(t)| d t+\sum_{i=1}^{n} \int_{A_{1} \backslash\left(P_{1} \cup Q_{1}\right)}|v(t)-f(t) \cdot g(t)| d t \\
& \quad \leq \sum_{i=1}^{n}\left\|v-f\left(x_{i}\right) \cdot g\left(x_{i}\right)\right\| \cdot\left|A_{i}\right|+\sum_{i=1}^{n}\|v-f \cdot g\| \cdot\left|A_{i} \backslash\left(P_{i} \cup Q_{i}\right)\right| \\
& \quad \leq \sum_{i=1}^{n} \omega\left(u \cdot A_{i}\right) \cdot\left|A_{i}\right|+\sum_{i=1}^{n} 2 c \cdot \frac{\varepsilon}{3 n \cdot(1 \vee c)} \leq \frac{\varepsilon}{3|A|+1} \cdot|A|+2 n \cdot \frac{\varepsilon}{3 n} \leq \varepsilon,
\end{aligned}
$$

which completes the proof.

Lemma 0.3.3 Assume that H_{1}, H_{2}, \ldots is a sequence of pairvise disjoint compart subsets of \mathbb{R}^{n} and K_{1}, K_{2}, \ldots is a sequence of non-negative real numbers such that the function $\sum_{n=1}^{\infty} K_{n} \cdot \chi_{H_{n}}$ belongs to the first class of Bare. Then there is a sequence $\sum_{1}, \Sigma_{2}, \ldots$ of positive numbers such that the follow'my conditions hold:
 and $\int_{1} f_{n}(t) l^{\prime} \leq E_{n}$ for orery intreral l. then function $f=\sum_{n=1}^{\infty} f_{n}$ is a ditricutirt.
ii) if w_{1}, w_{2}, \ldots are approximatcly continurus functions. such that for cach $u \in N, \quad\left|u_{n}\right| \leq K_{n} \cdot \lambda H_{n}$ and $\left|\int_{R^{m}} u_{n}(t) d t\right| \leq \varepsilon_{n_{i}}$. then function $u^{\prime}=\sum_{n=1}^{\infty} u_{n}$ is a Lebcsguc function.

Proof. Since the function $\sum_{n=1}^{\infty} K_{n}^{\prime} \cdot \lambda H_{n}$ is in the first class of Baire, there exists a family of compact sets $\mathcal{T}=\left\{T_{1}: i \in N\right\}$, such that for each $r>0$ the set $\left\{x \in \mathbb{R}^{m}: \sum_{n=1}^{\infty} K_{n} \cdot \lambda H_{n}<r\right\}$ is a union of some subfamily of \mathcal{T}. For each $n \in N \operatorname{set} \widetilde{\Pi}_{n}=\bigcup_{i<n} M_{i} \cup \underset{\substack{T_{1} \cap H_{n}=\theta \\ 1<n}}{\bigcup} T_{i}$ and $\varepsilon_{n}=2^{-n} \cdot\left(1 \wedge\left(\varrho\left(H_{n}, \widetilde{H}_{n}\right)\right)^{m+1}\right)$.
i) Since for every interval I the series $\sum_{n=1}^{\infty} \int_{I} f_{n}(t) d t$ is absolutely convergent, so the interval function $F(I)=\sum_{n=1}^{\infty} \int_{l} f_{n}(t) d t$ is additive. We will show that it satisfies the following condition:
(Σ) for each $x \in \mathbb{R}^{m}$ and each $\varepsilon>0$ there exists an $\eta>0$. such that for every $I \in \mathcal{I}$, if $x \in I$ and $\operatorname{diam} I<\eta$. then $\frac{|F(I)-f(x) \cdot| I|\mid}{(\operatorname{diam} I)^{m}}<\varepsilon$.

Then for each $x \in \mathbb{R}^{m}$ and each sequence $\left\{I_{n}: n \in \mathcal{N}\right\} \subset \mathcal{I}$ convergent to x we will have

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{F\left(I_{n}\right)}{\left|I_{n}\right|}-f(x)\right| & =\lim _{n \rightarrow \infty}\left|\frac{F\left(I_{n}\right)-f(x) \cdot\left|I_{n}\right|}{\left|I_{n}\right|}\right| \\
& \leq \lim _{n \rightarrow \infty}\left|\frac{F\left(I_{n}\right)-f(x) \cdot\left|I_{n}\right|}{(\operatorname{diam} I)^{m}}\right| \cdot \limsup _{n \rightarrow \infty} \frac{(\operatorname{diam} I)^{m}}{\left|I_{n}\right|}=0,
\end{aligned}
$$

i.e., $\lim _{I \rightarrow x} \frac{F(I)}{|I|}=f(x)$.

Take an $x \in \mathbb{R}^{m}$ and $\varepsilon>0$. Note first that if $x \in H_{p}$ for some $p \in N$, then for every $n>p$ and every interval I. if $x \in I$. then:

- $H_{n} \cap I \neq 0$ implies $\varrho\left(H_{n}, \pi_{n}\right) \leq \operatorname{diam} I$. so

$$
\left|\int_{1} \int_{n}(1) d t\right| \leq \varepsilon_{n} \leq 2^{-n} \cdot\left(0\left(1 I_{n} \cdot \pi_{n}\right)\right)^{m_{n+1}} \leq 2^{-n} \cdot(\operatorname{diam} I)^{n_{1}+1}
$$

- $H_{n} \cap I=0$ implies $\int_{1} \int_{n}(t) d t=0$.

Hence if diam $I<\varepsilon$, then $\left|\frac{\sum_{n=\nu+1}^{\infty} f_{I} f_{n}(t) d t}{(\text { diam } I)^{n}}\right| \leq \varepsilon$, i.e., $\sum_{n=p+1}^{\infty} \int_{1} f_{n}(t) d t$ satisfies condition ((Σ) with respect to $\sum_{n=p+1}^{\infty} f_{n}$, and since each of functions f_{1}, \ldots, f_{p} is a derivative, so condition (Σ) is in this case satisfied.

On the other side. if $x \nexists \sum_{n=1}^{\infty} H_{n}$, then for $r=\varepsilon / 2$ choose $p \in \mathrm{~N}$, such that $x \in T_{p}$ and $\sum_{n=1}^{\infty} K_{n} \cdot \chi_{H_{n}}<r$ on T_{p}. Then for every $n>p$ and every interval I, if $x \in I$, then:

- $H_{n} \cap T_{p} \neq \emptyset$ implies $K_{n}<r$, so

$$
\left|\int_{I} f_{n}(t) \cdot d t\right| \leq r \cdot|I| \leq r \cdot(\operatorname{diam} I)^{m}
$$

- if $H_{n} \cap T_{p}=\emptyset$ and $H_{n} \cap I \neq \emptyset$, then $\varrho\left(H_{n}, \widetilde{H}_{n}\right) \leq \operatorname{diam} I$, so

$$
\left|\int_{1} \int_{n}(t) d t\right| \leq \varepsilon \leq 2^{-n} \cdot\left(\underline{g}\left(H_{n}, \widetilde{H}_{n}\right)\right)^{m+1} \leq 2^{-n} \cdot(\operatorname{diam} I)^{m+1},
$$

- finally $I_{n} \cap I=0$ implics $\int_{1} f_{n}(t) d t=0$.

Hence for every interval I of diameter less than $\varrho\left(x, \bigcup_{n=1}^{p} H_{n}\right) \wedge(\varepsilon / 2)$

$$
\left|\frac{\sum_{n=1}^{\infty} \int_{1} f_{n}(t) \cdot d l}{(\operatorname{diam} I)^{m}}\right| \leq r+\operatorname{diam} I \leq \varepsilon,
$$

so condition (I) is in this case also satisfied, because $f(x)=0$.
ii) Let $x \in \mathbb{R}^{m}$. Put $u=\sum_{\| I_{n} \ni x} w_{n}$ and $v=w-u$. Since u is bounded and approximately continuous, x is a Lebesgue point for u. On the other side from i) $|v|$ is a derivative, and since $v(x)=0 . x$ is a Lebesgue point for v. Hence x is a Lebesgue point for u.

Lemma 0.3.4 Whenerer a is a function of the firot class of Baire there exist a function of the first class of Baire r. a safucnce $\left\{I_{n}: u \in N\right\}$ of pairvise disjoint compact artis und a srigurner $\left\{c_{n}: n \in \mathbb{X}\right\}$ of positive numbers such that the folloneing comditions. ary sulti.fird:
i) $u-v$ is an approsimatriy continuous function.
ii) "is approximately continuous at all points of $\bigcup_{n=1}^{\infty} I_{n}$.
iii) $v(x)=0$, if $x \in H_{n}$ for some $\| \in \mathcal{N}$ and x is not a density point of H_{n}.
iv) $|r| \leq \sum_{n=1}^{\infty} c_{n} \cdot \backslash I_{n}$ on \mathbb{R}^{m}.
v) $\sum_{n=1}^{\infty} c_{n} \cdot h_{n}$ belongs to the first class of Buire.
vi) v is bounded provided that u is bounded.

Proof. Let E be a set of measure 0 containing all points of approximate discontinuity of u, such that $\mathbb{R}^{m} \backslash E$ is a 0 -dimensional space. Let ${ }^{2}$ be an approximately continuous function. such that $\varphi(x)=u(x)$ for $x \in E$ (Theorem 0.2.3). Put $v_{1}=u-\hat{y}$ and $. \bar{Y}=\left\{x \in \mathbb{R}^{m}: \mathcal{f}(x) \neq u(x)\right\}$. Then function $\log \left|v_{1}\right|$ is a function of the first class of Baire on X, so there exists a function $g: X \longrightarrow \mathbb{R}$ of the first class of Baire on X, such that the set of its values is discrete and $|\log | x,(x)|-g(x)| \leq 1$ for $x \in X(\xi 31$, Chapter VIII. Theorem 3 in [3]). Using that X is a 0 -dimensional space and an F_{σ} set. we can represent I as the umon of pairwise disjoint compact sets $\mathrm{V}=\bigcup_{n=1}^{\infty} M_{n}$, such that g is constant on each I_{n} (830. Chapter V in 3) Put $w(x)=\exp (g(x)+1)$, if $x \in X$ and $w(x)=0$ otherwise. Let r_{n} be the value of w on $I_{n}(n \in N)$. Then condition v) is satisfied because u is non-negative and for every $a>0$

- $\left\{x \in \mathbb{R}^{n}: w(x)>n\right\}=\{r \in \mathbb{X}: g(x)>-1+\mathfrak{j} u\} \in F$,
- $\left\{r \equiv \mathbb{R}^{n}: u|r|<u\right\}=$

$$
=\{x \in \lambda: u(x)<-1+\log u\} \cup\left\{x \in \mathbb{R}^{m}:\left|m_{1}(x)\right|<u \cdot e^{-2}\right\} \boxminus F_{\pi} .
$$

Let E_{1} be a set of measure 10 containing all points of approximate discontimuty of function r_{1} and all $r \in \mathbb{R}^{m}$. sucis that $x \in \mathscr{M}_{n}$ for some $n \in \mathbb{N}$ and x is not a density point of H_{n}. Pat $v=\left(\omega_{1} \wedge\left(M_{1} \vee 0\right)\right.$) $\left(v_{1} \wedge 0\right)$. where \because

 comdition iv). The niber conditions are whemen

Theorem 0.3.5 Whenever u is a function of the first class there exist a derivative f, a bounded derivative g and an aproximately continuous function h such that $u=f \cdot g+h$ (all notions with respect to the ordinary differentiation basis). In case u is bounded we can find such a representation that f and h are also bounded. (So, in particular, h is a Lebesgue function.)

Proof. Choose an approximately continuous function v a sequence of pairwise disjoint compact sets $\left\{H_{n}: n \in \mathrm{~N}\right\}$ and a sequence of reals $\left\{c_{n}: n \in \mathrm{~N}\right\}$ according to Lemma 0.3.4. For the sequences $\left\{H_{n}: n \in \mathrm{~N}\right\}$ and $\left\{K_{n}: n \in \mathrm{~N}\right\}$, where $K_{n}=c_{n} \vee \sqrt{c}_{n}$, we find positive numbers $\left\{\varepsilon_{n}: n \in \mathrm{~N}\right\}$ according to Lemma 0.3.3. For each n use Lemma 0.3 .2 with $A=H_{n}$ and $\varepsilon=\varepsilon_{n}$ to construct functions f_{n} and g_{n} with properties described there. From Lemma 0.3.3 we see that the functions $f=\sum_{n=1}^{\infty} f_{n}$ and $g=\sum_{n=1}^{\infty} g_{n}$ are derivatives. Using the conditions ii) and iii) of Lemma 0.3 .4 we get that for each $n \in \mathrm{~N}$ function $v \cdot \chi H_{n}$ is approximately continuous. By Lemma 0.3 .3 we get that function $v-f \cdot g$ is a Lebesgue function (since $v-f \cdot g=\sum_{n=1}^{\infty}\left(v \cdot \chi_{H_{n}}-f_{n} \cdot g_{n}\right)$). Therefore the function $h=u-f \cdot g=(u-v)+(v-f \cdot g)$ is approximately continuous.

If u is bounded then so is v and, consequently, so is f and hence so is h. The other conditions are obvious.

0.4 Queries.

Query 0.4.1* Given an unbounded Baire one function $u: \mathbb{R}^{m} \longrightarrow \mathbb{R}$, can we find dcrivatives f, g and h (with respect to the ordinary differentiation basis) such that $u=f \cdot g+h$?

Query 0.4.2 Given a function u in the first class of Baire, can we find derivatives f, g and h (with respect to the strong differentiation basis) such that $u=f \cdot g+h$?
(We recall that strong differentiation basis is a pair $(\mathcal{I}, \Rightarrow)$, such that \mathcal{I} is the family of all m-dimensional intervals and $\left\{I_{n}: n \in \mathrm{~N}\right\} \Rightarrow x$ iff $\{x\}=\bigcap_{n=1}^{\infty} I_{n}$

[^0]and $\lim _{n \rightarrow \infty} \operatorname{diam} I_{n}=0$.)

References.

[1] M. Chaika, The Lusin-Menchoff theorem in metric spaces, Indiana University Mathematical Journal 21 (1971), 351-354.
[2] Z. Grande, O granicach ciagóu funkcji aproksymatywnie ciagglych, Zeszyty Naukowe UG 3 (1976), 5-9 (in Polish).
[3] K. Kuratowski, Topologie, Vol. I, Warszawa 1958.
[4] D. Preiss, Algebra generated by derivatives, Real Analysis Exchange 8 (1982-83), 208-216.

WYŻSZA SZLiOLA PEDAGOGICZNA
INSTY'TUT MATEMATYKI
Chodkiewicza 30
85-064 Bydgoszcz, Poland

Received before 23.12.1988

[^0]: *Recently, R. Carrese answered this question in the positive-R. Carrese, On the algebra generated by derivatives of interval functions, Real Analysis Exchange 14 (2), (1988-89), 307-320.

