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On algebra generated by derivatives
of interval functions

Aleksander MaliszewskKi

0.1 Introduction.

In 1982 D. Preiss [4] proved the following

Theorem 0.1.1 Wheneuer u : IR — * IR is a function of the first class,
tliere are functions f, g and h possessing finite derivative euerywhere such
that u = f mg' + h'. Moreouer, one can find such a representation that g' is
bounded and h' is Lebesgue and in case u is bounded, such that f and h' are
also bounded,

which was the solution of A. Bruckner’s problem concerning the algebra gen-
erated by derivatives (it is exactly the first class).

In this article we generalize this theorem changing the domain of u. How-
ever, we obtain the generalization only for bounded functions. In the proof

we use the Preiss’s method.

0.2 Preliminaries.

In this section we develop notation and state some known results to which
we shall refer.

The real line (—cc,+00) we denote by IR and the set of positive inte-
gcrs by N. Throughout this article m is fixed positive integer and the word
function means mapping from IRm into IR unless otherwise explicitly stated.
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A function is said to be in the first class of Bairc (Z?1) if it is a pointwise
limit of a sequence of continuous functions (with respect to natura! topol-
og}'). We denote by C the farnily of all Lebesgue rneasurable subsets of IR”*.
The Euclidean distance of two points in IRm, of a point in IRm and a sub-
set of II1"1 and of two subsets of IR”" are denoted respectively by n(x,y),
g(x,A)=inf{g(x,y) : y£ A) and o(A, B) = inf{g(r,y) : x £ A.y £ D).
For eacli A C IRm we denote by A\ its outer Lebesgue measure, by diam/1
its diameter and b}- \a its characteristic function. A differentiation basis is a
pair (1, =t>), where 2 C £ is composed of sets of positire finitc Lebesgue niea-
sure and => is a relation (called the convergcncy relation) betwecn sccjucnces
of elements of 2 and points of IR"1, sucli that the following two conditions
hotd:

1. for each x £ IR"1 there is a secpience {In: n £ N} of elements of 2
convergent to x.

2.. each sub&ecpience of a sequence coneergent to sonie x is also conrergent
to x.

If P :2 > IR tlien the notation lim P{l) = a means “for each secpience

{In: n6 N) C 2, if {In: n£ N} = x, then liny P (7n) = a.v We call
function / a derivative (with respect to the differentiation basis (2. =>)) iff
there exists an additive function F :2 » IR such that lim F(1)/\I\ = f(x)

1=>X

for each x £ IRm. We sa\r that / is a Lebesgue function (w.r.t. (2. =>)) iff
BiT fj F(t) —f(x)]dt/\I\ = O for each x £ IRm. (We reca.ll thal each Lebesgue
=>r

function is approximatcly continuous and each bounded approximately con-
tinuous functions is Lebesgue.) Point X £ 1R™ is a density J)oint ol A £ C
(w.r.t. (T,=7)) iii lim14fi /1/¥j = 1 By .4 < B we denote that A C B

1=>T

and eacli x £ A is a density point of B. We cali function / approximatelv
continuous iff for each r £ IR"1 and each £ > 0. i is a density point of
{7 £ P : |/(/) —/(='")! < ~}- ™ (>denote liy aV b (a A b) not smaller (not
greater) of real numbers a and b. respectively. Il j is any function and 4 £ 1R™
then by u(/. .r) = inf{sup {If(y) —7G)i: W—X\ < £\ —7|< £} : £> (I)
we denote the osciHalion of / at x: I3 \I Y wo denote sup{]/(.r)j : xr £ 11I'").
By sgu we denote the sign function.

111 the end of this article (2. =m} denotes so called on hnary dillertuit ialion
basis (i.e.. 2 is the lamih' of all ui-dmiensioiiai mtereals and {/, : ii £ X] = A
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ilF = n-=i Ry, linin—» diam In = O0and limsupd_0(diain/,)m/ |/,] < 00)
and terms derivative. Lebesgue function. approximately continuous function
and density point are used with respect to this basis.

The iollowiiig t.hree theorems are due to M. Chaika [1] and Z. Grande [2].

Theorem 0.2.1 Assurne that .1 £ C. F is closed and F < A. Then there is
a closed set B C .1 such that F < B.

Theorem 0.2.2 Assume that E. F are disjoint sets of type Gs, such that the
scts IR"1\E and IR,,IN\F contain only the density points of themsehes. Then
there eiists an approximately continuous function f such that:

« f{x)

0, if x £ E.

e /(.r) 1 ifx £ F.

e 0< f(x) <1 ifx (E UF).

Theorem 0.2.3 Wheneuer f £ Bl and E C IRm is a nuli set, there is an
approrimately continuous function g such that f(x) = g(x) for x £ E .

0.3 Auxiliary lemmas and main results.

Lemma 0.3.1 Suppose that B £ C. F\,...,Fn are pairwise disjoint, closed
subsets of B. suchthat Fi-< B fori=1....,n andci,...,cn £ IR. Then
there is a Lebesgue Junction fsuchthat f(x) = ¢-if x £Fi, i =I,...,n,
/(.r) = 0 ifx (Ff B and |4l < max {c, : i = 1,...,rt}.

Proof. For i = I,...,n we put < = {g(x,Fj) :j =1,...,ri,ji ™i} and

A, = {r£ B: o(x,F,) <d,j. Then F, < A,, since if x £ Fi, x £ / £ X
and diam | < /,.then | D .1, = /H B. Let Bt C .4, be closed and such that
F, < Bi (Theorem 0.2.1). Find a Gs set Ct containing all points of Bi that
are not points of density of such that |C] = 0 and Ci fi Fi = 0. Apply
Theorem 0.2.2 to find an approximat,ely continuous function f, such that:

/,(r) =0. if r £ IR"I\(Bi \ Ci),
f,(x) = Lifx £ Fi.

e 0<./7',< 1on IRmM.
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Put /7 = Q\fi + eee+ One/,. This function satisfies claimed conditions since
the sets B\,..., Bn are pairwise disjoint.

Lemma 0.3.2 Suppose that the set A C IRm is nonyoid, bounded and mea-
surable, and function v is measurable, such that |jue < ¢ < 00. Then for
each s > 0O there exist approximately continuous functions f and g, such that

i) /7{*) = y{x) = 0for x A,

i) WM <cVv/Zc, IbI< 1A \/,

iii) Jrf{t)dt < e, £g(t) dt < £for every interual 1 g i,
iv) [ \v(t) - f(t) mg(t)\dt < £.
J/t

Proof. Represent A as a union of nonempty, pairwise disjoint measurable
sets A i , ,An, such that

) (1 V diam A)* "
diam A; < and u (u, A-) <
3m (1 V c) 31A1+ 1

fori = 1,...,n. Fori—1,...,n, find closed, pairwise disjoint sets Pi, Qi -< A-
such that |P] = \Qi\ and JAt\ (PtU Qi)\ < e/(3n m(1 V c)).Choose also any
Xi e A- Put ai = JuiX,)] V yi\v(xi)] and b{ = (I A yj\v (x,)]) sgn(u(x,)).
Let / and g be Lebesgue functions such that:

e f(x) = a,g(x) - bi, ifx GPiyi = 1,...,n,

e f{z) = -a;, g(x) - - bi,ifxGQi,i=1,...,n,
e f(x) — QO <j(x) —0, if x (f A,

e MM<cV /, |Ifll < 1A/C.

(We use Lemma 0.3.1.) Then i) and ii) are obviously satisfied. Since for
i=1,...,n

{c V y/c)

JA, /(©dt | HOLLE 3n (1 Vc) ~ 3n



O n a i.c;i'biia gicnkuatmo » v DEimwmocs

su fur everv inU-rv;il [/

1/7(,),"! =j/oi/(."]

<E|]/ nnM-r E

AN\IN IInAt
< n-c-/(3;t)+ / 17(/)|™ <c/3 + W/ /n U Ai
< &/3 + (cV V£j 2/ti mmax {diam A, : i= 1 , « (diamA)"’

j £e+(i V diam .4) ™M
3m (1 V c)

< ¢/3 + 277 m(c V \/c) «(diam .4)"; <s,

Similarly J[ g(t) dt\I < 5/(37?) for ?= 1,...,?7 and 2[/q{t)dt < 5 for every

a,
intcrval /. Clearlv

/ NO - /(<) -yO]<A = E / NO _ /(O «//(O V£
.4 {=1

7.4,

- - - - *
< EZCL/Zp,uQ, NO-7(0-$(0l<ft + E:1£4,\(AuQ,) NO-/7(0-5(01
< E 1V -/ (xi) m2 (ii)ll 1A -1+ E Iflw - / <51 = \Ai \ (Pi U Qi)\
=1 i=l
< y~N(v.At)el11+ V2cC- ; < -L4 1+ 2n
3% «(1 V ¢c) - 3141+ 1 3n

which completes ihe proof.
Lemma 0.3.3 Assnme that Ul.//>,... is a seguence o0j pairwise disjoint
compact subseds oj IR and A/.I\>... is a seguence of non-negative real
nunibers such that the function "\Hn belongs to the Jirst class of
Bnire. Then lherc is a seguence 5i.5-j,... of posiline numbers such that the

foliowing conditions hotd:

'S Ml-./:eees Q" deriratires. such that for fach n £ N, |[/n|]< N\Tm\un
mul I3 In(t.)il,*\< 5n Jor crery iniemal |. then function f — fnis

T ileri.rutire.
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if wi,w?,... drc. approzirnutcly continuous functions. such that for cuch
u 6 N, lic,] < Kn m\h, and u'n(/)d/j < su. then function
ul= u'n G fi Lebcsguc function.

Proof. Since the functionKn «\//, is in lhe first class of Baire, there

cxists a family of compact sets T = {T, : i £ N}, sucli that for each r > 0 the

set {a- £ IRm: ]T"i K,, *\7/, <r]>s a union of some subfamily of T. For

eachn £ Nset IIn= [J //,U T, and £, = 2_n-fl A (//n-F/n)) j-
»<n Iﬁ”nfﬂ @) /

i) Since for every intcrval / the series fjfn(t)dt is absolutely con-
vergent, so the interval function F (1) = // fnli)dt is additive. We

will show that it satisfies the following condition:

(T) for each z £ IRmand each £ > 0 there exist.s an ij > 0. such that for
r N -r™Nr , , F(/) - /7(x) =11l . .
every 1 £1, ifx £ 1 and diam /7 < rj. then IF(/) - 703 = Vi < 5,
(diam7Z)
Then for each z £ |Rm and each sequence {/n: n £ N} C | convergent
to r we will have
. F(In
lim (1n) ~ f(x)

Ti—>-00

r F<'> fl i
'mc" Its ITT = /(T)

Take an z £ IRm and £ > 0. Note first that if z £ IV for some
p £ N, tlien for everv n > p and every intcrval /. if z £ |. then:
tInfi /~ 0 implies o0 ~//,, //,) < diam /, so

NN+

an(i)dt < < 2 (FF (U,-U..)) < 2 (diam 1™’

e //,Pi /= 0 implies j fn(t)dt = 0.
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@
- =P+If,fM)dt .
llence-if diam / < d, then . ) <¢ ie, Y N\
(diam I)m nepH 1
()]
satisfies condition (T) with lespect to ~ /,, and since each of func-
n=p+ |
tions f\,...,fpis a derivative. so condition (‘£) is in this case satisfied.
On the other side, if x 7, then for r = e/2 choose p G N,
such that x € Tp and Kn "\H, < r Oll Tp. Then for every n > p

and every interval 7, if x G 7, then:

e HnO Tp ™ O implies Kn < r, so

dt </ee V] < r «(diam 7)m,

if Hhn Tv= 0and HnO / ~ 0O, then o (HnN,7/n) < diam 7, so

\] fn(t)dt < £< 2.ne«[g [Hn, HN)) < 2.n «(diam 7)\™*!

e fmally /71 fi 7= 0 implies \] fn[t)dt = O.

Hencefor every interval 7 of diameter less than £>(x,Un=i Hn)A(e/2)

LZzJ,fn(ndt
(diam /)"*

< r+ diam 7 < s,

so condition (D) is in this case also satisfied, becanse /(x) = 0.

ii) Let .r GIRmM. Put u= Yinn”riln RR<l u — w—u. Since u is bounded and

approximatelv continuous, x is a Lebesgue point for u. On the other

side from i) |Je] is a derivative, and since v(x) = 0. x is a Lebesgue point

lor v. Hence x is a Lebesgue point for w.

Lemma 0.3.4 Whcncerr u is ufunction of the first class of Baire there exist
u function oj the jirst class oj Baire r. a srtiuence {lId: n G N} oj pairwise
disjoint compact sets and a sciiucnre {cn: n G N) o0j positirc numbers such

that the Jollowin/j condilibns an satisjird:
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i) u—v is Hi approsimati lg continuous function,
ii) (> /s <ipprosimale.il/ continuous at uli points oj (J,t=i M1i<
iii) e(.r)= O i/c G //,fornomc. n GN and x is not a dcnsity point of IIn,

v) IC]< Zn=i c» m\//,OK IRm.
V) cn «\//, belongs to the first class of Baire,

vi) v is bounded procided that u is bounded.

Proof. Let E be a set of measure O containing all points of approximat.e
discontiuuity of u, such thatIR™ \E is a O-dimensional space. Let p be
anapproximately continuous function, such that p(x) = u(.r) for x G E
(Theorem 0.2.3). Put W = u—p and .V = {x GIRm: p{x) fi u(.r)}. Then
function log]i>i[ is a function of the first, class of Baire on .Y, so there exists
a function g : .Y —» IR of the first class of Baire 01l .Y, such that the set
of its values is discrete and jlog jLi(.r)j—//.n] < 1 for x G -Y (831, Chapter
VIIl. Theorem 3 in [3]). Using that .Y is a O-dimensional space and an
Fa set. we can represent X as the unionof pairwise disjoint compact sets
X = ur=i Hn> such that g is constanton eachlln (830, Chapter V in ;3j).
Put w(x) = cxp(g(x) + 1), if x G -Y and w(x) = 0 otherwise. Let cn be
the value of won IIn (n G N). Then condition v) is satisfied because w is
non-negative and for every a > 0

e {r€ IR" : w(x) >a) = jor GX:g(x)>—1+ loga} G F,,.

9 {/ GIR"l: w(r < u} =
= W GA : //(r) < —1-floga) U{r GIRm: 1(,rnj< ame~'}GF,.

Let Ex be a set ot measure O containing all points of approxirnate discon-
tinuit.y of function r, and all x GIR",such that xG Hn for somen G Nand
X is not a density point of //,.Put /e= (u, A (u,V U))Vi A O0).where ¢
is an approximately continuous function. such that cR.r) = U(X) for x G E\
(Theorem 0.2.3). flien function o is rlearly approximat.ely continuous. and
smee (!AO0< c < etV 0and Ji] < tu—ICn=i (n"' X|f,, -srt ¥y = #i —c satisiies
condition iv). flie ot her conditions are obvious.
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Theorem 0.3.5 Whenever u is a function of the first class there exist a
derivative f , a bounded derivative g and an aproximately continuous function
h such that u = /-g+ h (all notions with respect to the ordinary differentiation
basis). In case u is bounded we can firid such a representation that f and h

are also bounded. (So, in particular, h is a Lebesgue function.)

Proof. Choose an approximately continuous function v a seguence of pairwise
disjoint compact sets {IIn: n £ N} and a seguence of reals {cn: n £ N} ac-
cording to Lemma 0.3.4. For the seguences {//,, : n £ N) and {Kn * u £ N},
where IN\n — cn V \/c,, we find positive numbers {en: n.£ N} according to
Lemma 0.3.3. For each n use Lemma 0.3.2 with A — Hn and e — en to con-
struct functions fnand gnwith properties described there. From Lemma 0.3.3
we see that the functions / = fn and g = Y)ZLi 9n are derivatives. Using
the conditions ii) and iii) of Lemma 0.3.4 we get that for each n £ N function
VvV mxhu is approximately continuous. By Lemma 0.3.3 we get that function
v - / eg is a Lebesgue function (since v - f mg = £4=1 (u4XHn ~ fn «"n))-
Therefore the function h = u—f mg = (U —v) + (v —/ «g) is approximately
continuous.

If u is bounded then so is v and, conseguently, so is / and hence so is h.

The other conditions are obvious.

0.4 Queries.

Query 0.4.1* Giuen an unbounded Baire one function u : IRm — > IR, can
we find derivatives f, g and h (with respect to the ordinary differentiation

basis) such thatu = f mg + h?

Query 0.4.2 Giuen a function u in the first. class of Baire, can we find
deriuvatiues f, g and h (with respect to the strong differentiation basis) such

that u = f eg + h?

(We recall that strong differentiation basis is a pair (X, =4>), such that X is the

family of all m-dimensional intervals and {In: n £ N} x iff {.r} = D,tLi In

*Recently, R. Carrese answered this guestion in the positive— R. Carrese, On the algebra
generated by derivatives of internat functions, Real Analysis Exchange 14 (2), (1988-89),
307-320.
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and lim”~oo diam In = 0.)
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