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On the strong semi-continuity of
functions

Grazyna Kwiecifiskal Wtodzimierz Slezak?

We introduce a definition analogous to the Grande’s definition con-
tained in [2].
Let (X, d) be a metric space.

Definition 1 A function F : X — >3? is called strongly upper semi-
continuous at a point Xq G X if it is upper semi-continuous at this
point and there exists mi open set U C X such that x0 € ClU and
lima_>Cagi7f(x) = fixo) (where Cl denotes the closure operator).

A function that is strongly upper semi-continuous at any point xQG
X is called strongly upper semi-continuous.

Analogously the strong lower semi-continuity of function f can be
defined.

Observe that sum, product and minimum of two strongly upper
semi-continuous functions need not be strongly upper semi-continuous.
As the example it is sufficient to take two following functions:

The strong semi-continuity can be characterized with the aid of quasi-
continuity.
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Definition 2 A function f : X — >& is called guasi-continuous (resp.
lower guasi-continuous) at a point x0 G X iffor every numbere > 0
and euery neighbourhood W (x0) of point xo there exists a nonempty and
open set V C LF(to) such that \f(x) —f(xo0)] < £ (resp. /(xo0) —f(x) <
e) for euery pointx G V.

A set A C X is called semi-open if there exists an open set G C X
such that G ¢ A ¢ C1G. Euidently euery open set is also semi-open.
Intersection AC\V of semi-open set A and open set V is semi-open.

A function F : X — >3?is lower guasi-continuous at a point xq G X
ifffor euery number e > 0 there exists semi-open neighbourhood A (x0)
of xo such that A(xq) C {x :f(xo0) — f(x) <e} (see [1]).

Theorem 3 Suppose that F : X —> & is an upper semi-continuous
function. Then the following conditions are eauiualent:

1. f is strongly upper semi-continuous,
2. f is guasi-continuous,

3. f is lower guasi-continuous.

Proof. 1 => 2. Fix a point Xo G X. Let e > 0 and W (x0) be arbitrary.
The function / is strongly upper semi-continuous at Xq therefore there
exists an open set U C X such that &0 G ClU and lim~"**gc/f(x) =
/(.To). Then there exists an open neighbourhood Vv/to) of To such that
V{x0)nu ¢ {x e x :\f(x0-f(x)\ <£}. Let v =w(x0)nv(x0)nu.
Evidently V is an open subset of W(xq) and V / 0 because To G Cif/.
Now / is guasi-continuous at xO.

2 => 3 is evident.

3=> 1 Fix e > 0. The function / is lower guasi-continuous at To-
Then there exists a semi-open neighbourhood /1(t0) of To such that

(1) AxQc{xeX : :f(x0)-f(x)<e}.

The function / is also upper semi-continuous at <o, so there exists an
open neighbourhood v (tq) Of 74 such that

(2) V(x0) c {x ¢ X :f(X) - 7(t0) < e}.
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Evidently the set A{xq) fi V(x0) is nonempty and semi-open. Let U =
Int (d(jo)nF(x0))" Now by 1and 2/ isstrongly upper semi-continuous
and the proof of the theorem is completed.

Let X and Y be arbitrary spaces and let / : X x Y —>3? be a
function. Then the function fx : Y m> 9% for x GX (resp. fy: X —>
fory GY) such that fx(y) = f(x,y) (resp. fy(x) = f(x,y)) is called
as usually x-section (resp. ?/-section) of /.

Let (X ,d) and (Y, g) be metric spaces. Ifa functionf : X xY — >
is upper semi-continuous then all .T-sections and all ?/-sections of / are
obviously upper semi-continuous.

Let T C 922 denote a closed triangle on the plain and let

J 1 if (x,y) eT=Conv{(0,0),(0,1),(1,0)}
Hx'V)-\0 if (x,y)<fT

Now it is easy to see that if a function / : X XY —* 9 is strongly
upper semi-continuous then its cc-sections and y-sections need not be
strongly upper semi-continuous.
For the proof of next theorem we guote Slezak’s theorem from [4].
Let (X, Tx) and (Z,Tg) denote two topological spaces and let F :
X — >Z denote a multifunction. Let F~(G) = {x 6 X :F(X)C\G * 0}
and F+(G) = {x GX :F(x) C G}. It is easy to see that

(3) F+{G) =X\F~(Z -G).

Let Sq(Y) and ITa(.Y) denote respectively additive and multiplica-
tive class ov, a < in Borel hierarchy of subsets of X, i.e. Eo(AA and
n 0(A") denote respectivcly the family of open and closed subsets of X,
Si(A) = Faand n1(Y) = Gs, E2(A) = GSa and N2A) = Fffs, ....

Theorem 4 ([4], theorem 1) Let (X,Tx) be a perfectly normal topo-
logical space and let Z be a Polish space. Suppose that F : X —>Z is
a multifunction with closed ualues. Then the following conditions are
equivalent:

1 F is of lower class a (a > i.e. F~(G) G Ea(A) for every
open set G C Z,

2. there exist Borel a functions fn:X -—Z, n = 1,2,...such that
for euery x GX we have F(x) = Cl {fn{x) :n =1,2,...}.
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Theorem 5 Let (X,d) be a metric space and let (Y, g) be a separable
and complete metric space. Letf :X XY — »3? be afunction such that
all x-sections are strongly upper semi-continuous and all y-sections are
upper semi-continuous. Then the function f belongs to the upper class
2 in the Young classification, i.e. / _1(—oo0,r) G G%a for euery r G

Proof. Let S = {si,s2teeensn,. e} an arbitrary countable y-dense
subset of Y . Since all z-sections of / are strongly upper semi-continuous

then there exists an open set U C Y such that

y G CI[/ and Z--|I-Iyr,TZ]QU f(x,z) = f(x,y).

Therefore tp each point (.r,y) G X x Y there corresponds a seguence
n  >sn(x,y) GS such that

4) nIi_rpmsn(x,y) = (x,y) and nm f(x, sn(x,y)) = f(x,y).
Let Q = {<i, €2, ¢+, gm, mm} be an enumeration of the rational num-

bers. For every (n, m) GJ\f x J\f define a complex function fnm : X — >
Y x 3? by formuta

(5) fanm{x) = (sn,min(gm,f(x,sn))) for x G X.
Clearly
(6) all fnm are Borel class 1 functions

because f : X — >Y x 3? are upper semi-continuous functions and
then of Borel class 1.
Let H(x) = {fnm(x) : (n,m) G iV x 7V} for x G X.
Define a multifunction F : X —»Y x 3? by formuta
F(x) = {(y,r) GY x :f(x,y) > r} forx GX.
Notice that
(7 for every x G X, F(x) is a closed subset of 7 x S

by virtue of the upper semi-continuity of x-sections.
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It is easy to show that
(8) for every x G X, F(x) = CI H{x).

Indeed, let (y,r) G F(x). Tlien f(x,y) > r. For the point (X,y)
there exists a seguence sn(x,y) G S such tliat 4 holds. Analogously
for the number r G 3? there exists a seguence gm G Q such that
lim, +00em = r and gm < f(x,sn(x,y)). Therefore

n'lem”_ﬂ_'}mf”m(X) = nli_gcno0 rr!mo(s,,, min(rym, f(x, sn))) = (y, r)

and accordingly (y,r) G ClI11(x).

On the other hand H{x) ¢ F(x). Then CIH(x) C CIF(x) = F(x)
and 8 is true.

According to 6, 7 and 8, by theorem 4 we have that the multifunction
F is in lower class 1, i.e.

€)] F~{G) G Fafor every openset G C Y x 32

Let Qr(F) = {(x,y,r) G X XF X :(y,?) G F(x)} denote the graph
of F. Observe that
(10) Gr(F)£F,,s.

Indeed, let G\,G=,... be a countable open base in the product space
Y x 32 If (y,r) £ F(x) then there exists an n G M such that (y,r) G Gn
and F(x) (TGn = 0. Therefore we have

B [{x GX :F(x) OGn = 0} x Gn]
=1
= U [{xXgA :F(x)c (Y X3)\ Gn) x Cn]

71=1

X x (Y x 3\ Gr{F)

- U [F+((Y X3)\ Gn) XG,] .

71=1

Moreover F+{{V x 3)\ Gn) - A\ F~(Gn) (see 3). Then by 9F+ ((Fx
3\ Gn) G Gsa and F+(((K x 3\ Gn) x Gn) G G'*. Accordingly
x (Vx3)\Qr(F) G and 10 is true.
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Moreover forevery r G r-section of the set Qr(F), i.e. the set

(Gr(F)r = {(x,y)eXxY:(x,y,r)eQr(F)}
= {(x,y)eXxY:(y,r)eF(x)}
(11) = {(x,y): f(x,y)> r} e FaS-

Let r G 3? be an arbitrary real number. Now we have

[-1(-00,r) = {(x,y) e X xY :f(x,y) <r]
= XxY\{(x,y)eXxY:f{x,y)>r}.

Therefore by 10 we have / _1(—00,?-) G Gsg and proof of the theorem
is completed.

The theorem mentioned above is a generalization of theorem 5 in
[2] and showing moreover that the function / is in lower class 2. The
measurability of function / we can obtain after weakening of assump-
tion about y-sections of f . Remark moreover that the proof given here
cliffers frorn Grande’s one and maybe it is more direct.

Before the explanation of sonie details let us make known the next
theorem.

Theorem 6 ([3], theorem 5.6) Let (X,X) be a measurable space and
let (Z,d) be a separable metric space. Let F : X — »Z be a multifunc-
tion with complete ualues. Tlien the following conditions are equivalent:

1 F is weakly measurable, i.e. F~(G) G X for every open set G C

Z,

2. there exist X-measurable functions fn : X —>Z, n = 1,2,...
such that for every x G X we have F(x) = CI{/n(X) : n —
1,2,...}.

Theorem 7 Let (AAX, d) be a measurable metric space. Let (Y, p) be a
separable and complete metric space. Letf :X xY — >H be afunction
such that all its x-sections are stronyly upper semi-continuous and all
its y-sections are X-measurable. Then the function f is X x B(Y)-
measurable.
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Proof. Define, analogously as in the proof of theorem 5, the functions
fom X —i Y x 3 for (n, m) GAf x AT. Evidently

(12) for every (n,m) GAf x Af the function fnm is W-measurable.

Analogously let H(x) = {fnm(x) : (n,m) G Af x Af} and F(x) =
{(y,r) Gh x I :f(x,y) >r) for x GX. We have again

(13) for every x G X, F(.t) = C\H(x).

From 12 and 13, by theorem 6, the multifunction F is weakly mea-
surable. Tlius the graph Qr(F) of F is X x B(Y) x £(37)-measurable
(compare theorem 3.5 in [3]) and the r-section [Qr{F))r of Gr(F) is
X x#(y)-measurable for fixed r c . Therefore we have / _1(—o0,r) —
{(x,y) GX x Y :f{x,y) <r} =X x Y\ (Qr{F))TG X x F(V') and
proof of the theorem is completed.
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