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On the strong semi-continuity of 
functions

G rażyna Kwiecińska1 W łodzim ierz Ślęzak2

We introduce a definition analogous to the Grande’s definition con- 
tained in [2].

Let (X,  d) be a metric space.

continuous at a point Xq G X  if  it is upper semi-continuous at this

limar_>Xo>a:gi7 f ( x ) =  f i x o) (where Cl denotes the closure operator).

X  is called strongly upper semi-continuous.
Analogously the strong lower semi-continuity o f function f  can be 

defined.

Observe tha t sum, product and minimum of two strongly upper 
semi-continuous functions need not be strongly upper semi-continuous. 
As the example it is sufficient to take two following functions:

D e fin itio n  1 A function F : X  — > 3? is called strongly upper semi-

point and there exists mi open set U C X  such that x0 € Cl U and

A function that is strongly upper semi-continuous at any point x Q G

The strong semi-continuity can be characterized with the aid of quasi- 
continuity.
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D efin itio n  2 A function f  : X  — > 3£ is called ąuasi-continuous (resp. 
lower ąuasi-continuous) at a point x0 G X  if  fo r  every number e > 0 
and euery neighbourhood W ( x 0) o f point xo there exists a nonempty and 
open set V  C  LF(to ) such that \ f (x)  — f ( x o)| < £ (resp. / ( x o) — f ( x )  < 
e) fo r  euery point x G V .

A set A  C  X  is called semi-open i f  there exists an open set G C  X  
such that G C  A  C  C1G. Euidently euery open set is also semi-open. 
Intersection A C \V  o f semi-open set A  and open set V  is semi-open.

A function F  : X  — -> 3? is lower ąuasi-continuous at a point xq G X  
iff fo r  euery number e >  0 there exists semi-open neighbourhood A (x 0) 
o f x o such that A ( xq) C  { x  : f ( x o) — f ( x )  < e} (see [1]).

T h e o re m  3 Suppose that F  : X  —-> 3£ is an upper semi-continuous 
function. Then the following conditions are eąuiualent:

1. f  is strongly upper semi-continuous,

2. f  is ąuasi-continuous,

3. f  is lower ąuasi-continuous.

Proof. 1 => 2. Fix a point Xo G X .  Let e >  0 and W (x o) be arbitrary. 
The function /  is strongly upper semi-continuous at Xq therefore there 
exists an open set U C  X  such that a*o G Cl U and l im ^ ^ ^ g c /  f ( x )  =  
/(.To). Then there exists an open neighbourhood V/to ) of To such tha t 
V{x0)nu c  {x e x  : \f(x0)-f(x)\  <£}. Let v  = w(x0)nv(x0)nu.  
Evidently V  is an open subset of W(xq)  and V  /  0 because To G C if/. 
Now /  is ąuasi-continuous at x0.

2 => 3 is evident.
3 => 1. Fix e > 0. The function /  is lower ąuasi-continuous at To- 

Then there exists a semi-open neighbourhood / 1 ( t o ) of To such that

(1) A( x Q) c { x e X : f ( x 0) - f ( x ) < e } .

The function /  is also upper semi-continuous at t 0 , so there exists an 
open neighbourhood V ( t q ) of T q such that

(2) V(x0) C  {x G X  : f(x)  -  / ( t 0) <  e}.
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Evidently the set A { xq ) fi V(xo) is nonempty and semi-open. Let U =  
Int (d ( jo ) n F ( x 0))' Now by 1 and 2 /  is strongly upper semi-continuous 
and the proof of the theorem is completed.

Let X  and Y  be arbitrary spaces and let /  : X  x Y  — > 3? be a 
function. Then the function f x : Y  ■—-> 9? for x  G X  (resp. f y : X  — > 
9? for y G Y)  such tha t f x(y) =  f ( x , y ) (resp. f y(x ) =  f ( x , y ) )  is called 
as usually x-section (resp. ?/-section) of / .

Let (X , d) and (Y, g) be metric spaces. If a function f  : X  x Y  — > 9? 
is upper semi-continuous then all .T-sections and all ?/-sections of /  are 
obviously upper semi-continuous.

Let T  C 9?2 denote a closed triangle on the plain and let

J 1 if (x , y)  e  T  =  C onv{(0,0),(0 ,1),(1 ,0)}  
H x ' V ) - \ 0  if ( x , y ) < f T

Now it is easy to see that if a function /  : X  X Y  — * 9? is strongly 
upper semi-continuous then its cc-sections and y-sections need not be 
strongly upper semi-continuous.

For the proof of next theorem we ąuote Ślęzak’s theorem from [4]. 
Let ( X , T x )  and (Z ,Tg) denote two topological spaces and let F  : 

X  — > Z  denote a multifunction. Let F~(G)  =  {x 6 X  : F(x)C\G  ^  0} 
and F +(G) =  {x G X  : F(x)  C G}. It is easy to see that

(3) F +{G) = X \ F ~ ( Z  - G ) .

Let S q(.Y) and ITa (.Y) denote respectively additive and multiplica- 
tive class cv, a < in Borel hierarchy of subsets of X , i.e. Eo(AA) and 
n 0(A') denote respectivcly the family of open and closed subsets of X ,
S i (A ) =  Fa and n 1(.Y) =  Gs, E2(A ) =  GSa and n2(A) =  Fff6, . . . .

T h e o re m  4 ([4], theorem 1) Let ( X , T x )  be a perfectly normal topo­
logical space and let Z  be a Polish space. Suppose that F  : X  — > Z  is 
a multifunction with closed ualues. Then the following conditions are 
equivalent:

1. F  is o f lower class a  (a > i.e. F~(G)  G Ea (A ) fo r  every 
open set G C Z ,

2. there exist Borel a  functions f n : X  -—> Z , n =  1 ,2 , . . .  such that
for euery x G X  we have F( x)  = Cl { f n{x) : n =  1 ,2 ,. . .} .



T h e o re m  5 Let (X, d) be a metric space and let (Y, g) be a separable 
and complete metric space. Let f  : X  X Y  — » 3? be a function such that 
all x-sections are strongly upper semi-continuous and all y-sections are 
upper semi-continuous. Then the function f  belongs to the upper class 
2 in the Young classification, i.e. / _1(—oo ,r) G G$a fo r  euery r G

Proof. Let S  =  {si, s2ł • • •»sn, . • •} an arbitrary  countable y-dense 
subset of Y . Since all z-sections of /  are strongly upper semi-continuous 
then there exists an open set U C Y  such tha t

y G Cl [/ and lim f ( x , z )  = f ( x , y ) .z-+y,zęu

Therefore tp each point (.r,y) G X  x Y  there corresponds a seąuence 
n > sn( x ,y ) G S  such that

(4) lim sn(x , y)  =  (x , y)  and lim f ( x ,  sn(x, y)) =  f ( x ,  y).
n —►oo n —►oo

Let Q =  {<7i, ę2, • • •, qm, ■ ■ •} be an enumeration of the rational num- 
bers. For every (n, m) G J\f x J\f define a complex function f nm : X  — > 
Y  x 3? by formuła

(5) fnm {x) =  (sn,m in(qm, f ( x , s n))) for x G X .

Clearly
(6) all f nm are Borel class 1 functions

because f Sn : X  — > Y  x 3? are upper semi-continuous functions and 
then of Borel class 1.

Let H(x)  =  {fnm(x) : ( n , m)  G iV x 7V} for x G X .
Define a multifunction F  : X  — » Y  x 3? by formuła

F( x)  = {(y, r) G Y  x : f ( x , y) >  r} for x  G X.

Notice tha t

(7) for every x  G X , F(x)  is a closed subset of 7  x S

by virtue of the upper semi-continuity of x-sections.
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It is easy to show that

(8) for every x  G X,  F( x)  =  Cl H{x).

Indeed, let (y ,r)  G F(x) .  Tlien f ( x , y )  > r. For the point (x , y)  
there exists a seąuence sn( x , y ) G S  such tliat 4 holds. Analogously 
for the number r  G 3? there exists a seąuence qm G Q such that 
lim„_+00ęm =  r  and qm < f ( x , s n(x,y)) .  Therefore

lim lim f nm(x) =  lim lim (s„, min(rym, f ( x ,  sn))) = (y, r)
n —►oo m —±oo n —*-co m —+ oo

and accordingly (y , r ) G Cl II(x).
On the other hand H{x)  C  F(x) .  Then Cl H(x)  C Cl F( x)  = F(x)  

and 8 is true.
According to 6, 7 and 8, by theorem 4 we have tha t the multifunction 

F  is in lower class 1, i.e.

(9) F ~{G ) G Fa for every open set G C  Y  x 3?.

Let Qr(F)  =  { ( x , y , r )  G X  X F  X : (y,?') G F( x) }  denote the graph 
of F.  Observe that
(10) G r ( F ) £ F „ s.

Indeed, let G \ , G-2 , . . .  be a countable open base in the product space 
Y  x 3?. If (y, r) £  F(x)  then there exists an n G M  such tha t (y, r ) G Gn 
and F( x)  (T Gn =  0. Therefore we have

OO

X  x ( Y  x 3?) \  Gr{F)  =  1J [{x G X  : F (x ) O Gn = 0} x Gn]
71 = 1

OO

=  U  [{x g A' : F (x ) C  ( Y  X 3?) \  Gn) X C/n]
71 =  1

OO

=  U  [f +( ( Y  X 3?) \  Gn) X G„] .
71 =  1

Moreover F+{{V  x 3?) \  Gn) -  A  \  F~( Gn) (see 3). Then by 9 F + ( ( F x  
3?) \  Gn) G Gsa and F +(((K x 3?) \  Gn) x Gn ) G G'^. Accordingly 

x (V x 3?) \  Qr(F)  G and 10 is true.
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Moreover for every r G r-section of the set Qr(F),  i.e. the set

(Gr(F))r = { ( x , y ) e X x Y : ( x , y , r ) e Q r ( F ) }
= { ( x , y ) e X x Y : ( y , r ) e F ( x ) }

( 11) =  { ( x , y ) :  f ( x , y ) >  r }  e  FaS-

Let r G 3? be an arbitrary real number. Now we have

/ -1 ( - o o ,r )  =  {(x , y)  e  X  x Y  : f ( x , y )  < r]
= X x Y \ { ( x , y ) e X x Y : f { x , y ) > r } .

Therefore by 10 we have / _1( —oo,?-) G Gs<j and proof of the theorem 
is completed.

The theorem mentioned above is a generalization of theorem 5 in
[2] and showing moreover tha t the function /  is in lower class 2. The 
measurability of function /  we can obtain after weakening of assump- 
tion about y-sections of f . Remark moreover tha t the proof given here 
cliffers frorn G rande’s one and maybe it is more direct.

Before the explanation of sonie details let us make known the next 
theorem.

T h e o re m  6 ([3], theorem 5.6) Let ( X , X )  be a measurable space and 
let (Z ,d ) be a separable metric space. Let F  : X  — » Z  be a multifunc- 
tion with complete ualues. Tlien the following conditions are equivalent:

1. F  is weakly measurable, i.e. F~(G)  G X  for every open set G C

Z,

2. there exist X-measurable functions f n : X  — > Z, n =  1 ,2 , . . .  
such that for every x  G X  we have F( x)  = C l{ /n(x) : n — 
1 ,2 ,. . .} .

T h e o re m  7 Let (AA, X ,  d) be a measurable metric space. Let (Y, p) be a 
separable and complete metric space. Let f  : X  x Y  — > Hł be a function  
such that all its x-sections are stronyly upper semi-continuous and all 
its y-sections are X-measurable. Then the function f  is X  X  B( Y) -  
measurable.
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Proof. Define, analogously as in the proof of theorem 5, the functions 
f nm : X  — i  Y  X 3? for (n, m) G Af  x  AT. Evidently

(12) for every (n ,m ) G Af X Af the function f nm is W-measurable.

Analogously let H(x)  = {f nm(x ) : (n ,m ) G Af  X Af } and F( x)  = 
{ (y ,r) G h  x  I : f ( x , y )  > r )  for x  G X .  We have again

(13) for every x  G X,  F (.t) =  C\ H(x) .

From 12 and 13, by theorem 6, the multifunction F  is weakly mea- 
surable. Tlius the graph Qr ( F ) of F  is X  x B( Y)  x £> (37)-measurable 
(compare theorem 3.5 in [3]) and the r-section [Qr{F))r of G r(F ) is 
X  x # (y )-m easu rab le  for fixed r G P .  Therefore we have / _1(—oo, r) — 
{(x,y) G X  x  Y  : f { x , y )  < r} =  X  x  Y  \  (Qr{F))T G X  X F(V') and 
proof of the theorem is completed.
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