Problemy Matematyczne 11 (1989), 31 – 35

On \mathcal{D}^{**} -Darboux functions

Tomasz Natkaniec

Let us establish some of the terminology to be used. \Re denotes the real line and \mathcal{N} denotes the set of all positive integers. Let $A \in \Re$ be a *c*-dense in itself set and let B be a subset of \Re . We say that $f: A \longrightarrow B$ is an (A, B)-Darboux function iff f has the intermediate value property, i.e. $(f(x), f(y)) \cap B \subset f((x, y) \cap A)$ for each $x, y \in A$. Let $\mathcal{D}(A, B)$ denote the class of all (A, B)-Darboux functions and let $\mathcal{D}^{**}(A, B)$ be the class of all functions $f: A \longrightarrow B$ which take on every $y \in B \ c$ times in every non-empty set of the form $I \cap A$, where I is an interval (c denotes the cardinality of the continuum). It is clear that $\mathcal{D}^{**}(A, B) \subset \mathcal{D}(A, B)$ for each bilaterally c-dense subset A of \Re and every subset B of \Re . For $A = B = \Re$ we shall denote the classes $\mathcal{D}(A, B)$ and $\mathcal{D}^{**}(A, B)$ by \mathcal{D} and \mathcal{D}^{**} .

Let us remark that the class \mathcal{D} is equal to the family of all Darboux functions and the class \mathcal{D}^{**} is equal to the family of all Darboux functions for which all level sets are *c*-dense in \Re . These classes are well-known and studied by many mathematicians (see e.g. [1], [2] and [3]). If $B \neq \Re$ then the classes $\mathcal{D}(A, B)$ and $\mathcal{D}^{**}(A, B)$ are more special, nevertheless they are helpful in a discussion on many questions connected with the Darboux property.

For a family \mathcal{A} of real functions let

$$\mathcal{M}_{a}(\mathcal{A}) = \{ f : \forall_{g \in \mathcal{A}} f + g \in \mathcal{A} \},$$
$$\mathcal{M}_{m}(\mathcal{A}) = \{ f : \forall_{g \in \mathcal{A}} fg \in \mathcal{A} \},$$
$$\mathcal{M}_{\max}(\mathcal{A}) = \{ f : \forall_{g \in \mathcal{A}} \max(f, g) \in \mathcal{A} \}.$$

The classes $\mathcal{M}_a(\mathcal{D}^{**})$ and $\mathcal{M}_m(\mathcal{D}^{**})$ are characterized in [2] and [3]. In this note we shall prove that $\mathcal{M}_{\max}(\mathcal{D}^{**})$ is empty.

Theorem 1 Let A, B, C be subsets of \Re , $F : A \times B \longrightarrow \Re$ and $f : \Re \longrightarrow A$. Then there exists a $d \in \mathcal{D}^{**}(\Re, B)$ such that $F(f, d) \in \mathcal{D}^{**}(\Re, C)$ iff the following conditions hold

- 1. for every $x \in \Re$ there exists $y \in B$ such that $F(f(x), y) \in C$,
- 2. card $(\{x \in I : F(f(x), y) = c \text{ for some } y \in B\}) = c$ for every $c \in C$ and every interval I,
- 3. card $(\{x \in I : F(f(x), y) \in C\}) = c$ for every $y \in B$ and every interval I.

<u>Proof.</u> (\Leftarrow) Let \mathcal{I} be the family of all non-empty open intervals in \mathfrak{R} . Well-order the set $\mathcal{I} \times B \times C$ as $(I_{\alpha}, y_{\alpha}, c_{\alpha}), \alpha < c$. We can choose (inductively) sequences $x_{\alpha}, z_{\alpha}, t_{\alpha}$ such that $x_{\alpha}, z_{\alpha} \in I_{\alpha} \setminus \{x_{\beta}, z_{\beta} : \beta < \alpha\},$ $x_{\alpha} \neq z_{\alpha}, F(f(x_{\alpha}), y_{\alpha}) \in C, t_{\alpha} \in B$ and $F(f(z_{\alpha}), t_{\alpha}) = c_{\alpha}$. Let us put

$$d(x) = \begin{cases} y_{\alpha} & \text{for } x = x_{\alpha}, \, \alpha < c, \\ t_{\alpha} & \text{for } x = z_{\alpha}, \, \alpha < c, \\ y \in B \text{ such that } F(f(x), y) \in C & \text{for } x \notin \{x_{\alpha}, z_{\alpha} : \alpha < c\} \end{cases}$$

Then $d \in \mathcal{D}^{**}(\mathfrak{R}, B)$ and $F(f, d) \in \mathcal{D}^{**}(\mathfrak{R}, C)$.

(⇒) Let $d \in \mathcal{D}^{**}(\mathfrak{R}, B)$ and $F(f, d) \in \mathcal{D}^{**}(\mathfrak{R}, C)$. Then 1 holds. Now let *I* be an interval and $c \in C$. Then card $(\{x \in I : F(f(x), d(x)) = c\}) = c$ and $d(x) \in B$, therefore

card
$$({x \in I : F(f(x), y) = c \text{ for some } y \in B}) = c.$$

Thus the condition 2 holds. Let $y \in B$. Since $d \in \mathcal{D}^{**}(\mathbb{R}, B)$, card $(\{x \in I : d(x) = y\}) = c$. From $F(f(x), d(x)) \in C$ we obtain $\{x \in I : d(x) = y\} = \{x \in I : d(x) = y \text{ and } F(f(x), d(x)) \in C\} \subset \{x \in I : F(f(x), y) \in C\}$ and 3 is proved.

<u>Remarks</u> From Theorem 1 we can immediately obtain the following results.

- 1. For $A = B = \Re$, F(x, y) = x + y we obtain Theorem 3 from [1], i.e. for $f : \Re \longrightarrow \Re$ there exists a $d \in \mathcal{D}^{**}$ such that $(f + d) \in \mathcal{D}^{**}(\Re, C)$ iff card $(\{x \in I : f(x) + y \in C\}) = c$ for every $y \in \Re$ and every interval I.
- 2. If $A = B = \Re$, $F(x, y) = x \cdot y$, $f : \Re \longrightarrow \Re$ and $0 \in C$ then we have the following corollary. For $f : \Re \longrightarrow \Re$ there exists a $d \in \mathcal{D}^{**}(\Re, C)$ iff card $(\{x \in I : f(x) \neq 0\}) = c$ for every interval I and card $(\{x \in I : f(x) \cdot y \in c\}) = c$ for every $y \in \Re$ and every interval I.

Some interesting consequences of Remarks 1 and 2 we can find in [2] and [3], respectively.

- 3. Let $C = \{-1, 0, 1\}, A = \Re, B = (0, \infty)$ and F(x, y) = x/y. For every $f \in \mathcal{D}^{**}$ there exists a function $d \in \mathcal{D}^{**}(\Re, B)$ such that $f/d \in \mathcal{D}^{**}(\Re, C)$ and therefore $f/d \notin \mathcal{D}$.
- 4. Let $C = \Re \setminus D$, where $D \neq \emptyset$ and card D < c. Then for every function $f \in \mathcal{D}^{**}$ there exists a function $d \in \mathcal{D}^{**}$ such that $\max(f, d) \in \mathcal{D}^{**}(\Re, C)$. Hence $\max(f, d) \notin \mathcal{D}$.

Lemma 2 For $g: \Re \longrightarrow \Re$ the following are equivalent.

- 1. $\max(f,g) \in \mathcal{D}^{**}$ for each $f \in \mathcal{D}^{**}$,
- 2. for every interval I and for every $y \in \Re$ there exist: a subinterval J of I and a subset A of J with card A < c and $g(x) \leq y$ for each $x \in J \setminus A$.

<u>Proof.</u> $2 \Rightarrow 1$ Assume that for $g: \Re \longrightarrow \Re$ the condition 2 holds. Let $F \in \mathcal{D}^{**}$, I be an interval and $y \in \Re$. The there exists subinterval J of I such that $g(x) \leq y$ for each $x \in J \setminus A$, where card A < c. Therefore card $(\{x \in J : \max(f(x), g(x)) = y\}) = c$ and $\max(f, g) \in \mathcal{D}^{**}$. $1 \Rightarrow 2$ First notice that if $\max(f, g) \in \mathcal{D}^{**}$ for some $f \in \mathcal{D}^{**}$, then g has the following property:

card $(\{x \in I : g(x) \le y\}) = c$ for every interval I and each $y \in \Re$.

Indeed, in the other case we have card $\{x \in I : \max(f(x), g(x)) = y\} < c$ and $\max(f, g) \notin \mathcal{D}^{**}$.

Next suppose that for $g : \Re \longrightarrow \Re$ the condition 2 does not hold. Then there exist a $y_0 \in \Re$ and interval I such that card $(\{x \in J : g(x) > y_0\}) = c$ for every subinterval J of I. Let us put $B = \Re$ and $C = (y_0, \infty)$. Then the condition 1 of Theorem holds. Let $c > y_0$ and let J be a subinterval of I. Since card $(\{x \in J : g(x) \le c\}) = c$ and $\{x \in J : \max(g(x), c) = c\} \subset \{x \in J : \max(g(x), y) = c$ for some $y \in \Re$, the condition 2 of Theorem holds too. Now we shall verify the condition 3. Let J be a subinterval of I and let $y \in \Re$. If $y > y_0$ then card $(\{x \in J : \max(g(x), y) \in C\}) = c$ (because $\{x \in J : g(x) \le y_0\} \subset \{x \in J : \max(g(x), y) \in C\})$. If $y \le y_0$ then $\{x \in J : g(x) > y_0\} \subset \{x \in J : \max(g(x), y) \in C\}$. If $y \le y_0$ then $\{x \in J : g(x) > y_0\} \subset \{x \in J : \max(g(x), y) \in C\}$ and therefore card $(\{x \in J : \max(g(x), y) \in C\}) = c$.

Since the conditions 1, 2, 3 of Theorem hold, it follows that $\max(f, g|I) \in \mathcal{D}^{**}(I, C)$ for some $f \in \mathcal{D}^{**}(I, \Re)$. Therefore $\max(f, g) \notin \mathcal{D}^{**}$ for some $f \in \mathcal{D}^{**}$ and 1 does not hold.

Corollary 3 For every function $g : \Re \longrightarrow \Re$ there exists a function $d \in \mathcal{D}^{**}$ such that $\max(g, d) \notin \mathcal{D}^{**}$.

Proof. Suppose that the condition 2 of Lemma holds for some $g: \Re \longrightarrow \Re$. Then there exist a closed interval $I_0 \subset Re$ and a subset A_0 of I_0 such that card $A_0 < c$ and g(x) < 0 for each $x \in I \setminus A$. We can choose two disjoint, closed subintervals I(1,1), I(1,2) of I_0 and subsets $A(1,1) \subset I(1,1)$ and $A(1,2) \subset I(1,2)$ such that g(x) < -1 for each $x \in I(1,i) \setminus A(1,i), i = 1,2$. Assume that for fixed $n \in \mathcal{N}$ we have already chosen a sequence of pairwise disjoint, closed intervals I(n,j) and sets $A(n,j) \subset I(n,j), j = 1,2,\ldots,2^n$ such that card A(n,j) < c and g(x) < -n for each $x \in I(n,j) \setminus A(n,j), j = 1,2,\ldots,2^n$. Now, for every $1 \leq j \leq 2^n$ we choose two disjoint, closed subintervals I(n + 1,2j-1), I(n+1,2j) of I(n,j) and subsets A(n+1,2j-1), A(n+1,2j) such that card A(n+1,i) < c for i = 2j-1, 2j and g(x) < -(n+1) for each $x \in I(n+1,i) \setminus A(n+1,i), i = 2j-1, 2j$. Put $C = \bigcap_{n \in \mathcal{N}} \bigcup_{j=1}^{2^n} I(n,j) \setminus Q(n+1,i) = Q(n+1)$.

 $\left(\bigcap_{n\in\mathcal{N}}\bigcup_{j=1}^{2^n}A(n,j)\cup A_0\right).$ Then $C\neq\emptyset$ and g(x)<-n for each $x\in C$ and $n\in\mathcal{N}$, what is impossible.

References

- A. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
- J. Jastrzębski, Maximal additive families for some classes of Darboux functions, Real Analysis Exchange 13 (1987–1988), 351–355.
- [3] T. Natkaniec and W. Orwat, Variations on products and quotients of Darboux functions, Real Analysis Exchange 15 (1989–1990), 193–202.

WYŻSZA SZKOŁA PEDAGOGICZNA INSTYTUT MATEMATYKI Chodkiewicza 30 85-064 Bydgoszcz, Poland

Received before 23.12.1988