On $\mathcal{D}^{* *}$-Darboux functions

Tomasz Natkaniec

Let us establish some of the terminology to be used. \Re denotes the real line and \mathcal{N} denotes the set of all positive integers. Let $A \in \Re$ be a c-dense in itself set and let B be a subset of \Re. We say that $f: A \longrightarrow B$ is an (A, B)-Darboux function iff f has the intermediate value property, i.e. $(f(x), f(y)) \cap B \subset f((x, y) \cap A)$ for each $x, y \in A$. Let $\mathcal{D}(A, B)$ denote the class of all (A, B)-Darboux functions and let $\mathcal{D}^{* *}(A, B)$ be the class of all functions $f: A \longrightarrow B$ which take on every $y \in B c$ times in every non-empty set of the form $I \cap A$, where I is an interval (c denotes the cardinality of the continuum). It is clear that $\mathcal{D}^{* *}(A, B) \subset \mathcal{D}(A, B)$ for each bilaterally c-dense subset A of \Re and every subset B of \Re. For $A=B=\Re$ we shall denote the classes $\mathcal{D}(A, B)$ and $\mathcal{D}^{* *}(A, B)$ by \mathcal{D} and $\mathcal{D}^{* *}$.

Let us remark that the class \mathcal{D} is equal to the family of all Darboux functions and the class $\mathcal{D}^{* *}$ is equal to the family of all Darboux functions for which all level sets are c-dense in \Re. These classes are well-known and studied by many mathematicians (see e.g. [1], [2] and $[3])$. If $B \neq \Re$ then the classes $\mathcal{D}(A, B)$ and $\mathcal{D}^{* *}(A, B)$ are more special, nevertheless they are helpful in a discussion on many questions connected with the Darboux property.

For a family \mathcal{A} of real functions let

$$
\begin{gathered}
\mathcal{M}_{a}(\mathcal{A})=\left\{f: \forall_{g \in \mathcal{A}} f+g \in \mathcal{A}\right\}, \\
\mathcal{M}_{m}(\mathcal{A})=\left\{f: \forall_{g \in \mathcal{A}} f g \in \mathcal{A}\right\}, \\
\mathcal{M}_{\max }(\mathcal{A})=\left\{f: \forall_{g \in \mathcal{A}} \max (f, g) \in \mathcal{A}\right\} .
\end{gathered}
$$

The classes $\mathcal{M}_{a}\left(\mathcal{D}^{* *}\right)$ and $\mathcal{M}_{m}\left(\mathcal{D}^{* *}\right)$ are characterized in [2] and [3]. In this note we shall prove that $\mathcal{M}_{\text {max }}\left(\mathcal{D}^{* *}\right)$ is empty.

Theorem 1 Let A, B, C be subsets of $\Re, F: A \times B \longrightarrow \Re$ and $f:$ $\Re \longrightarrow A$. Then there exists a $d \in \mathcal{D}^{* *}(\Re, B)$ such that $F(f, d) \in$ $\mathcal{D}^{* *}(\Re, C)$ iff the following conditions hold

1. for every $x \in \mathbb{R}$ there cxists $y \in B$ such that $F(f(x), y) \in C$,
2. $\operatorname{card}(\{x \in I: F(f(x), y)=c$ for some $y \in B\})=c$ for every $c \in C$ and every interval I,
3. $\operatorname{card}(\{x \in I: F(f(x), y) \in C\})=c$ for every $y \in B$ and every interval I.

Proof. (\Leftarrow) Let \mathcal{I} be the family of all non-empty open intervals in R. Well-order the sei $\mathcal{I} \times B \times C$ as $\left(I_{\alpha}, y_{\alpha}, c_{\alpha}\right), \alpha<c$. We can choose (inductively) sequences $x_{\alpha}, z_{\alpha}, t_{\alpha}$ such that $x_{\alpha}, z_{\alpha} \in I_{\alpha} \backslash\left\{x_{\beta}, z_{\beta}: \beta<\alpha\right\}$, $x_{\alpha} \neq z_{\alpha}, F\left(f\left(x_{\alpha}\right), y_{\alpha}\right) \in C, t_{\alpha} \in B$ and $F\left(f\left(z_{\alpha}\right), t_{\alpha}\right)=c_{\alpha}$. Let us put

$$
d(x)= \begin{cases}y_{\alpha} & \text { for } x=x_{\alpha}, \alpha<c, \\ t_{\alpha} & \text { for } x=z_{\alpha}, \alpha<c, \\ y \in B \text { such that } F(f(x), y) \in C & \text { for } x \notin\left\{x_{\alpha}, z_{\alpha}: \alpha<c\right\}\end{cases}
$$

Then $d \in \mathcal{D}^{* *}(\Re, B)$ and $F(f, d) \in \mathcal{D}^{* *}(\Re, C)$.
(\Rightarrow) Let $d \in \mathcal{D}^{* *}(\Re, B)$ and $F(\delta, d) \in \mathcal{D}^{* *}(\Re, C)$. Then 1 holds. Now let I be an interval and $c \in C$. Then card $(\{x \in I: F(f(x), d(x))=$ $c\})=c$ and $d(x) \in B$, therefore

$$
\operatorname{card}(\{x \in I: F(f(x), y)=c \text { for some } y \in B\})=c
$$

Thus the condition 2 holds. Let $y \in B$. Since $d \in \mathcal{D}^{* *}(\Re, B), \operatorname{card}(\{x \in$ $I: d(x)=y\})=c$. From $F(f(x), d(x)) \in C$ we obtain $\{x \in I:$ $d(x)=y\}=\{x \in I: d(x)=y$ and $F(f(x), d(x)) \in C\} \subset\{x \in I:$ $F(f(x), y) \in C\}$ and 3 is proved.

Remarks From Theorem I we can immediately obtain the following results.

1. For $A=B=\Re, F(x, y)=x+y$ we obtain Theorem 3 from [1], i.e. for $f: \Re \longrightarrow \Re$ there exists a $d \in \mathcal{D}^{* *}$ such that $(f+d) \in$ $\mathcal{D}^{* *}(\Re, C)$ iff card $(\{x \in I: f(x)+y \in C\})=c$ for every $y \in \Re$ and every interval I.
2. If $A=B=\Re, F(x, y)=x \cdot y, f: \Re \longrightarrow \Re$ and $0 \in C$ then we have the following corollary. For $f: \Re \longrightarrow \Re$ there exists a $d \in \mathcal{D}^{* *}(\Re, C)$ iff $\operatorname{card}(\{x \in I: f(x) \neq 0\})=c$ for every interval I and $\operatorname{card}(\{x \in I: f(x) \cdot y \in c\})=c$ for every $y \in \Re$ and every interval I.

Some interesting consequences of Remarks 1 and 2 we can find in [2] and [3], respectively.
3. Let $C=\{-1,0,1\}, A=\Re, B=(0, \infty)$ and $F(x, y)=x / y$. For every $f \in \mathcal{D}^{* *}$ there exists a function $d \in \mathcal{D}^{* *}(\Re, B)$ such that $f / d \in \mathcal{D}^{* *}(\Re, C)$ and therefore $f / d \notin \mathcal{D}$.
4. Let $C=\Re \backslash D$, where $D \neq \emptyset$ and card $D<c$. Then for every function $f \in \mathcal{D}^{* *}$ there exists a function $d \in \mathcal{D}^{* *}$ such that $\max (f, d) \in \mathcal{D}^{* *}(\Re, C)$. Hence $\max (f, d) \notin \mathcal{D}$.

Lemma 2 For $g: \Re \longrightarrow \Re$ the following are equivalent.

1. $\max (f, g) \in \mathcal{D}^{* *}$ for each $f \in \mathcal{D}^{* *}$,
2. for every interval I and for every $y \in \Re$ there exist: a subinterval J of I and a subset A of J with card $A<c$ and $g(x) \leq y$ for each $x \in J \backslash A$.

Proof. $2 \Rightarrow 1$ Assume that for $g: \Re \longrightarrow \Re$ the condition 2 holds. Let $F \in \mathcal{D}^{* *}, I$ be an interval and $y \in \Re$. The there exists subinterval J of I such that $g(x) \leq y$ for each $x \in J \backslash A$, where card $A<c$. Therefore $\operatorname{card}(\{x \in J: \max (f(x), g(x))=y\})=c$ and $\max (f, g) \in \mathcal{D}^{* *} .1 \Rightarrow 2$ First notice that if $\max (f, g) \in \mathcal{D}^{* *}$ for some $f \in \mathcal{D}^{* *}$, then g has the following property:
card $(\{x \in I: g(x) \leq y\})=c$ for every interval I and each $y \in \Re$.
Indeed, in the other case we have card $\{x \in I: \max (f(x), g(x))=$ $y\})<c$ and $\max (f, g) \notin \mathcal{D}^{* *}$.

Next suppose that for $g: \Re \longrightarrow \Re$ the condition 2 does not hold. Then there exist a $y_{0} \in \Re$ and interval I such that $\operatorname{card}(\{x \in J$: $\left.\left.g(x)>y_{0}\right\}\right)=c$ for every subinterval J of I. Let us put $B=\Re$ and $C=\left(y_{0}, \infty\right)$. Then the condition 1 of Theorem holds. Let $c>y_{0}$ and let J be a subinterval of I. Since card $(\{x \in J: g(x) \leq c\})=c$ and $\{x \in J: \max (g(x), c)=c\} \subset\{x \in J: \max (g(x), y)=c$ for some $y \in \Re$, the condition 2 of Theorem holds too. Now we shall verify the condition 3 . Let J be a subinterval of I and let $y \in \Re$. If $y>y_{0}$ then $\operatorname{card}(\{x \in J: \max (g(x), y) \in C\})=c$ (because $\left.\left\{x \in J: g(x) \leq y_{0}\right\} \subset\{x \in J: \max (g(x), y) \in C\}\right)$. If $y \leq y_{0}$ then $\left\{x \in J: g(x)>y_{0}\right\} \subset\{x \in J: \max (g(x), y) \in C\}$ and therefore $\operatorname{card}(\{x \in J: \max (g(x), y) \in C\})=c$.
Since the conditions $1,2,3$ of Theorem hold, it follows that $\max (f, g \mid I) \in$ $\mathcal{D}^{* *}(I, C)$ for some $f \in \mathcal{D}^{* *}(I, \Re)$. Therefore $\max (f, g) \notin \mathcal{D}^{* *}$ for some $f \in \mathcal{D}^{* *}$ and 1 does not hold.

Corollary 3 For every function $g: \Re \longrightarrow \Re$ there exists a function $d \in \mathcal{D}^{* *}$ such that $\max (g, d) \notin \mathcal{D}^{* *}$.

Proof. Suppose that the condition 2 of Lemma holds for some $g: \Re \longrightarrow$ \Re. Then there exist a closed interval $I_{0} \subset R e$ and a subset A_{0} of I_{0} such that card $A_{0}<c$ and $g(x)<0$ for each $x \in I \backslash A$. We can choose two disjoint, closed subintervals $I(1,1), I(1,2)$ of I_{0} and subsets $A(1,1) \subset I(1,1)$ and $A(1,2) \subset I(1,2)$ such that $g(x)<-1$ for each $x \in I(1, i) \backslash A(1, i), i=1,2$. Assume that for fixed $n \in \mathcal{N}$ we have already chosen a sequence of pairwise disjoint, closed intervals $I(n, j)$ and sets $A(n, j) \subset I(n, j), j=1,2, \ldots, 2^{n}$ such that card $A(n, j)<c$ and $g(x)<-n$ for each $x \in I(n, j) \backslash A(n, j), j=1,2, \ldots, 2^{n}$. Now, for every $1 \leq j \leq 2^{n}$ we choose two disjoint, closed subintervals $I(n+$ $1,2 j-1), I(n+1,2 j)$ of $I(n, j)$ and subsets $A(n+1,2 j-1), A(n+1,2 j)$ such that card $A(n+1, i)<c$ for $i=2 j-1,2 j$ and $g(x)<-(n+1)$ for each $x \in I(n+1, i) \backslash A(n+1, i), i=2 j-1,2 j$. Put $C=\bigcap_{n \in \mathcal{N}} \bigcup_{j=1}^{2^{n}} I(n, j) \backslash$ $\left(\bigcap_{n \in \mathcal{N}} \bigcup_{j=1}^{2^{n}} A(n, j) \cup A_{0}\right)$. Then $C \neq \emptyset$ and $g(x)<-n$ for each $x \in C$ and $n \in \mathcal{N}$, what is impossible.

References

[1] A. Bruckner and J. Ceder, On the sum of Darboux functions, Proc. Amer. Math. Soc. 51 (1975), 97-102.
[2] J. Jastrzębski, Maximal additive families for some classes of Darboux functions, Real Analysis Exchange 13 (1987-1988), 351-355.
[3] T. Natkaniec and W. Orwat, Variations on products and quotients of Darboux functions, Real Analysis Exchange 15 (1989-1990), 193-202.

WYŻSZA SZKOLA PEDAGOGICZNA
instytut matematyki
Chodkiewicza 30
85-064 Bydgoszcz, Poland

