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On the order of a group of
automorphisms of a compact bordered
Klein surface

Grzegorz Gromadzki

We will prove the announced results by means of NEC groups. An
NEC-group is a discrete subgroup T of the group of isometries Q of
the hyperbolic piane C+ (including those which reverse orientation—
reflections and glide reflections) with compact guotient space C+/T.
Let Q+ denote the subgroup of index 2 in Q consisting of orientation
preserving isometries. An NEC group T contained in Q+ is called a
Fuchsian group, and a proper NEC-group in the other case. In what
follows r+ = T fi Q+ is the canonical Fuchsian subgroup of an NEC
group T.

Macbeath [7] and Wilkie [13] associated to every NEC group a sig-
nature that has the form

(1) O\:; [wii,.es,m1], {(n,-i,... f3)

and determines the algebraic structure of the group. The numbers
m- are called proper periods, the brackets (na, *+., n,SI) period cycles
and g > 0 is called orbit genus. The group with signature 1 has the
presentation with the following generators

2 xi, i=1,...,r,
cij,) t 1 eee,k,3 0,..., si
e-t 1,...,n
cii, b, i=1,...,9 (if the sign is +)

a, i =1,...,¢0 (if the sign is —
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subject to the relations
L x™=11i=1,...,r,
2* Nsi N1 0 A
3. ¢?_1=c¢cC = (c,j_ictpnj=1,i=1,....,kj=1,... a

4. X\ ...xre\...erai™aj"1™ 1... cigbhga™b™1 = 1 ifthe sign is +,
X\ ...oxre\ .. . &kd\m..dg —1 if the sign is —

In what follows these generators are saicl to be the canonical gener-
ators of T. It is known that the only elements of finite order in T are
those that are conjugate to powers of cp-, I5X{. Every NEC group
has a fundamental region associated, whose area depends only on the
group. It is given by

(3) ,.(0 = 2* (ag + k 249 (1-i-) +i Y

where a = 1 if the sign is —and a = 2 in the other case.

It is known that the necessary and sufficient condition for a group
T with presentation 2 to be realized as an NEC group with signature 1
is that the right hand side of 3 is greater than O.

If T is a subgroup of finite index in an NEC group A, then it is an
NEC group itself and the following Hurwitz-Riemann formuta holds

(4) [a : 1] = fi(N/I<(A).

An NEC group with signature

(5) [-1{(-)> +*>()})

(k > 1) is said to be a bordered surface group of genus g with k boundary
components orientable or non-orientable according as the sign is + or
— The number p = ag + k — 1 is called the algebraic genus of T
and it ecjuals the algebraic genus of the corresponding Klein surface
X =cH/r.

It is known [11] that a compact bordered Klein surface of algebraic
genus p > 2 can be represented as C+/T, where T is a bordered surface

a-



On THE ORDER OF A GROUP OF AUTOMORPIIISMS 5

group of algebraic genus p. Moreover given a surface so represented,
a fmite group G is a group of its automorphisms if and only if there
exists a proper NEC group A containing F as a normal subgroup such
that G = A/r [s]

Lemma 1 The only proper NEC groups with area smaller than 7r/6
are those which have a signature (0;+; [; {(ni,n2,Us)}), where 5/6 <
1/7?.1+ U222+ 1/h3 < 1 0/'(0;+;[???]; {(+7)}), where 5/6 < 2/777+ 1/77 < 1.

Proof. Straiglitforward verification.

Lemma 2 None of the groups listed in the preuious lemma admit a
bordered surface group as a normal subgroup offinite index.

Proof. Notice that a canonical Fuchsian subgronp F+ of a bordered
surface group F is torsion lree.
It is easy to check that an NEC group A with a signature

; +; [ {(1,»2,»3)})
is generated by three reflections Co, ci and c2 obeying the relations
(coc,)ni = (c,c2p = (CoC2)ns = 1.

Assume that a group A contains a bordered surface group F as a
normal subgroup. Thcn a reflection c of A belongs to F. Reflection c is
conjugate to one of the canonical ones, say to co and sifnce F is normal
in A co itself belongs to F. Now siice //(A) > 0. 74 or s is greater tlian
2. But then (coCiy2 or (cocz)2 is a nontrivial element of finite order in
F+ which is torsion-free as we alrcady mentioned, a contradiction.

Now assume that A has a signature of the second type. Then A'is
generated by c0, Ci, and e subject to the relations

cg = ¢? = (cbcl)B= 1,
an= ],
ccle~* = Q.
As in the precious case we argne that one of g- belongs to F. But then

the other one does. So cqCi, being an element of order » belongs to F+,
a contradiction.
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Corollary The order of a group of automorphisms of a bordered com-
pact Klein surface of algebraic genus p > 2 is bounded aboue by 12(p—1).

Proof. If a finite group G is a group of automorphisms of a bordered
Klein surface of algebraic genus p > 2 then G — A/T, where F is a
bordered surface group of area 27r(p —1) and by lemma 1 p(A) > 7r/6.
Thus

IGl =AnN/,,(A) <MI7 f]=120p- 1.
Remark 1 It turns out that an NEC-group T with signature

(0,+:[-1.{(3.2,2,2)})

and area 7r/6 is the group which admits bordered surface groups as nor-
mal subgroups of afinite index [3], [9] and it was shown in many papers
that the bound 12(p —1) is attained for infinitely many groups [3], [f],

[51, [6], 81, [10], [12].

Remark 2 Recently it was shown in [2] that the necessary and suffi-
cient condition for an NEC group A to admit a bordered surface group
F as a normal subgroup offinite index is that A has a signature with, an
empty period cycle or with a period cycle with two consecutiue periods
equal to 2. An NEC group A with an empty period cycle has clearly
area > n/3 while it is easy to obserue that a period cycle with two con-
secutiue periods equal to 2 in an NEC group willi area < 7t/3 has length
four and then p(A) > 7t/6. This giues one more proof of the result in
question.
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