Problemy Matematyczne 14 (1995), 15 - 20

On the function of oscillation Zbigniew Duszyński

Throughout this paper we will use the following denotations, facts and definitions (see [1], [2]):

IR will denote the set of all real numbers.

Definition 1 Let \mathcal{B}_0^+ be a non empty family of non empty sets $E \subset I\!\!R$ such that

a₁ if $E \in \mathcal{B}_0^+$, then for every t > 0, $E \cap (0, t) \in \mathcal{B}_0^+$.

 $\mathbf{a}_2 \ E_1 \cup E_2 \in \mathcal{B}_0^+$ if and only if $E_1 \in \mathcal{B}_0^+$ or $E_2 \in \mathcal{B}_0^+$.

For every set $E \subset \mathbb{R}$ and $x \in \mathbb{R}$ we shall write

$$E + x = \{y : \bigvee_{a \in E} (y = a + x)\}, \quad -E = \{y : -y \in E\}.$$

Then the family \mathcal{B}_0^- is defined as

$$\mathcal{B}_0^- = \{ E : -E \in \mathcal{B}_0^+ \}.$$

For every $x \in I\!\!R$ let

 $\mathcal{B}_x^+ = \{ E : (E - x) \in \mathcal{B}_0^+ \}, \mathcal{B}_x^- = \{ E : -E \in \mathcal{B}_0^+ \},$ and $\mathcal{B}_x = \mathcal{B}_0^+ \} \cup \mathcal{B}_x^-$. Now let $\mathcal{B} = \bigcup_{x \in \mathbb{R}} \mathcal{B}_x$. **Definition 2** The number y_0 is called a \mathcal{B} -limit number of a function $f: \mathbb{R} \to \mathbb{R}$ at a point $x_0 \in \mathbb{R}$ if for every $\varepsilon > 0$ the set

$$\{x: |f(x) - g| < \varepsilon\}$$

belongs to \mathcal{B}_{x_0} .

Let $L_{\mathcal{B}}(f, x)$ denotes the set of all \mathcal{B} -limit numbers of a function f at a point x.

For every function $f : \mathbb{R} \to \mathbb{R}$ and every point $x_0 \in \mathbb{R}$ there exists at least one \mathcal{B} -limit number of the function f at the point x_0 . For every $x \in \mathbb{R}$ the set $L_{\mathcal{B}}(f, x)$ is closed.

Definition 3 We will say that the family \mathcal{B} fulfils the condition M_0 , if for every x_0 and a sequence $\{x_n\}$ such that $x_n \searrow x_0$ and for every sequence of sets $\{B_n\}$ such that $B_n \in \mathcal{B}_{x_n}$ the set $E_0 = \bigcup_{n=1}^{\infty} B_n$ belonges to the family $\mathcal{B}_{x_0}^+$.

It is easy to see, that each familly \mathcal{B} fulfiling the condition M_0 fulfils the condition M_1 too.

Let us write for a bounded function $f : \mathbb{R} \to \mathbb{R}$.

$$m_{\mathcal{B}}(f, x) \min L^*_{\mathcal{B}}(f, x)$$
$$M_{\mathcal{B}}(f, x) \max L^*_{\mathcal{B}}(f, x),$$

where $L_{\mathcal{B}}(f,x) = L_{\mathcal{B}}(f,x) \cup \{f(x)\}$. We shall say that the function f is upper \mathcal{B} -semicontinuous (lower \mathcal{B} -semicontinous) at a point x_0 if

$$M_{\mathcal{B}}(f,x) \leq f(x_0), \quad m_{\mathcal{B}}(f,x) \geq f(x_0).$$

From theorem 14 ([2]) we infer the following characterization:

for an arbitrary bounded function f, $M_{\mathcal{B}}(f)$, $(m_{\mathcal{B}}(f))$ is upper \mathcal{B} -semicontinuous (lower \mathcal{B} -semicontinous) if and only if the family \mathcal{B} fulfils the condition M_1 . Let $\mathcal{P}(x_0) = \{p \in \mathbb{R} \times \mathbb{R} : p = (x_0, y)\}$. Let $f : \mathbb{R} \to [0, 1]$ be an arbitrary function. Let $\mathcal{B}_0^+ = \mathcal{N}_i^+$ be the family of sets for which 0 is a point of right-sided accumulation. It is obvious that the family \mathcal{N} defines ordinary limit numbers.

We shall write

$$L_{\mathcal{N}}(f, x) = L(f, x)$$
$$L_{\mathcal{N}}^{*}(f, x) = L^{*}(f, x) \cup \{f(x)\}.$$

The symbol $\omega_f(x)$ will denotes the oscillation of f at a point x, i.e.

$$\omega_f(x) = \max L^*(f, x) - \min L^*(f, x).$$

Let us put $\Omega_f(y) = \{x : \omega_f(x)geqy\}$ for each $y \in [0, 1]$. The following facts are known for an arbitrary function f:

- 1. The set $\Omega_f(y)$ is closed on \mathbb{R} (with natural topology), for each $y \in [0, 1]$.
- 2. If $y_1 < y_2$, then $\Omega_f(y_2) \subset \Omega_f(y_1)$.
- 3. The set

$$\bigcup_{y\in[0,1]} (\Omega_f(y)\times\{y\})$$

is closed on the plane $I\!\!R \times I\!\!R$.

Let now family $\{\Omega(y)\}_{y \in [0,1]}$ of subsets of \mathbb{R} fulfils the following conditions:

 α_1 The set $\Omega(y)$ is closed on \mathbb{R} (with usual topology), for each $y \in [0, 1]$.

 α_2 If $y_1 < y_2$, then $\Omega(y_2) \subset \Omega(y_1)$.

 α_3 The set

$$\bigcup_{y \in [0,1]} (\Omega(y) \times \{y\})$$

is closed on the plane $I\!R \times I\!R$.

 $\alpha_4 \ \Omega(0) = I\!\!R.$

In this paper there is given the proof of the following

Theorem For an arbitrary family $\{\Omega(y)\}_{0 \le y \le 1}$ fulfiling conditions $(\alpha_1) - (\alpha_4)$ there exists a function $f : \mathbb{R} \to [0, 1]$ such that for each $0 \le y \le 1$ we have:

$$(\alpha_0) \quad \Omega(y) = \Omega_f(y).$$

In the proof we shall apply well known Cantor - Bendizson theorem:

every closed set A can be represented as a sum of two sets A_1 , A_2 . the first of which consists of all points of condensation of A (it is perfect set) and the second one is denumerable; $A_1 \cap A_2 = \emptyset$.

For each $y \in [0, 1]$ let

$$\Omega(y) = A(y) \cup B(y), \qquad A(y) \cap B(y) = \emptyset;$$

where A(y) is perfect and B(y) is denumerable.

Notice, that if for some $y' \in (0,1], x \in A(y')$ then $x \in A(y')$ then $x \in A(y)$ for each $0 \leq y < y'$. If $x \in B(y'), x$ needn't belong to each B(y) for $0 \leq y < y'$. However, if $x \in B(y'')$ for some y'' < y' then, $x \in B(y)$ for each y'' < y < y'. Let us define (for each $a \in I\!\!R$) the set B_a as follows: $B_a = \{y \in [0,1] : a \in B(y)\}$. Let F be the set of all $a \in I\!\!R$, which for B_a is nondegenerate interval.

Lemma The set F is denumerable. **Proof** of lemma.

Suppose that F is a nondenumerable set. For each $a \in F$ let $y_a^{(1)}$ and $y_a^{(2)}$ fulfil the inequalities

$$\inf B_a < y_a^{(1)} < y_a^{(2)} < \sup B_a.$$

For an arbitrary $a \in F$ let

$$B'_{a} = \{ y \in [0,1] : y_{a}^{(1)} \le y \le y_{a}^{(2)} \}.$$

For $n \ge 2$ $(n \in \mathbb{N})$, by F_n we will demote the set of all $a \in F$, such that diam $B'_a > \frac{1}{n}$. It is easy to see, that

$$F = \bigcup_{n \ge 2} F_n.$$

It follows immediately from our assumption that starting from a certain positive integer all sets F_n are nondenumerable $(F_n \subset F_{n+1})$. Let F_{n_0} be the nondenumerable set. Then at least one of the points $y_k = \frac{k}{2n_0}$ $(k = 0, 1, 2, \ldots, 2n_0)$, belongs to nondenumerable subfamily of the family $\{B'_a\}_{a \in F_{n_0}}$.

Hence there exists a point $a_0 \in B(y_{k_0})$ which is the point of condensation of $\Omega(y_{k_0})$ and accordingly $a_0 \in A(y_{k_0})$. But the sets $A(y_{k_0})$ and $B(y_{k_0})$ are disjoint, so we have a contradiction.

Let us define the function f. Let $U = Q \cap [0,1]$, where Q is the set of all rational numbers. For an arbitrary set $\Omega(y)$ $(y \in U)$, A'(y) will denote denumerable and dense set on $\Omega(y)$.

Our function f can be now defined as follows.

$$f(x) = \begin{cases} \sup\{y \in U : x \in A'(y)\} & \text{for } x \in \bigcup_{y \in U} A'(y) \\ 0 & \text{otherwise} \end{cases}$$

It is obvious that 0 is an ordinary limit number of f at each point $x \in I\!\!R$. First we shall prove the inclusion $\Omega_f(y) \subset \Omega(y)$. Let y_0 be a given point from (0.1]. Let $x \in \Omega_f(y_0)$ i.e. max $L^{-}(f, x) \geq y_0$.

- (I) if $f(x) \ge y_0 \ge \max L(f, x)$, then from the definition of f and condition (α_3) it follows, that $x \in \Omega(f(x))$. Since $\Omega(f(x)) \subset \Omega(y_0)$ hence $x \in \Omega(y_0)$.
- (II) if $y_0 < \max L(f, x)$, then from the definition of f and condition (α_3) we have

$$x \in \Omega(\max L(f, x)).$$

(Notice that in this case we can only have $y_0 < f(x)$). Since $\Omega(\max L(f, x)) \subset \Omega(y_0)$, therefore $x \in \Omega(y_0)$. We shall now prove the inclusion $\Omega(y) \subset \Omega_f(y)$. Let's take on arbitrary point $y_0 \in U \setminus \{0\}$.

- (III) Let $x \in A'(y_0)$, then from the definition of f we obtain $x \in \Omega_f(y_0)$.
- (IV) Let $x \in A(y_0) \setminus A'(y_0)$. From the definition of f we obtain:

$$y_0 \le \max p_y(\mathcal{P}(x) \cap (\bigcup_{y \in [0,1]} (A(y)x\{y\}))) \le \max L(f,x) \le \max L^{\bullet}(f,x)$$

Hence $x \in \Omega_f(y_0)$. Let us take now y_0 from $[0,1] \setminus U$.

- (V) Let $x \in A(y_0)$. Here the proof is similar to (IV.)
- (VI) In the case $x \in B(y_0)$ we see at once that $x \in \Omega_f(y_0)$. Remark The function f defined in this paper is of the second class of Baire.

References

- [1] Jędrzejewski J.M. On limit numbers of real functions, Fund. Math., LXXXIII (1974), pp. 269 281.
- [2] Jędrzejewski J.M. O granicy i ciąglości uogólnionej, Zeszyty Nauk. Un. Łódz., Seria II (52), (1973), pp. 19 - 38.
- [3] Sikorski R., Funkcje rzeczywiste t.1, W-wa 1958.
- [4] Banach S., Wstęp do teorii funkcji rzeczywistych, W-wa Wrocław 1951.

PEDAGOGICAL UNIVERSITY INSTITUTE OF MATHEMATICS Chodkiewicza 30 85-064 Bydgoszcz Poland