Problemy Matematyczne 14 (1995), 3 - 14

On the continuous (A, B)–Darboux functions

Dariusz Banaszewski

1. Introduction

Studying the behavior of real functions Z. Grande [1] showed that if a function f maps a set A which is not an interval into a set $I\!R$ of all reals then the set of all continuous functions from A into $I\!R$ which have not the intermediate value property has nonempty interior in the space of all continuous real functions defined on A (with the uniform metric). The main purpose of this paper is to give a classification in the sense of the category the sets of all continuous, (A, B)-Darboux functions in the space of all continuous functions.

Definitions. Let us establish some terminology to be used later. For each points $a, b \in \mathbb{R}$, $a \neq b$ by $I_{(a,b)}$ we mean the interval $(\min\{a, b\}, \max\{a, b\})$. Similarly we define the intervals $I_{[a,b]}$, $I_{(a,b]}$. We denote by cl X the closure of X and int X the interior of X. A set $U \subset \mathbb{R}$ is called to be an interval in the set $X \subset \mathbb{R}$ if there exists an interval $I \subset \mathbb{R}$ such that $U = I \cap X$. If A and B are nonempty subsets of \mathbb{R} then we said that $f : A \longrightarrow B$ is a (A, B)-Darboux function whenever for any $x_1, x_2 \in A$ such that $x_1 < x_2$ and $f(x_1) \neq f(x_2)$ and for every point $c \in B \cap I_{(f(x_1), f(x_2))}$ there exists $x \in A \cap (x_1, x_2)$ such that f(x) = c. Denote by $\mathcal{D}(A, B) (A \neq \emptyset \neq B)$.

the family of all (A, B)-Darboux functions and by $\mathcal{C}(A, B)$ the family of all continuous functions $f : A \longrightarrow B$. By the right (left) hand sided cluster set of f at x we mean

 $K^{+}(f, x) = \{ y \in \mathbb{R}; \text{ there is a sequence } x_n \in A, \ x_n \searrow x \text{ and } f(x_n) \to y \}$ $(K^{-}(f, x) = \{ y \in \mathbb{R}; \text{ there is a sequence } x_n \in A, \ x_n \nearrow x \text{ and } f(x_n) \to y \})$

Let ρ be defined by the following formula

CITED THE

$$\rho(f,g) = \min\{1, \sup_{x \in A} |f(x) - g(x)|\}.$$

In this chapter of our article we shall explore the subspace of all (A, B)-Darboux functions in the space $\mathcal{C}(A, B)$ with the metric ρ .

Remark 0.1 If a nonempty set A is not an interval and the set B has at least tree elements then the set $C(A, B) \setminus D(A, B)$ has the nonempty interior.

Proof. There is a point $a \in \mathbb{R} \setminus A$ such that $(-\infty, a) \cap A \neq \emptyset$ and $(a, \infty) \cap A \neq \emptyset$. Let $b = (\sup A \cap (-\infty, a))$ and $c = \inf(A \cap (a, \infty))$. Let $y_1 < y_2 < y_3$ be points of the set B. Let $f : A \longrightarrow B$ be continuous function such that

$$f(x) = \begin{cases} f(x) = y_1 & \text{for } x \in A \cap (-\infty, b], \\ f(x) = y_3 & \text{for } x \in A \cap [c, \infty), \end{cases}$$

Then for every function $g \in C(A, B)$ with $\rho(f, g) < \delta$, where $\delta = \frac{1}{2} \min\{y_3 - y_2, y_2 - y_1, 1\}$ g cannot be in $\mathcal{D}(A, B)$. This completes the proof.

Theorem 0.1 Suppose that A and B are nonempty, $cl A \setminus A$ is not closed in \mathbb{R} and B is dense in itself, then the set $C(A, B) \cap D(A, B)$ is nowhere dense in C(A, B).

Proof. Fix f belonging to C(A, B) and positive r. Since $cl A \setminus A$ is not closed, there exists $a \in A$ which is an accumulation point of $cl A \setminus A$. We can find $b_0, b_1 \in B$ such that:

$$b_1 \in I_{(b_0, f(a))},$$

$$|b_0 - f(a)| < \frac{r}{2},$$

$$|b_0 - b_1| < \frac{1}{2}|b_0 - f(a)|.$$

Obviously it is possible, since B is dense in itself. By the continuity of f there is an open interval I such that $a \in I$ and |f(u) - f(a)| < r/4 for each $u \in I \cap A$. Without loss of generality we may assume that a is a left hand sided accumulation point of $cl A \setminus A$. Choose $x, y \in I \cap (-\infty, a) \setminus A$ such that x < y and $(x, y) \cap A$ is nonvoid. We define a function g as follows:

$$g(u) = \begin{cases} f(u) & \text{if } u \in A \cap [(-\infty, x) \cup (a, \infty)] \\ b_0 & \text{if } u \in A \cap (x, y) \\ f(a) & \text{if } u \in A \cap (y, a] \end{cases}$$

Evidently $g \in \mathcal{C}(A, B)$. Remark that

$$\begin{aligned} |f(u) - g(u)| &\leq |f(u) - f(a)| + |f(a) - g(u)| \\ &< \frac{r}{4} + |f(a) - b_0| < \frac{r}{4} + \frac{r}{2} = \frac{3r}{4} & \text{for every } u \in A \cap (x, y), \\ |f(u) - g(u)| &< |f(u) - f(a)| < \frac{r}{4} & \text{for every } u \in A \cap (y, a), \\ f(u) &= g(u) & \text{otherwise.} \end{aligned}$$

So $\rho(f,g) \leq 3r/4$. Let $h \in \mathcal{C}(A,B)$ be such that $\rho(g,h) < \frac{1}{2}|b_0-b_1|$. This inequality implies that $\rho(f,h) \leq \rho(f,g) + \rho(g,h) \leq 3r/4 + |b_0 - f(a)|/4 < 3r/4 + r/8 < r$.

Now remark that \hbar cannot be (A, B)-Darboux function. Notice, that $b_1 \in I_{(h(a),h(v))}$ for every $v \in (x,y) \cap A$. For the proof of above we can assume that $f(a) < b_1 < b_0$. If oposite inequalities hold, then the proof is simillar. Fix $v \in (x,y) \cap A$. By definition of h follows that $|h(v) - g(v)| < (b_0 - b_1)/2$. Thus we obtain that

$$(b_1 - b_0)/2 < h(v) - g(v) = h(v) - b_0$$

 $b_1/2 + b_1/2 < b_1/2 + b_0/2 < h(v)$

and consequently $b_1 < h(v)$. Moreover, from definitions of b_0, b_1 and h follows:

$$\begin{aligned} |g(a) - h(a)| &< (b_0 - b_1)/2 \\ g(a) - h(a) &> (b_1 - b_0)/2 \\ &-h(a) &> b_1/2 - b_0/2 - f(a) \\ h(a) &< b_0/2 + f(a) - b_1/2 < b_1/2 - f(a) - b_1/2 = f(a) < b_1. \end{aligned}$$

Consequently $b_1 \in I_{(h(a),h(v))}$ for every $v \in (x, y) \cap A$.

Notice that $h(t) = b_1$ for no $t \in A \cap (y, a)$. Suppose that $h(t) = b_1$ for some $t \in (y, a) \cap A$. Then $|h(t) - g(t)| = |b_1 - f(a)| > 2|b_0 - b_1|$. This contradics our assumption that $\rho(h, g) < |b_0 - |b_1|/2$. The proof is finished.

Theorem 0.2 If there exist $a, b \in A$ such that a < b and $[a, b] \cap A$ is of the cardinality smaller than continuum and B is nonempty dense in itself then the set $C(A, B) \cap D(A, B)$ is nowhere dense in C(A, B).

Proof. Let f be a fixed function from the class C(A, B) and r > 0. Because there exist $a, b \in A$, such that a < b and $[a, b] \cap A$ has the cardinality smaller than continuum thus $\mathbb{R} \setminus f([a, b] \cap A)$ is dense in \mathbb{R} . We shall consider two cases.

- (A) $(a, b) \cap A \neq \emptyset$,
- (B) $(a,b) \cap A = \emptyset$.
- (A) Let $x_0 \in (a, b) \cap A$ be a fixed point. Now select $y_1, y_2 \in B$ such that:

$$y_1 ext{ and } y_2 ext{ are different than } f(a) ext{ and } f(b),$$

 $\max\{|f(x_0 - y_1|, |f(x_0) - y_2|\} < r/4,$
 $y_2 \in I_{(f(b),y_1)}.$

Let U_b be an interval in A such that

- b is the right end point of U_b ,
- the left end point of U_b belongs to the set $(x_0, b) \setminus A$,
- $|f(x) f(b)| < |y_2 f(b)|/2$ for every $x \in U_b \cap A$.

Let U_a be an interval in A such that a is the left end point of U_a and the right end point of U_a is a element of the set $(a, x_0) \setminus A$. Because $[a, b] \cap A$ has the cardinality smaller than continuum we can choose the points $r_1, r_2 \notin f([a, b] \cap A)$ with the following conditions:

 $f(x_0), y_1, y_2 \in (r_1, r_2),$ $|r_2 - r_1| < r/2.$ Define U as

$$U = f^{-1}([r_1, r_2]) \cap (a, b) \setminus [U_a \cup U_b],$$

and let us put

$$g(x) = \begin{cases} y_1 & \text{for } x \in U\\ f(x) & \text{for } x \in A \setminus U \end{cases}$$

Remark that g is from the class C(A, B), but g cannot be in $\mathcal{D}(A, B)$. Indeed, $y_2 \in B$ is between $g(x_0) = y_1, g(b) = f(b)$ and moreover $g(u) \neq y_2$ for every $u \in (x_0, b)$. Let

$$\delta = \frac{1}{2} \min\{|y_1 - y_2|, y_2 - r_1, r_2 - y_2, \frac{1}{2}|y_2 - f(b)|\}.$$
 (1)

We shall show that $\rho(f,h) < r$ for every function $h \in C(A,B)$ with $\rho(h,g) < \delta$ and

$$\{h \in \mathcal{C}(A,B); \rho(h,g) < \delta\} \cap \mathcal{D}(A,B) = \emptyset.$$
(2)

Let $h \in C(A, B)$ be such that $\rho(h, g) < \delta$ and $x \in A$ be a fixed point. If $x \notin U$ then f(x) = g(x) and consequently $|f(x) - h(x)| < \delta < r$. Assume that $x \in U$. Then we obtain the following chain of inequalieties:

$$\begin{aligned} |f(x) - h(x)| &\leq |f(x) - g(x)| + |g(x) - h(x)| \\ &< r_2 - r_1 + \delta < \frac{r}{2} + \frac{1}{2}|y_1 - y_2| \\ &< \frac{r}{2} + \frac{1}{2}(|y_1 - f(x_0)| + |f(x_0) - y_2|) < \frac{r}{2} + \frac{r}{2} = r. \end{aligned}$$

Next observe that

 $h([x_0, b]) \cap (y_2 - \delta, y_2 + \delta) = \emptyset$ (3)

Indeed, if $x \in U$ then $|g(x) - y_2| \le |g(x) - h(x)| + |h(x) - y_2|$ and we conclude that

$$\begin{aligned} |h(x) - y_2| &\geq |g(x) - y_2| - |g(x) - h(x)| = \\ &= |y_1 - y_2| - |g(x) - h(x)| > 2\delta - \delta = \delta. \end{aligned}$$

If $x \in [x_0 - b] \setminus U$, then either $x \in U_b$ or $f(x) \notin [r_1, r_2]$.

Assume that $x \in U_b$. By definitions of $U_b |f(x) - y_2| > |f(b) - y_2|/2 \ge 2\delta$ and notice that

$$\begin{aligned} |h(x) - y_2| &\geq |g(x) - y_2| - |g(x) - h(x)| = \\ &= |f(x) - y_2| - |g(x) - h(x)| > 2\delta - \delta = \delta. \end{aligned}$$

Let $x \in (x_0, b)$ be such that $f(x) \notin [r_1, r_2]$. Since f(x) = g(x) and $y_2 \in (r_1, r_2)$, thus $|g(x) - y_2| > \min\{y_2 - r_1, r_2 - y_2\} \ge 2\delta$ and finally

$$|h(x) - y_2| \ge |g(x) - y_2| - |g(x) - h(x)| > 2\delta - \delta = \delta$$

It is easily seen that $y_2 \in I_{[h(x_0),h(b)]}$ and from (3) we conclude that (2) holds. So the proof is complete in the case (A).

(B) Assume that $(a, b) \cap A = \emptyset$. Let $V \subset \mathbb{R}$ be a connected component of A such that $b \in V$. Then V is a nondegenerate interval or $V = \{b\}$.

(i) Assume that V is nondegenerate.

By the continuity of f there exists the maximal interval W in \mathbb{R} such that $W \subset V$, b is the left end point of W and $f(W) \subset [f(b) - r/4, f(b) + r/4]$. Of course $f(W) \subset B$ is an interval. Choose points $b_1, b_2 \in B$, $x_0 \in \operatorname{cl} W$, $b_1 \in I_{(b_2, f(a))}$ such that either:

(a)
$$b_1, b_2 \in f(W)$$
 and $f(x_0) = b_2$, if $f(W)$ is nondegenerate

or

(b) $b_1, b_2 \in (f(b) - r/4, f(b) + r/4)$ and $x_0 = \sup W$, otherwise.

Let us put

$$g(x) = \begin{cases} b_2 & \text{for} \quad x \in [b, x_0] \cap A \\ f(x) & \text{for} \quad x \in [(-\infty, a] \cup (x_0, \infty)] \cap A \end{cases}$$

Then $\rho(g, f) \leq r/2$ and $g \in C(A, B)$. Notice that $h \in \mathcal{D}(A, B)$ for no function which $\rho(h, g) < \min\{|b_1 - f(a)|, |b_2 - b_1|\} < r/2$. It follows immediately from the fact that $b_1 \in I_{(h(a),h(b))}$ and are not points of between a and b. Thus the proof is finished in this case.

(ii) Now we shall consider the case when $\{b\}$ is connected component of A. First assume that b is an isolated point of A. Let $b_1, b_2 \in B \cap (f(b) - r/4, f(b) + r/4), b_1 \in I_{(f(a), b_2)}$. Define

$$g(x) = \begin{cases} f(x) & \text{for } x \in A \setminus \{b\} \\ b_2 & \text{for } x = b \end{cases}$$

8

Then $g \in \mathcal{C}(A, B)$. Notice that every function $h \in \mathcal{C}(A, B)$ with $\rho(h, g) < \min\{|f(a) - b_1|, |b_1 - b_2|\}$ is equal to b_1 for no points of $[a, b] \cap A$ and $b_1 \in I_{(h(a), h(b))}$. Thus $h \notin \mathcal{D}(A, B)$. Obviously $\rho(h, f) < r$.

Now assume that b is an accumulation point of A and $\{b\}$ is the connected component of A. Then there is an interval W in A such that |f(x) - f(b)| < r/4 for each $x \in W$ and b is a left endpoint of W. Choose $a_1, a_2 \in W \setminus A$, $(a_1, a_2) \cap A \neq \emptyset$ and $b_1, b_2, b_3 \in B \cap (f(b) - r/4, f(b) + r/4)$ such that $b_1 \in I_{(b_2, b_3)}$. Put

1	$\int f(x)$	for	$x \in A \setminus (a, a_2)$
$g(x) = \langle$	b_2	for	$x \in (a_1, a_2) \cap A$
	b_3	for	$x \in (a, a_2) \cap A$

It is easy to see that $g \in C(A, B)$. Then every function $h \in C(A, B)$ with $\rho(h, g) < \min\{|b_2 - b_1|, |b_1 - b_3|\}$ is equal to b_1 for no points of $[b, u] \cap A$ and $b_1 \in I_{(h(b),h(u))}$, where $u \in (a_1, a_2) \cap A$. Moreover $\rho(h, f) < r$. Thus $h \notin \mathcal{D}(A, B)$. This completes the proof.

Theorem 0.3 If $A \neq \emptyset$ is not an interval, B is a nonvoid dense in itself set which contains no interval then $C(A, B) \cap D(A, B)$ is nowhere dense in C(A, B).

Proof. By theorems 0.1 and 0.2 we can assume that $cl A \setminus A$ is closed and for all $a, b \in A$ with a < b the set $[a, b] \cap A$ has the cardinality continuum. Fix a function $f \in C(A, B)$ and r > 0. Since the continuous image of connected set is conected we conclude that f must be constant on every connected component of A. Let $U \neq V$ be components of A such that $\sup U \leq \inf V$.

Denote $f(U) = \{u\}$ and $f(V) = \{v\}$. Let $b_1, b_2, b_3 \in B$ be such that $b_2 \in I_{(b_1,b_3)}$, $\max\{|b_1-u|, |b_2-u|\} < r/4$ and $|b_3-v| < r/4$. Choose $y_1, y_2 \notin B$ such that $u, b_1, b_2 \in I_{(y_1,y_2)}$ and $|y_2 - y_1| < r/2$. Let $a_1 \in [\sup U, \inf V] \setminus A$ be such that:

 $\operatorname{OSC}_{[a_1, \sup V] \cap A} f \leq r/4$

and choose $a_2 > \sup U$, $a_2 \neq a_1$, which fulfill conditions:

 $a_2 \notin A$

 $\operatorname{osc}_{[\inf V, a_2]} f < r/4$

 $(a_2 \text{ may be equal to } \infty \text{ if } V \text{ is nobounded})$. Let g be define as:

$$g(x) = \begin{cases} b_1 & \text{for } x \in A \cap (-\infty, a_1) \cap f^{-1}(I_{(y_1, y_2)}) \\ b_3 & \text{for } x \in A \cap (a_1, a_2) \\ f(x) & otherwise. \end{cases}$$

Since $f \in \mathcal{C}(A, B)$, each set $A \cap (-\infty, a_1) \cap f^{-1}(I_{(y_1, y_2)})$ and $x \in A \cap (a_1, a_2)$ is both open end closed in A we have that g is continuous. Moreover, it is easy to see that $\rho(g, f) < r/2$. Notice that for every $h \in \mathcal{C}(A, B)$ with

$$\rho(h,g) < \min\{|b_1 - b_2|, |b_3 - b_2|, |y_1 - b_2|, |y_2 - b_2|\} = \delta$$

h(x) is not equal to b_2 for no points of interval $[x_u, x_v]$ and $b_2 \in I_{(f(x_u), f(x_v))}$, where $x_u \in U$ and $x_v \in V$. Since $b_2 \in I_{(h(x_u), h(x_v))}$, the result is

$$\{h \in \mathcal{C}(A,B); \ \rho(h,g) < \delta\} \subset \{h \in \mathcal{C}(A,B); \ \rho(h,f) < r\}$$

and

 $\{h \in \mathcal{C}(A,B); \ \rho(h,g) < \delta\} \cap \mathcal{D}(A,B) = \emptyset.$

The proof is finished.

Remark 0.2 If $A, B \subset \mathbb{R}$ are nonempty and B contains an isolated point then the set $C(A, B) \cap D(A, B)$ has nonempty interior.

Proof. Let $b \in B$ be isolated in B, $r = \min\{1, \operatorname{dist}(B) \setminus \{b\}, b\}$ and $f: A \longrightarrow B$ be constant and equal to b. Then for every function $f: A \longrightarrow B$ with $\rho(g, f) < r$ we have g = f.

Theorem 0.4 If a nonempty set A is such that the set $cl A \setminus A$ is closed and for each points $a, b \in A$, a < b, the set $[a, b] \cap A$ has the cardinality continuum and moreover, the set B contains nondegenerate interval then the set $C(A, B) \cap D(A, B)$ has nonempty interior in C(A, B).

Proof. If A is closed then A is an interval and $\mathcal{C}(A, B) \subset D$ (A,B). So we may assume that $\operatorname{cl} A \setminus A \neq \emptyset$. Let $(a_1, a_2, \ldots, a_n, \ldots)$, where $a_i \neq a_j$ for $i \neq j, i, j = 1, 2, 3, \ldots$ be a sequence (finite or not) of all unilaterally isolated points of the set $\operatorname{cl} A \setminus A$. Let $I = [r_1, r_2] \subset B$ be a nondegenerate compact interval. We shall show that A has the following properties:

10

- (1) if a ∈ A is a point of accumulation of A from the right (left), then there is an open interval U in R such that U ⊂ A ∩ (a,∞), (U ⊂ A ∩ (-∞, a)) and a is the left (right) endpoint of U,
- (2) if $a \in A$ is isolated from the right (left) then $\inf\{x \in A; x > a\} \in \operatorname{cl} A \setminus A$ ($\sup\{x \in A; x < a\} \in \operatorname{cl} A \setminus A$) (of course $\inf\{x \in A; x > a\}$ ($\sup\{x \in A; x > a\}$) is equal to a_i for some $i \in \mathbb{N}$),
- (3) if a ∈ R is an accumulation point of cl A \ A from the right (left), then there is the subsequence (a_{nk})[∞]_{k=1} of (a_n)[∞]_{n=1}, such that a_{nk} \ a (a_{nk} / a) (obviously a ∈ cl A \ A).
- (4) if $a \in \mathbb{R}$ is an accumulation point of $\operatorname{cl} A \setminus A$ from the right (left), then int $A \cap (a, a + \delta) \neq \emptyset$ (int $A \cap (a - \delta, a) \neq \emptyset$) for every $\delta > 0$.

We will prove (1). Assume that $a \in A$ is a point of accumulation of A from the right and suppose that there is a sequence $(x_n)_{n=1}^{\infty}$, $x_n \notin A$ for $n \in \mathbb{N}$ with $x_n \searrow a$. Let U_n be a components of $\mathbb{R} \setminus A$ containing x_n . Denote cl $U_n = [t_n, v_n]$ for $n \in \mathbb{N}$. Then $t_n \notin A$ or $v_n \notin A$. Indeed, if $U_n = \{x_n\}$ $(t_n = x_n = v_n)$ then $t_n \notin A$ and $v_n \notin A$. Moreover if U_n is nondegenerate, then since $[t_n, v_n] \cap A$ has the cardinality of continuum for $t_n, v_n \in A$, either $t_n \notin A$ or $v_n \notin A$. Let

$$u_n = \begin{cases} t_n & \text{if } t_n \notin A \\ v_n & \text{if } v_n \notin A \text{ and } t_n \in A \end{cases}$$

for $n \in \mathbb{N}$.

It is evident that $u_n \in \operatorname{cl} A \setminus A$ and $u_n \longrightarrow a$. Because $\operatorname{cl} A \setminus A$ is closed thus $a \notin A$. This contradics our assumption.

For the proof of (2) we need notice that, if $s = \inf\{x \in A; x > a\} \notin cl A \setminus A$, then $s \in A$ and $(x, s) \cap A = \emptyset$ $((s, x) \cap A = \emptyset)$, which is impossible.

We next prove that (3) holds. Let $\delta > 0$ and a be an accumulation point of cl $A \setminus A$ from the right. It is evident that $(cl A \setminus A) \cap [a, a + \delta]$ is nowhere dense and by assumption closed. Let U be the open, connected component of $(a, a + \delta) \setminus (cl A \setminus A)$. Thus the endpoint (left or right) u of U belongs to $(\operatorname{cl} A \setminus A) \cap (a, a + \delta)$ and u is unilaterally isolated of $(\operatorname{cl} A \setminus A)$. Hence $u = a_i$ for some $i \in \mathbb{N}$ and (3) is proved.

To prove (4), by (1) it is sufficient to show that for every $\delta > 0$ there exists an acumulation point $x \in A \cap (a, a + \delta)$ of A. But, it is clear from the cardinality of $A \cap (a, a + \delta)$.

We define d to be $(r_2 + r_1)/2$. Let $f : A \longrightarrow B$ be the function with following properties:

(i) f|U is continuous,

(ii) if a_i is the left (right) endpoint of U for some $i \in \mathbb{N}$, then $K^+(f, a_i) = I$ $(K^-(f, a_i) = I)$,

(*iii*) f(U) = I

for each nondegenerate, connected component U of A. Moreover,

(iv) f(x) = d at each unilaterally isolated point x of A.

By (1) and definition of f we obtain that f is continuous. Observe that, if a_i (i = 1, 2, 3, ...) is not isolated from the left (right) in A, then the cluster set $K^-(f, a_i)$ $(K^+(f, a_i))$ is equal to I.

Let $i \in \mathbb{N}$ be fixed. From *(ii)* the above condition is true for *i*, whenever a_i is the endpoint of some connected component of *A*. So we may assume that a_i is the left hand sided point of accumulation of $cl A \setminus A$. From (3) and (4) follows that for every $\delta > 0$ there exists a nondegenerate conected component *U* of *A* such that $U \subset (a_i - \delta, a_i)$. By the above and *(iii)* our properties is proved.

Let $g \in \mathcal{C}(A, B)$ and $\rho(f, g) < (r_2 - r_1)/4$. We shall show that $g \in \mathcal{D}(A, B)$. Fix $a, b \in A$ such that a < b and $g(a) \neq g(b)$.

Let $c \in I_{[g(a),g(b)]}$. If $a_i \in [a, b]$ for no $i \in \mathbb{N}$, then $[a, b] \subset A$ and g|[a, b] has the Darboux property. Consequently, there exists $t \in [a, b] \cap A$ such that

g(t) = c.

Now we shall consider the oposite case. From now on we make the assumption $a_i \in (a, b)$ for some $i \in \mathbb{N}$. Since $\rho(f, g) < (r_2 - r_1)/4$, it follows that

$$[d - (r_2 - r_1)/4, d + (r_2 - r_1)/4] \subset K^-(f, a_i)$$

or

$$[d - (r_2 - r_1)/4, d + (r_2 - r_1)/4] \subset K^+(f, a_i).$$

Without restriction of generality we can assume that $[d-(r_2-r_1)/4, d+(r_2-r_1)/4] \subset K^-(f, a_i)$. Moreover, assume that $c \in [d-(r_2-r_1)/4, d+(r_2-r_1)/4]$. From the above and (4), there are points $u, v \in [a, b]$ such that $g(u) < d-(r_2-r_1)/4, g(v) > d+(r_2-r_1)/4$ and $[u, v] \subset A$. Since $c \in (g(u), g(v))$, there exists $t \in (u, v)$ such that f(t) = c.

If $c \notin [d - (r_2 - r_1)/4, d + (r_2 - r_1)/4]$ then either g(a) or g(b) is not in $[d - (r_2 - r_1)/4, d + (r_2 - r_1)/4]$. Without loss of generality we can assume that $d + (r_2 - r_1)/4 < c \leq g(a)$. Observe that $a \in int A$. Suppose for a moment that $a \notin int A$. From (1) a is unilaterally isolated of A and from $(iv) g(a) \in (d - (r_2 - r_1)/4, d + (r_2 - r_1)/4)$, which contradicts our assumptions.

Let U be the component of A such that $a \in U$. We will denote by $[u_1, u_2] = \operatorname{cl} U$. Of course $u_2 \in (a, b)$ and either $u_2 \in A$ or $u_2 \notin A$. Assume that $u_2 \notin A$. Obviously, $u_2 = a_j$ for some $j \in \mathbb{N}$.

From (ii) $(d - (r_2 - r_1)/4, d + (r_2 - r_1)/4) \subset K^-(g, u_2)$ and consequently there is $x \in (a, u_2)$ such that f(x) < d. Since $[a, x] \subset A$, $c \in (f(x), f(a))$ and $g \in C(A, B)$, thus g|[a, x] has the Darboux property. By the above, there is $t \in (a, x) \subset (a, b)$ with g(t) = c.

We will consider the last case. Assume that $u_2 \in A$. Then by (1) u_2 is an isolated point of A from the right and *(iv)* implies that $f(u_2) = d$, and finally $g(u_2) \in (d - (r_2 - r_1)/4, d + (r_2 - r_1)/4)$. Therefore $c \in (g(u_1), g(a))$ and $g|[a, u_2]$ has the Darboux property, which completes the proof. 14 ON THE CONTINUOUS (A, B)-DARBOUX FUNCTIONS

References

[1] Grande Z., On the Darboux property of restricted functions, preprint.

PEDAGOGICAL UNIVERSITY INSTITUTE OF MATHEMATICS Chodkiewicza 30 85-064 Bydgoszcz Poland