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1 . Introduction

Studying the behavior of real functions Z. Grandę [1 ] showed that if a 
function /  maps a set A  which is not an interval into a set IR o f all reals then 
the set o f all continuous functions from A  into M  which have not the inter- 
m ediate value property has nonempty interior in the space of all continuous 
real functions defined on A  (with the uniform m etric). The main purpose 
o f this paper is to give a classification in the sense o f the category the sets 
o f all continuous, (.4, i?)-D arbou x  functions in the space o f all continuous 
functions.

Definitions. Let us establish some terminology to be used later. For each 
points a, b £ JR, a ^  b by I(a,b) we mean the interval (m in {a , 6} ,m a x {a , &}). 
Similarly we define the intervals /[a,6], / ( a,6]- We denote by cl A' the closure 
o f X  and int X  the interior o f A'. A set U C JR is called to be an interval 
in the set X  C IR if there exists an interwal I  C IR such that U — I  fi X .  
If A  and B  are nonempty subsets of M  then we said that /  : A  — * B  is 
a (A , i? )-D arbou x  function whenever for any X i,x 2 € A  such that Xi <  .t2 
and f ( x i )  ^  f [ x 2) and for every point c € B  D there exists
x € A  fi ( x i , x 2) such that f ( x )  =  c. Denote by V ( A , B )  ( 4 ^ 1 /  B )
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the family of all (A , R )-D arbou x  functions and by C (A . B)  the family of all 
continuous functions /  : A — * B.  B}' the right (left) hand sided cluster set 
of /  at x  we mean

I\ + ( f , x )  =  { y  e M;  there is a secjuence x n € A, x n \  x  and f ( x n)

(I\~ { f , x )  =  {y  € there is a seąuence x n £ A. x n / "  x and f ( x n)

Let p be defined by the following formuła

p(f-.9 ) =  m in {l, sup \f(x)  -  #(.t)|}.x £  „4

In this chapter of our article we shall explore the subspa.ce o f all (A , B ) -  
Darboux functions in the space C (A , B )  with the metric p.

Rem ark 0.1 If  a nonempty set A is not an internat and the set B  has at 
least tree elements then the set C (A , B)\'D  (A , B ) has the nonempty interior.

Proof. There is a point a 6 M \ A such that ( —o o ,a ) fi A /  0 and 
(a, co ) n  A ^  0. Let b =  (sup A fi ( —oo, a)) and c =  inf( A fi (a. oo )). Let 
2/i <  2/2 <  2/3 be points of the set B. Let /  : A — > B  be continuous function 
such that

f ( x )  =  yi for x  6 A fi ( —oo, 6],
/ ( x )  =  2/3 for x  6 A D [c, oo),

Then for every function g £ C (A , B)  with p ( f , g )  <  6, where 6 =  | m in {y 3 — 
2/2,2/2 — 2/i, 1} 9 cannot be in T> (A , B) .  This completes the proof.

Theorem  0.1 Suppose that A and B  are nonempty, cl A \ A is not closed 
in IR and B is dense in itself, then the set C (A , B )  fi T>( A, B)  is nowhere 
dense in C (A , B ).

Proof. Fix /  belonging to C ( A , B )  and positive r. Since cl A \ A  is not 
closed, there exists a € A which is an accumulation point o f cl A \ A. We can 
find bo,bi (E B  such that:

h €  / ( t o , / ( a ) ) ,

l&o -  f ( a )| <

l&o -  M  <  ^|/o -  / ( « ) |-
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Obviously it is possible, sińce B  is dense in itself. By the continuity o f /  
there is an open interval 1 such that a € /  and |f ( u )  — f ( a )| <  r /4  for each 
ii € I  f) A. W ithout loss of generality we may assume that a is a left hand 
sided accumulation point o f cl A \ A. Choose x , y  € I  fi ( — 00, a) \ A  such 
that x <  y and (x ,y )  D A is nonvoid. We define a function g as follows:

g(u) =

f ( u )  if u € A  fi [( — 00, x ) U (a, 00)]
b0 if u € A n  ( x , y )
f ( a )  if u € A n  (y ,a ]

Evidently g €  C (A , B).  Remark that

l /( « )  ~  9{u)| <  | f{u) -  f ( a )| +  |f{a)  -  g(u)\

<  4 +  \f(a) ~  &o| <  \ +  5 =  t  for every u 6  A n  (x, y),  
| /(u )-y (u )|  <  |/(u) -  f{a)\ <  \ for every u € A n (y ,a),

/(u )  =  g(u) otherwise.

So p(f ,g)  <  3r/4. Let h 6 C (A, B)  be such that p(g, h) <  |̂60 — b\\. This 
ineąuality implies that p(f,  h) <  p(f,g)  +  p(g,h) <  3r/4 +  |60 — /(a )  1/4 <  
3r/4 +  r/S <  r.

Now remark that h cannot be (A, 5)-Darboux function. Notice, that 
&i € I{h(a)MA) f °r every Ł‘ € (x,y)HA.  For the proof of above we can «issume 
that f(a) <  bi <  bo- If oposite ineąualities hołd, then the proof is simillar. 
Fix v € (x,y)  H A. By definition of h follows that |/i(v) — y(u)| <  (bo — h ) /2 .  
Thus we obtain that

(b1 - b 0) / 2 <  h ( v ) - g ( v )  =  h(v) -  bo 
bi/2 +  6i / 2  <  6i / 2  +  6q/ 2  < h ( v )

and conseąuently b\ <  h(v). Moreover, from definitions of 60, &i and h 
follows:

|g(a) -h(a)\  <  (60 -  &i) /2

g ( a ) - h ( a )  >  (bx - b o ) / 2

—h(a) >  b \ / 2  — b o / 2  — f(a)

h(a) <  b o / 2  +  f(a) — 6 , /2  < 6 , /2  — f(a) — b \ / 2  =  f(a) <  b^.
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Consecjuently bi € I(h(a).h(r)) f ° r every r  € ( x , y )  Pi A.
N otice that /?(/) =  for no t € A  fi (y ,a) .  Suppose that h(t)  =  bi for 

som e t € { y ,a )  D A.  Then \h(t) — g(t)\ =  |ói — f(a)\ >  2\b0 — This 
contradics our assumption that p ( h , g ) <  |60 — |0|/2. The proof is finished.

T h e o r e m  0 .2  I f  there exist a,b  € A such that a <  b and [a, b]C\ A is o f  the 
cardinality smaller than continuum and B  is nonempty dense in itself then 
the set C (A , B J f l P  (A . B ) is noiuhere dense in C ( A, B ).

P r o o f .  Let /  be a fixed function from the class C { A , B )  and r >  0. 
Because there exist a, b € A, such that a <  b and [a, i] D A  has the cardinality 
smaller than continuum thus ]R \ f([a , 6] fi A ) is dense in IR. We shall consider 
two cases.

( A )  ( a J ) f l A / 0 ,

(B )  (a , 6) fi A =  0.

( A )  Let Xo €  (a, b) fi A be a fixed point. Now select yi, y2 € B  such that: 

yi and yi are different than f ( a )  and f {b) ,

m a x{| /(x 0 ~  2/i I, \f(x0) ~  2/2I} <  r /4 ,

2/2 € hf(b),yi)- 

Let Ub be an interval in A such that

• b is the right end point of Ub,

• the left end point of Ub belongs to the set (ar0, b) \ A,

• 1/00  -  / ( O l  <  I2/2 -  / ( O l / 2 for every x  €  Ub n  a .

Let Ua be an interval in A such that a is the left end point o f Ua and the
right end point of Ua is a element of the set (a ,x 0) \ A. Because [a, b] fi A
has the cardinality smaller than continuum we can choose the points r l5 r2 ^ 
/ ( [ a ,  b] D A ) with the following conditions:

f(xo),yi ,V2 G (ri,r2), 
|r2 ~ r i  \ <  r /2 .
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Define U as
U =  / _ 1 ([ri- r2]) D (a, b) \ [Ua U Ub],

and let us put
f  \  !  y i  f o r  x  £  f/T

9(x)  {  f ( x )  for x e A \ U

Remark that g is from the class C (A,  B) ,  but g cannot be in T> (A,  B) .  Indeed,
y2 € B  is between g ( x o) =  yi ,g{b)  =  f ( b )  and moreover g(u)  ^  y2 for every
u € (.To, b). Let

6 =  ^m m {\y 1 - y 2\,y2 - r 1 , r 2 - y 2^ \ y 2 - f ( b ) \ } .  ■ ( 1 )

We shall show that p ( / ,  h) <  r for every function h € C (A,  B )  with p ( h , g )  <  
6 and

{ h € C ( A , B ) - , p { h , g )  <  6 } f ) V { A , B )  =  0. (2)

Let h (E C (A,  B ) be such that p { h , g )  <  6 and i  6  A  be a fixed point. If 
x U then f ( x )  =  g(x )  and consequently | /(x) — h(x)\ <  6 <  r. Assume 
that x  (E U. Then we obtain the following chain of ineąualieties:

| /(t )  -  h ( x )| <  | /(t )  -  flr(x)| +  \g(x) -  /i(t)|
T 1

< r2 — Tj +  <5 <  -  +  -\yi — y2|

<  7, +  ^ (b i  -  /(*o)|  +  \f(x o) ~  ya|) <  £ +  ^ =  r.

Next observe that
/i([to, 6]) fi (y2 — 6, y2 +  6) =  0 (3)

Indeed, if x € U then |<?(t) — y21 <  \g{x) — h(x)\ +  |/i(x) — y21 and we conclude
that

\ h { x ) - y 2\ >  -  y2\ -  |y(ar) -  h(x)\ =
=  \ y i - y 2\ - \ g ( x ) - h { x ) \ > 2 8 - 8  ■= 8.

If x  <E [x0 — b) \ U , then either x € Ub or f ( x )  $  [rj, r2].
Assume that x € Ub. By definitions o f Ub |f ( x )  — y2\ >  \f(b) — j/2|/2 >  26

and notice that

\ h ( x ) - y 2\ >  \g(x) -  y2\-  |y(x) ~  h{x)\ =

= I/(t) - 2/21 - - K x )\ > 2 6 - 6  =  6.
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Let x  € (.To,b) be such that f ( x )  £  [ri.r2]. Since f ( x )  =  g ( x )  and y2 € 
( t i , r2), thus |<7(x) — y2\ >  min{y2 — ri ,r2 — y2} >  26 and finally

Ih{x)  -  y21 >  -  y2\ -  |$(x) -  ń(x)| > 2 6 - 6  =  6

It is easily seen that y2 € I[h[x0)Mi>)] anc  ̂ fr°m (3) we conclude that (2 ) holds. 
So the proof is com plete in the case (A ).

(B ) Assume that (a, b) Cl A — 0. Let V  C IR be a connected com ponent 
o f A  such that b € V.  Then V  is a nondegenerate interval or V  =  { 6}.

(i) Assume that V  is nondegenerate.
By the continuity o f /  there exists the maximal interval W  in M  such that 
W  C  V , b is the left end point of W  and f { W )  C [ f (b)  — r /4 , f ( b )  +  r /4 ]. O f
course f ( W )  C B  is an interval. Choose points bi,b2 € B , xo € c\W, bi €
I(b2j(a)) such that either:

(a ) b i,b2 €  f ( W )  and f ( x 0) =  b2 , if f ( W )  is nondegenerate 

or

(b )  bi,b2 € (/(& ) — r /4 , /(& ) +  r /4 )  and x 0 =  sup W , otherwise.

Let us put

/ \ ̂ 2 for x  € [6, x 0] Cl A
\ f ( x ) ôr x  € [(—oo,a ] U (x0, oo)] D A

Then p (g , / )  <  r f 2 and g € C (A , B) .  Notice that h € V  (A,  B ) for no func
tion which p ( h , g ) <  min{|&i — f(a)\, \b2 — 6j|} <  r /2 . It follows immediately 
from  the fact that bx € I(h(a)M*>)) an<  ̂are not P°ints ° f  between a and b. Thus 
the proof is finished in this case.

(ii) Now we shall consider the case when {b }  is connected com ponent o f A. 
First assume that b is an isolated point o f A. Let 6i , 62 € B  fi ( f ( b ) — 
r /4 ,  f(b)  +  r /4 ) ,  €  /(/(« )* )■  Define
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Then g G C ( A . B ) .  Notice that every function h G C ( A . B )  with p ( h . g )  <  
m in {| /(o ) — 6i|, |6X — 62|} is equal to 61 for no points of [a, 6] fi A and 
b\ ^ I(h(a).h(b))- Thus h 0  V ( A , B ) .  Obviously p ( h , f )  <  r.

Now assume that b is an accumulation point o f A and { b} is the connected 
com ponent of A.  Then there is an interwal IT in A  such that |f ( x )  — f ( b )| <  
r /4  for each x  € W  and b is a left endpoint o f IT. Choose a\.a2 G W  \ 
A. ( g i .q 2) n , 4 / i  and &i, 62,63 6 B  fi (/(& ) — r /4 ,/(& ) +  r /4 )  such that 
h  € hh-h)-

( f ( x ) for x  G A \ (a, a2)
g(x )  =  < b2 for i €  (fli,fl2) n 4

[ 63 for x  G (a, a2) fi A

It is easy to see that g G C ( A , B ) .  Then every function h G C (A,  B )  with 
p ( h , g )  <  m in {\b2 — 611, |6j — 63|} is equal to b1 for no points o f [6, u] fi A  
and b\ G I(h(b),h(u))i where u G (a j ,a 2) fi A. Moreover p ( h , f )  <  r. Thus 
h T>(A,B) .  This completes the proof.

Theorem  0.3 If  A  ^  0 is not an interoal, B  is a nonnoid dense in itself 
set which contains no interoal then C (A . B ) C\ T> (A , B ) is nowhere dense in 
C (A . B ).

Proof. By theorems 0.1 and 0.2 we can assume that cl A\ A  is closed and 
for all a,b  G A  with a <  b the set [a, b] fi A  has the cardinality continuum. Fix
a function /  G C (A . B ) and r >  0. Since the continuous image of connected
set is conected we conclude that /  must be constant on every connected 
com ponent of A.  Let U ^  V  be components of A  such that sup U <  inf V .

Denote f ( U ) =  {rr} and f ( V )  =  {r>}. Let &i,62, 63 G B  be such that 
b2 <E -̂ (61.63)5 max{|fei — u|, 162—u|} <  r /4  and |63-u| <  r /4 . Choose j/i, y2 £  B  
such that u ,b i,b 2 G I(yuy2) and \y2 — j/i| <  r /2 . Let Gj G [sup U, inf V] \ A  be 
such that:

SUp v]c\aI ^  r /4  

and choose g2 >  sup U, a2 ^  a i, which fulfill conditions:

a2 A
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osc[illfr.(12] /  <  7-/4 

(a2 may be eąual to oc if V' is noboundecl). Let g be define as:

( bi for x e  A  n  ( - o c . a ! )  n / _1 ( / (yi,y2))
g{x )  =  < b3 for . r € A D ( a 1 ,a 2)

[ f ( x )  otherw ise.

Since /  € C (A , B ), each set A fi ( — oc, tą) Pi / -1 ( / ( Vliy2)) and x € A  fi (a j.  a2) 
is both open end closed in A we have that g is continuous. M oreover. it is 
easy to see that p(g.  f ) <  r /2 . Notice that for every /i € C (A , i?) with

<  min{|6! -  62|, \b3 -  ó2|, |t/i -  &2|, \y2 -  b2\] =  6

h(x)  is not eąual to b2 for no points o f interwal [xu, x v] and b2 £ ^(/(xu),/(x„))5 
where x u €  U and ar  6  V .  Since b2 €  /(A(xu)./i(x„)), the result is

{/i € C (A , B ); /9 (/i, r̂) <  <5} C {h  € C (A , B ); p { h , f )  <  r }

and
{h e C { A , B ) \  p {h , g )  <  S } D V { A , B )  =  0.

The proof is finished.

R em ark 0.2 I f  A . B  C JR are nońempty and B  contains an isolated point 
then the set C (A , B ) fi V  (A , B ) has nonempty interior.

Proof. Let b € B  be isolated in 5 ,  r =  m in {l, d ist(R ) \ { 6} ,  &)} and 
/  : A — > B  be constant and eąual to b. Then for every function /  : A  — > B  
with p (g , f )  < r  we have <? =  / .

T heorem  0.4 If a nonempty set A is such that the set cl A \ A is closed
and fo r  each points a ,b  € A, a <  b, the set [a, b\ fi A has the cardinality
continuum, and moreouer, the set B  contains nondegenerate interual then the 
set C (A , B )  fi T> (A , B ) has nonempty interior in C (A , B ).

Proof. If A is closed then A is an interwal and C (A , B )  CD  (A ,B )- So 
we may assume that cl A \ A /  0. Let (g i, a2, . . . ,  an. . . . ) ,  where a, ^  for 
2 7̂  ji  L J — 1,2, 3 , . . .  be a seąuence (frnite or not) of all unilaterally isolated 
points o f the set cl A \ A. Let I  =  [rl 5r2] C B  be a nondegenerate com pact 
interval. W e shall show that A has the following properties:
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( 1 ) if a € A is a point of accumulation of A from the right (left). then there is
an open interval U in IR such that U C A n (c t .o o ) . (U  C A f i (  — o c .a ))  
and a is the left (right) endpoint of U.

(2 )  if o € A is isolated from the right (le ft) then in f{x  € .4; x > a) £ cl A \ A
(su p {x  €  .4: x < o }  € cl A \ .4) (of course in f{x  € .4; x > a } (su p {x  £
.4; x  >  a } )  is equal to a,- for sonie ?’ £ A '),

(3 ) if a £ IR is an accumulation point of cl A \ A  from the right (left), then
there is the subsequence (flnk)ti=i ° f  (an)£Tii such that ank \  a (ank f  
a) (obviously a £ cl A \ A ).

(4) if a £ IR is an accumulation point of cl A \ A from the right (left), then
int A D (a. a +  6) ^  0 (int A fi (o — 6. a) ^  0) for every ó >  0.

W e will prove ( 1 ). Assume that a € A is a point of accumulation o f A 
from the right and suppose that there is a sequence (x„)%L1, x n A  for 
n £ A r with x n \  a. Let Un be a components o f IR \ A  containing x n.
Denote cl Un =  for n £ AL Then t„ £  A  or vn $  A.  Indeed, if
Un =  { x n} { tn =  x n — vn) then tn & A and vn £  A.  Moreover if Un is 
nondegenerate. then sińce r„] D A has the cardinality o f continuum for 

, vn £  A , either tn 0  A or vn A. Let

un —
if tn # A 
if v„ £  A and tn € A

for n £  A ’ .
It is evident that un € cl A \ A and un — ♦ a. Because cl A \ A is closed 

thus a £  A.  This contradics our assumption.

For the proof o f (2) we need notice that, if s =  in f{x  € A; x >  a } 
cl A \ A , then .s € A and (x , s) fi A =  0 ((s, x ) fi A =  0), which is impossible.

We next prove that (3 ) holds. Let 6 > 0 and a be an accumulation point 
o f cl A \ A from  the right. It is evident that (cl A \ A) fi [o, a 4- 6] is nowhere 
dense and by assumption closed. Let U be the open, connected com ponent 
o f (a, a +  <$) \ (cl A \ A ). Thus the endpoint (left or right) u o f U belongs to



12 O n t h e  c o n t i n u o u s  ( A .  B ) - D a r b o u x  f u n c t i o n s

(c.1 A \ A)  fi (a, a +  S) and u is unilaterally isolated o f (cl A \ A) .  Hence u =  a, 
for sorae i € IV and (3 ) is proved.

To prove (4 ) ,  by ( 1 ) it is sufficient to show that for every 6 >  0 there 
exists an acumulation point x  £ A D  (a. a +  I )  of A. But, it is elear from the 
cardinality of A  Pi (a. a +  6 ).

W e define d to be (r2 +  r\)/~- Let f  : A  — ► B  be the function with 
following properties:

( 0  f\U  is continuous,

(ii) if a, is the left (right) endpoint of U for some i £ IV, then I\ + ( / ,  a ,) =  I
( K~  ( / - a . )  =  I ) ,

( « 0  f ( U )  =  I

for each nondegenerate, connected component U o f A.
Moreover,

( iv) f ( x )  =  d at each unilaterally isolated point x  o f A.

By ( 1 ) and definition of /  we obtain that /  is continuous. Observe that, if 
a,- (i =  1 ,2 ,3 , . . . )  is not isolated from the left (right) in A, then the cluster 
set K ~  ( / ,  a,-) (I\ + ( / ,  o,-)) is eąual to I.

Let i € IV be fixed. From (ii) the above condition is true for i, whenever
a,- is the endpoint of some connected component o f A. So we may assume 
that a{ is the left hand sided point of accumulation of cl A \ A. From (3 ) 
and (4 )  follows that for every <5 >  0 there exists a nondegenerate conected 
com ponent U o f A such that U C [a, — I, Oj). By the above and (iii) our 
properties is proved.

Let g € C ( A , B )  and p ( f , g )  <  (r2 — t t ) /4 . We shall show that g £
T> ( A , B ) .  Fix a, 6 £ A such that a <  b and g(a)  ^  g(b).

Let c £ I[g(a),g(b)]- If ai ^ for no i £ IV, then [a, 6] C A and g|[a,6] 
has the Darboux property. Conseąuently, there exists t £ [a, b] fi A  such that
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g{t )  =  c.

Now we shall consider the oposite case. From now on we make the as- 
sum ption a, € (aJ>) for some i € IN. Since p ( f , g )  <  (r2 — ? t ) /4 .  it follows 
that

[d -  (r 2 -  r j ) /4 ,< /- f  (r2 -  rx)/4 ] C A '-  ( / , « » )

or
[d -  (r2 -  n ) /4 ,r f  +  (r2 -  )/4 ] C A '+ ( / , o t).

W ithout restriction of generality we can assume that [d— (r2 — r i ) /4 , d +  (r2 — 
?'i)/4 ] C A ~  ( / , a,-). Moreover, assume that c £ [d— (r2 — r r ) /4 ,d + ( r 2 — rr )/4 ]. 
From the above and (4 ) , there are points u, v  £ [a,b] such that g(u)  <  
d — (r 2 — c 1 ) /4 , g(v)  >  d +  (r2 — rj ) /4  and [?z, u] C A. Since c € (g (u ), g(v) ) ,  
there exists t € ( o . r )  such that /(< ) =  c.

If c £  [d — (r 2 — ?’i ) /4 ,d  +  (r2 — rr)/4 ] then either </(a) or </(&) is not in 
[d — (r2 — ri)/A,d -f (r 2 — rr)/4 ]. W ithout loss o f generality we can assume 
that d -)- (r 2 — r x)/4  <  c <  g(a) .  Observe that a £  int A. Suppose for a 
m om ent that a 0  int A. From ( 1 ) a is unilaterally isolated o f A and from 
(iw) g{a)  £ (d —(r2 —»r ) /4 , d + ( r 2 —r r ) /4), which contradicts our assumptions.

Let U be the com ponent o f A such that a £ CA We will denote by 
[t*i,u2] =  cl U. O f course u2 £ (a, b) and either u2 £ A or u2 ^  A. Assume 
that u2 £  A.  Obviously, u2 =  aj for some j  £ ZV.
From (ii) (d — (r 2 — 7r ) / 4 ,d  +  (r2 — t t ) /4 )  C A '-  { g , u2) and conseąuently 
there is z  £ (0 , 1*2) such that / ( z )  <  d. Since [a, z] C A , c € ( / ( z ) , / ( a ) )  and 
g €  C (A , B) ,  thus #|[a,z] has the Darboux property. By the above, there is 
t £ (a, z ) C (a, b) with g(t)  =  c.

W e will consider the last case. Assume that u2 £ A. Then by (1) u2 is 
an isolated point o f A from the right and (iv) implies that f ( u 2) =  d, and 
finally g ( u2) £ (d -  (r 2 -  r r ) /4 ,d  +  (r2 -  r r ) /4 ) . Therefore c £ ( g (ui ) , g (a) )  
and <7|[a,ii2] has the Darboux property, which completes the proof.
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