On the continuous (A, B)-Darboux functions

Dariusz Banaszewski

1. Introduction

Studying the behavior of real functions Z. Grande [1] showed that if a function f maps a set A which is not an interval into a set \mathbb{R} of all reals then the set of all continuous functions from A into \mathbb{R} which have not the intermediate value property has nonempty interior in the space of all continuous real functions defined on A (with the uniform metric). The main purpose of this paper is to give a classification in the sense of the category the sets of all continuous, (A, B)-Darboux functions in the space of all continuous functions.

Definitions. Let us establish some terminology to be used later. For each points $a, b \in \mathbb{R}, a \neq b$ by $I_{(a, b)}$ we mean the interval ($\min \{a, b\}, \max \{a, b\}$). Similarly we define the intervals $I_{[a, b]}, I_{(a, b]}$. We denote by cl X the closure of X and int X the interior of X. A set $U \subset \mathbb{R}$ is called to be an interval in the set $X \subset \mathbb{R}$ if there exists an interval $I \subset \mathbb{R}$ such that $U=I \cap X$. If A and B are nonempty subsets of \mathbb{R} then we said that $f: A \longrightarrow B$ is a (A, B)-Darboux function whenever for any $x_{1}, x_{2} \in A$ such that $x_{1}<x_{2}$ and $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ and for every point $c \in B \cap I_{\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)}$ there exists $x \in A \cap\left(x_{1}, x_{2}\right)$ such that $f(x)=c$. Denote by $\mathcal{D}(A, B)(A \neq \emptyset \neq B)$.
the family of all (A, B)-Darboux functions and by $\mathcal{C}(A, B)$ the family of all continuous functions $f: A \longrightarrow B$. By the right (lefi) hand sided cluster set of f at x we mean
$K^{+}(f, x)=\left\{y \in \mathbb{R} ;\right.$ there is a sequence $x_{n} \in A, x_{n} \searrow x$ and $\left.f\left(x_{n}\right) \rightarrow y\right\}$
$\left(K^{-}(f, x)=\left\{y \in \mathbb{R} ;\right.\right.$ there is a sequence $x_{n} \in A . x_{n} \nearrow x$ and $\left.\left.f\left(x_{n}\right) \rightarrow y\right\}\right)$
Let ρ be defined by the following formula

$$
\rho(f, g)=\min \left\{1, \sup _{x \in A}|f(x)-g(x)|\right\} .
$$

In this chapter of our article we shall explore the subspace of all $(A, B)-$ Darboux functions in the space $\mathcal{C}(A, B)$ with the metric ρ.

Remark 0.1 If a nonempty set A is not an interval and the set B has at least tree elements then the set $\mathcal{C}(A, B) \backslash \mathcal{D}(A, B)$ has the nonempty interior.

Proof. There is a point $a \in \mathbb{R} \backslash A$ such that $(-\infty, a) \cap A \neq \emptyset$ and $(a, \infty) \cap A \neq \emptyset$. Let $b=(\sup A \cap(-\infty, a))$ and $c=\inf (A \cap(a, \infty))$. Let $y_{1}<y_{2}<y_{3}$ be points of the set B. Let $f: A \longrightarrow B$ be continuous function such that

$$
f(x)=\left\{\begin{array}{lll}
f(x)=y_{1} & \text { for } & x \in A \cap(-\infty, b], \\
f(x)=y_{3} & \text { for } & x \in A \cap[c, \infty),
\end{array}\right.
$$

Then for every function $g \in \mathcal{C}(A, B)$ with $\rho(f, g)<\delta$, where $\delta=\frac{1}{2} \min \left\{y_{3}-\right.$ $\left.y_{2}, y_{2}-y_{1}, 1\right\} g$ cannot be in $\mathcal{D}(A, B)$. This completes the proof.

Theorem 0.1 Suppose that A and B are nonempty, $\mathrm{cl} A \backslash A$ is not closed in \mathbb{R} and B is dense in itself, then the set $\mathcal{C}(A, B) \cap \mathcal{D}(A, B)$ is nowhere dense in $\mathcal{C}(A, B)$.

Proof. Fix f belonging to $\mathcal{C}(A, B)$ and positive r. Since $c l A \backslash A$ is not closed, there exists $a \in A$ which is an accumulation point of $\operatorname{cl} A \backslash A$. We can find $b_{0}, b_{1} \in B$ such that:

$$
\begin{aligned}
& b_{1} \in I_{\left(b_{0}, f(a)\right)}, \\
& \left|b_{0}-f(a)\right|<\frac{r}{2}, \\
& \left|b_{0}-b_{1}\right|<\frac{1}{2}\left|b_{0}-f(a)\right| .
\end{aligned}
$$

Obviously it is possible, since B is dense in itself. By the continuity of f there is an open interval I such that $a \in I$ and $|f(u)-f(a)|<r / 4$ for each $u \in I \cap A$. Without loss of generality we may assume that a is a left hand sided accumulation point of $\mathrm{cl} A \backslash A$. Choose $x, y \in I \cap(-\infty, a) \backslash A$ such that $x<y$ and $(x, y) \cap A$ is nonvoid. We define a function g as follows:

$$
g(u)=\left\{\begin{array}{lll}
f(u) & \text { if } u \in A \cap[(-\infty, x) \cup(a, \infty)] \\
b_{0} & \text { if } u \in A \cap(x, y) \\
f(a) & \text { if } u \in A \cap(y, a]
\end{array} .\right.
$$

Evidently $g \in \mathcal{C}(A, B)$. Remark that

$$
\begin{array}{rcll}
|f(u)-g(u)| & \leq|f(u)-f(a)|+|f(a)-g(u)| & \\
& <\frac{r}{4}+\left|f(a)-b_{0}\right|<\frac{r}{4}+\frac{r}{2}=\frac{3 r}{4} & \text { for every } u \in A \cap(x, y), \\
|f(u)-g(u)| & <|f(u)-f(a)|<\frac{r}{4} & \text { for every } u \in A \cap(y, a), \\
f(u) & =g(u) & \text { otherwise. }
\end{array}
$$

So $\rho(f, g) \leq 3 r / 4$. Let $h \in \mathcal{C}(A, B)$ be such that $\rho(g, h)<\frac{1}{2}\left|b_{0}-b_{1}\right|$. This inequality implies that $\rho(f, h) \leq \rho(f, g)+\rho(g, h) \leq 3 r / 4+\left|b_{0}-f(a)\right| / 4<$ $3 r / 4+r / 8<r$.

Now remark that h cannot be (A, B)-Darboux function. Notice, that $b_{1} \in I_{(h(a), h(v))}$ for every $v \in(x, y) \cap A$. For the proof of above we can assume that $f(a)<b_{1}<b_{0}$. If oposite inequalities hold, then the proof is simillar. Fix $v \in(x, y) \cap A$. By definition of h follows that $|h(v)-g(v)|<\left(b_{0}-b_{1}\right) / 2$. Thus we obtain that

$$
\left.\begin{array}{rl}
\left(b_{1}-b_{0}\right) / 2 & <h(v)-g(v) \\
b_{1} / 2+b_{1} / 2 & <b_{1} / 2+b_{0} / 2
\end{array}\right)-h(v)-b_{0}, ~ \$
$$

and consequently $b_{1}<h(v)$. Moreover, from definitions of b_{0}, b_{1} and h follows:

$$
\begin{aligned}
|g(a)-h(a)| & <\left(b_{0}-b_{1}\right) / 2 \\
g(a)-h(a) & >\left(b_{1}-b_{0}\right) / 2 \\
-h(a) & >b_{1} / 2-b_{0} / 2-f(a) \\
h(a) & <b_{0} / 2+f(a)-b_{1} / 2<b_{1} / 2-f(a)-b_{1} / 2=f(a)<b_{1} .
\end{aligned}
$$

Consequently $b_{1} \in I_{(h(a) . h(v))}$ for every $v \in(x, y) \cap A$.
Notice that $h(t)=b_{1}$ for no $t \in A \cap(y, a)$. Suppose that $h(t)=b_{1}$ for some $t \in(y, a) \cap A$. Then $|h(t)-g(t)|=\left|b_{1}-f(a)\right|>2\left|b_{0}-b_{1}\right|$. This contradics our assumption that $\rho(h, g)<\left|b_{0}-\left|b_{1}\right| / 2\right.$. The proof is finished.

Theorem 0.2 If there exist $a, b \in A$ such that $a<b$ and $[a, b] \cap A$ is of the cardinality smaller than continuum and B is nonempty dense in itself then the stt $\mathcal{C}(A, B) \cap \mathcal{D}(A, B)$ is nowhere dense in $\mathcal{C}(A, B)$.

Proof. Let f be a fixed function from the class $\mathcal{C}(A, B)$ and $r>0$. Because there exist $a, b \in A$, such that $a<b$ and $[a, b] \cap A$ has the cardinality smaller than continuum thus $\mathbb{R} \backslash f([a, b] \cap A)$ is dense in \mathbb{R}. We shall consider two cases.
(A) $(a, b) \cap A \neq \emptyset$,
(B) $(a, b) \cap A=\emptyset$.
(A) Let $x_{0} \in(a, b) \cap A$ be a fixed point. Now select $y_{1}, y_{2} \in B$ such that:
y_{1} and y_{2} are different than $f(a)$ and $f(b)$,

$$
\begin{gathered}
\max \left\{\mid f\left(x_{0}-y_{1}\left|,\left|f\left(x_{0}\right)-y_{2}\right|\right\}<r / 4\right.\right. \\
y_{2} \in I_{\left(f(b), y_{1}\right)} .
\end{gathered}
$$

Let U_{b} be an interval in A such that

- b is the right end point of U_{b},
- the left end point of U_{b} belongs to the set $\left(x_{0}, b\right) \backslash A$,
- $|f(x)-f(b)|<\left|y_{2}-f(b)\right| / 2$ for every $x \in U_{b} \cap A$.

Let U_{a} be an interval in A such that a is the left end point of U_{a} and the right end point of U_{a} is a element of the set $\left(a, x_{0}\right) \backslash A$. Because $[a, b] \cap A$ has the cardinality smaller than continuum we can choose the points $r_{1}, r_{2} \notin$ $f([a, b] \cap A)$ with the following conditions:

$$
\begin{aligned}
& f\left(x_{0}\right), y_{1}, y_{2} \in\left(r_{1}, r_{2}\right), \\
& \left|r_{2}-r_{1}\right|<r / 2
\end{aligned}
$$

Define U as

$$
U=f^{-1}\left(\left[r_{1}, r_{2}\right]\right) \cap(a, b) \backslash\left[U_{a} \cup U_{b}\right]
$$

and let us put

$$
g(x)=\left\{\begin{array}{lll}
y_{1} & \text { for } & x \in U \\
f(x) & \text { for } & x \in A \backslash U
\end{array}\right.
$$

Remark that g is from the class $\mathcal{C}(A, B)$, but g cannot be in $\mathcal{D}(A, B)$. Indeed, $y_{2} \in B$ is between $g\left(x_{0}\right)=y_{1}, g(b)=f(b)$ and moreover $g(u) \neq y_{2}$ for every $u \in\left(x_{0}, b\right)$. Let

$$
\begin{equation*}
\delta=\frac{1}{2} \min \left\{\left|y_{1}-y_{2}\right| \cdot y_{2}-r_{1}, r_{2}-y_{2}, \frac{1}{2}\left|y_{2}-f(b)\right|\right\} \tag{1}
\end{equation*}
$$

We shall show that $\rho(f, h)<r$ for every function $h \in \mathcal{C}(A, B)$ with $\rho(h, g)<$ δ and

$$
\begin{equation*}
\{h \in \mathcal{C}(A, B) ; \rho(h, g)<\delta\} \cap \mathcal{D}(A, B)=\emptyset \tag{2}
\end{equation*}
$$

Let $h \in \mathcal{C}(A, B)$ be such that $\rho(h, g)<\delta$ and $x \in A$ be a fixed point. If $x \notin U$ then $f(x)=g(x)$ and consequently $|f(x)-h(x)|<\delta<r$. Assume that $x \in U$. Then we obtain the following chain of inequalieties:

$$
\begin{aligned}
|f(x)-h(x)| & \leq|f(x)-g(x)|+|g(x)-h(x)| \\
& <r_{2}-r_{1}+\delta<\frac{r}{2}+\frac{1}{2}\left|y_{1}-y_{2}\right| \\
& <\frac{r}{2}+\frac{1}{2}\left(\left|y_{1}-f\left(x_{0}\right)\right|+\left|f\left(x_{0}\right)-y_{2}\right|\right)<\frac{r}{2}+\frac{r}{2}=r .
\end{aligned}
$$

Next observe that

$$
\begin{equation*}
h\left(\left[x_{0}, b\right]\right) \cap\left(y_{2}-\delta, y_{2}+\delta\right)=\emptyset \tag{3}
\end{equation*}
$$

Indeed, if $x \in U$ then $\left|g(x)-y_{2}\right| \leq|g(x)-h(x)|+\left|h(x)-y_{2}\right|$ and we conclude that

$$
\begin{aligned}
\left|h(x)-y_{2}\right| & \geq\left|g(x)-y_{2}\right|-|g(x)-h(x)|= \\
& =\left|y_{1}-y_{2}\right|-|g(x)-h(x)|>2 \delta-\delta=\delta
\end{aligned}
$$

If $x \in\left[x_{0}-b\right] \backslash U$, then either $x \in U_{b}$ or $f(x) \notin\left[r_{1}, r_{2}\right]$.
Assume that $x \in U_{b}$. By definitions of $U_{b}\left|f(x)-y_{2}\right|>\left|f(b)-y_{2}\right| / 2 \geq 2 \delta$ and notice that

$$
\begin{aligned}
\left|h(x)-y_{2}\right| & \geq\left|g(x)-y_{2}\right|-|g(x)-h(x)|= \\
& =\left|f(x)-y_{2}\right|-|g(x)-h(x)|>2 \delta-\delta=\delta
\end{aligned}
$$

Let $x \in\left(x_{0}, b\right)$ be such that $f(x) \notin\left[r_{1}, r_{2}\right]$. Since $f(x)=g(x)$ and $y_{2} \in$ $\left(r_{1}, r_{2}\right)$, thus $\left|g(x)-y_{2}\right|>\min \left\{y_{2}-r_{1}, r_{2}-y_{2}\right\} \geq 2 \delta$ and finally

$$
\left|h(x)-y_{2}\right| \geq\left|g(x)-y_{2}\right|-|g(x)-h(x)|>2 \delta-\delta=\delta
$$

It is easily seen that $y_{2} \in I_{\left[h\left(x_{0}\right), h(6)\right]}$ and from (3) we conclude that (2) holds. So the proof is complete in the case (A).
(B) Assume that $(a, b) \cap A=\emptyset$. Let $V \subset \mathbb{R}$ be a connected component of A such that $b \in V$. Then V is a nondegenerate interval or $V=\{b\}$.
(i) Assume that V is nondegenerate.

By the continuity of f there exists the maximal interval W in \mathbb{R} such that $W \subset V, b$ is the left end point of W and $f(W) \subset[f(b)-r / 4, f(b)+r / 4]$. Of course $f(W) \subset B$ is an interval. Choose points $b_{1}, b_{2} \in B, x_{0} \in \mathrm{cl} W, b_{1} \in$ $I_{\left(b_{2}, f(a)\right)}$ such that either:
(a) $b_{1}, b_{2} \in f(W)$ and $f\left(x_{0}\right)=b_{2}$, if $f(W)$ is nondegenerate
or
(b) $b_{1}, b_{2} \in(f(b)-r / 4, f(b)+r / 4)$ and $x_{0}=\sup W$, otherwise.

Let us put

$$
g(x)=\left\{\begin{array}{lll}
b_{2} & \text { for } & x \in\left[b, x_{0}\right] \cap A \\
f(x) & \text { for } & x \in\left[(-\infty, a] \cup\left(x_{0}, \infty\right)\right] \cap A
\end{array}\right.
$$

Then $\rho(g, f) \leq r / 2$ and $g \in \mathcal{C}(A, B)$. Notice that $h \in \mathcal{D}(A, B)$ for no function which $\rho(h, g)<\min \left\{\left|b_{1}-f(a)\right|,\left|b_{2}-b_{1}\right|\right\}<r / 2$. It follows immediately from the fact that $b_{1} \in I_{(h(a), h(b))}$ and are not points of between a and b. Thus the proof is finished in this case.
(ii) Now we shall consider the case when $\{b\}$ is connected component of A. First assume that b is an isolated point of A. Let $b_{1}, b_{2} \in B \cap(f(b)-$ $r / 4, f(b)+r / 4), b_{1} \in I_{\left(f(a), b_{2}\right)}$. Define

$$
g(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & x \in A \backslash\{b\} \\
b_{2} & \text { for } & x=b
\end{array}\right.
$$

Then $g \in \mathcal{C}(A, B)$. Notice that every function $h \in \mathcal{C}(A . B)$ with $\rho(h . g)<$ $\min \left\{\left|f(a)-b_{1}\right| \cdot\left|b_{1}-b_{2}\right|\right\}$ is equal to b_{1} for no points of $[a, b] \cap A$ and $b_{1} \in I_{(h(a), h(b))}$. Thus $h \notin \mathcal{D}(A, B)$. Obviously $\rho(h, f)<r$.

Now assume that b is an accumulation point of A and $\{b\}$ is the connected component of A. Then there is an interval W in A such that $|f(x)-f(b)|<$ $r / 4$ for each $x \in W$ and b is a left endpoint of W. Choose $a_{1}, a_{2} \in W \backslash$ A. $\left(a_{1}, a_{2}\right) \cap A \neq \emptyset$ and $b_{1}, b_{2}, b_{3} \in B \cap(f(b)-r / 4, f(b)+r / 4)$ such that $b_{1} \in I_{\left(b_{2}, b_{3}\right)}$. Put

$$
g(x)=\left\{\begin{array}{lll}
f(x) & \text { for } & x \in A \backslash\left(a, a_{2}\right) \\
b_{2} & \text { for } & x \in\left(a_{1}, a_{2}\right) \cap A \\
b_{3} & \text { for } & x \in\left(a, a_{2}\right) \cap A
\end{array}\right.
$$

It is easy to see that $g \in \mathcal{C}(A, B)$. Then every function $h \in \mathcal{C}(A, B)$ with $\rho(h, g)<\min \left\{\left|b_{2}-b_{1}\right|,\left|b_{1}-b_{3}\right|\right\}$ is equal to b_{1} for no points of $[b, u] \cap A$ and $b_{1} \in I_{(h(b), h(u))}$, where $u \in\left(a_{1}, a_{2}\right) \cap A$. Moreover $\rho(h, f)<r$. Thus $h \notin \mathcal{D}(A, B)$. This completes the proof.

Theorem 0.3 If $A \neq \emptyset$ is not an interval, B is a nonvoid dense in itself set which contains no interval then $\mathcal{C}(A, B) \cap \mathcal{D}(A, B)$ is nowhere dense in $\mathcal{C}(A, B)$.

Proof. By theorems 0.1 and 0.2 we can assume that $\operatorname{cl} A \backslash A$ is closed and for all $a, b \in A$ with $a<b$ the set $[a, b] \cap A$ has the cardinality continuum. Fix a function $f \in \mathcal{C}(A, B)$ and $r>0$. Since the continuous image of connected set is conected we conclude that f must be constant on every connected component of A. Let $U \neq V$ be components of A such that $\sup U \leq \inf V$.

Denote $f(U)=\{u\}$ and $f(V)=\{v\}$. Let $b_{1}, b_{2}, b_{3} \in B$ be such that $b_{2} \in I_{\left(b_{1}, b_{3}\right)}, \max \left\{\left|b_{1}-u\right|,\left|b_{2}-u\right|\right\}<r / 4$ and $\left|b_{3}-v\right|<r / 4$. Choose $y_{1}, y_{2} \notin B$ such that $u, b_{1}, b_{2} \in I_{\left(y_{1}, y_{2}\right)}$ and $\left|y_{2}-y_{1}\right|<r / 2$. Let $a_{1} \in[\sup U, \inf V] \backslash A$ be such that:

$$
\operatorname{osc}_{\left[a_{1}, \sup V\right] \cap A} f \leq r / 4
$$

and choose $a_{2}>\sup U, a_{2} \neq a_{1}$, which fulfill conditions:

$$
a_{2} \notin A
$$

$$
\operatorname{osc}_{\left[\inf f::_{2}\right]} f<r / 4
$$

(a_{2} may be equal to ∞ if V is nobounded). Let g be define as:

$$
g(x)=\left\{\begin{array}{lll}
b_{1} & \text { for } & x \in A \cap\left(-\infty \cdot a_{1}\right) \cap f^{-1}\left(I_{\left(y_{1}, y_{2}\right)}\right) \\
b_{3} & \text { for } & x \in A \cap\left(a_{1}, a_{2}\right) \\
f(x) & & \text { otherwist } .
\end{array}\right.
$$

Since $f \in \mathcal{C}(A, B)$, each set $A \cap\left(-\infty, a_{1}\right) \cap f^{-1}\left(I_{\left(y_{1}, y_{2}\right)}\right)$ and $x \in A \cap\left(a_{1}, a_{2}\right)$ is both open end closed in A we have that g is continuous. Moreover, it is easy to see that $\rho(g, f)<r / 2$. Notice that for every $h \in \mathcal{C}(A, B)$ with

$$
\rho(h, g)<\min \left\{\left|b_{1}-b_{2}\right|,\left|b_{3}-b_{2}\right|,\left|y_{1}-b_{2}\right|,\left|y_{2}-b_{2}\right|\right\}=\delta
$$

$h(x)$ is not equal to b_{2} for no points of interval $\left[x_{u}, x_{v}\right]$ and $b_{2} \in I_{\left(f\left(x_{u}\right), f\left(x_{v}\right)\right)}$, where $x_{u} \in U$ and $x_{v} \in V$. Since $b_{2} \in I_{\left(h\left(x_{u}\right), h\left(x_{v}\right)\right)}$, the result is

$$
\{h \in \mathcal{C}(A, B) ; \rho(h, g)<\delta\} \subset\{h \in \mathcal{C}(A, B) ; \rho(h, f)<r\}
$$

and

$$
\{h \in \mathcal{C}(A, B) ; \rho(h, g)<\delta\} \cap \mathcal{D}(A, B)=\emptyset .
$$

The proof is finished.
Remark 0.2 If $A, B \subset \mathbb{R}$ are nonempty and B contains an isolated point then the stt $\mathcal{C}(A, B) \cap \mathcal{D}(A, B)$ has nonempty interior.

Proof. Let $b \in B$ be isolated in $B, r=\min \{1, \operatorname{dist}(B) \backslash\{b\}, b)\}$ and $f: A \longrightarrow B$ be constant and equal to b. Then for every function $f: A \longrightarrow B$ with $\rho(g, f)<r$ we have $g=f$.

Theorem 0.4 If a nonempty sei A is such that the set $\operatorname{cl} A \backslash A$ is closed and for each points $a, b \in A, a<b$, the set $[a, b] \cap A$ has the cardinality continuum and moreover, the set B contains nondegenerate interval then the set $\mathcal{C}(A, B) \cap \mathcal{D}(A, B)$ has nonempty interior in $\mathcal{C}(A, B)$.

Proof. If A is closed then A is an interval and $\mathcal{C}(A, B) \subset D(A, B)$. So we may assume that $\mathrm{cl} A \backslash A \neq \emptyset$. Let $\left(a_{1}, a_{2}, \ldots, a_{n} \ldots\right)$, where $a_{i} \neq a_{j}$ for $i \neq j, i, j=1,2,3, \ldots$ be a sequence (finite or not) of all unilaterally isolated points of the set $\operatorname{cl} A \backslash A$. Let $I=\left[r_{1}, r_{2}\right] \subset B$ be a nondegenerate compact interval. We shall show that A has the following properties:
(1) if $a \in A$ is a point of accumulation of A from the right (left). then there is an open interval $\left(\right.$ in \mathbb{R} such that $C^{\bullet} \subset A \cap(a, \infty)$. $(U \subset A \cap(-\infty, a))$ and a is the left (right) endpoint of l.
(2) if $a \in A$ is isolated from the right (left) then $\inf \{x \in A ; x>a\} \in \operatorname{cl} A \backslash A$ $(\sup \{x \in A: x<a\} \in \mathrm{cl} A \backslash A)$ (of course $\inf \{x \in A ; x>a\}$ ($\sup \{x \in$ $A ; x>a\}$) is equal to a_{i} for some $i \in N^{\prime}$).
(3) if $a \in \mathbb{R}$ is an accumulation point of $\mathrm{cl} A \backslash A$ from the right (left), then there is the subsequence $\left(a_{n_{k}}\right)_{k=1}^{\infty}$ of $\left(a_{n}\right)_{n=1}^{\infty}$, such that $a_{n_{k}} \searrow a\left(a_{n_{k}} \nearrow\right.$ a) (obviously $a \in \operatorname{cl} A \backslash A$),
(4) if $a \in \mathbb{R}$ is an accumulation point of $\mathrm{cl} A \backslash A$ from the right (left), then int $A \cap(a . a+\delta) \neq \emptyset$ (int $A \cap(a-\delta, a) \neq \emptyset)$ for every $\delta>0$.

We will prove (1). Assume that $a \in A$ is a point of accumulation of A from the right and suppose that there is a sequence $\left(x_{n}\right)_{n=1}^{\infty}, x_{n} \notin A$ for $n \in N$ with $x_{n} \searrow a$. Let U_{n} be a components of $\mathbb{R} \backslash A$ containing x_{n}. Denote $\mathrm{cl} U_{n}=\left[t_{n}, v_{n}\right]$ for $n \in N$. Then $t_{n} \notin A$ or $v_{n} \notin A$. Indeed, if $U_{n}=\left\{x_{n}\right\}\left(t_{n}=x_{n}=v_{n}\right)$ then $t_{n} \notin A$ and $v_{n} \notin A$. Moreover if U_{n} is nondegenerate. then since $\left[t_{n}, v_{n}\right] \cap A$ has the cardinality of continuum for $t_{n}, v_{n} \in A$, either $t_{n} \notin A$ or $v_{n} \notin A$. Let

$$
u_{n}=\left\{\begin{array}{lll}
t_{n} & \text { if } & t_{n} \notin A \\
v_{n} & \text { if } & v_{n} \notin A \text { and } t_{n} \in A
\end{array}\right.
$$

for $n \in \mathbb{N}$.
It is evident that $u_{n} \in \operatorname{cl} A \backslash A$ and $u_{n} \longrightarrow a$. Because $\mathrm{cl} A \backslash A$ is closed thus $a \notin A$. This contradics our assumption.

For the proof of (2) we need notice that, if $s=\inf \{x \in A ; x>a\} \notin$ $\operatorname{cl} A \backslash A$, then $s \in A$ and $(x, s) \cap A=\emptyset((s, x) \cap A=\emptyset)$, which is impossible.

We next prove that (3) holds. Let $\delta>0$ and a be an accumulation point of $\mathrm{cl} A \backslash A$ from the right. It is evident that $(\mathrm{cl} A \backslash A) \cap[a, a+\delta]$ is nowhere dense and by assumption closed. Let U be the open, connected component of $(a, a+\delta) \backslash(\mathrm{cl} A \backslash A)$. Thus the endpoint (left or right) u of U belongs to
$(\mathrm{cl} A \backslash A) \cap(a, a+\delta)$ and u is unilaterally isolated of $(\operatorname{cl} A \backslash A)$. Hence $u=a_{i}$ for some $i \in N$ and (3) is proved.

To prove (4), by (1) it is sufficient to show that for every $\delta>0$ there exists an acumulation point $x \in A \cap(a . a+\delta)$ of A. But, it is clear from the cardinality of $A \cap(a \cdot a+\delta)$.

We define d to be $\left(r_{2}+r_{1}\right) / 2$. Let $f: A \longrightarrow B$ be the function with following properties:
(i) $f \mid U$ is continuous,
(ii) if a_{i} is the left (right) endpoint of U for some $i \in \mathbb{N}$, then $K^{+}\left(f, a_{i}\right)=I$ $\left(K^{-}\left(f, a_{i}\right)=I\right)$,
(iii) $f(U)=I$
for each nondegenerate, connected component U of A.
Moreover,
(iv) $f(x)=d$ at each unilaterally isolated point x of A.

By (1) and definition of f we obtain that f is continuous. Observe that, if $a_{i}(i=1,2,3, \ldots)$ is not isolated from the left (right) in A, then the cluster set $K^{-}\left(f, a_{i}\right)\left(K^{+}\left(f, a_{i}\right)\right)$ is equal to I.

Let $i \in \mathbb{N}$ be fixed. From (ii) the above condition is true for i, whenever a_{i} is the endpoint of some connected component of A. So we may assume that a_{i} is the left hand sided point of accumulation of $\mathrm{cl} A \backslash A$. From (3) and (4) follows that for every $\delta>0$ there exists a nondegenerate conected component U of A such that $U \subset\left(a_{i}-\delta, a_{i}\right)$. By the above and (iii) our properties is proved.

Let $g \in \mathcal{C}(A, B)$ and $\rho(f, g)<\left(r_{2}-r_{1}\right) / 4$. We shall show that $g \in$ $\mathcal{D}(A, B)$. Fix $a, b \in A$ such that $a<b$ and $g(a) \neq g(b)$.

Let $c \in I_{[g(a), g(b)]}$. If $a_{i} \in[a, b]$ for no $i \in N$, then $[a, b] \subset A$ and $\left.g \| a, b\right]$ has the Darboux property. Consequently, there exists $t \in[a, b] \cap A$ such that
$g(t)=c$.

Now we shall consider the oposite case. From now on we make the assumption $a_{i} \in(a, b)$ for some $i \in \mathbb{N}$. Since $\rho(f, g)<\left(r_{2}-r_{1}\right) / 4$, it follows that

$$
\left[d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right] \subset K^{-}\left(f, a_{i}\right)
$$

or

$$
\left[d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right] \subset K^{+}\left(f, a_{i}\right)
$$

Without restriction of generality we can assume that $\left[d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-\right.\right.$ $\left.\left.r_{1}\right) / 4\right] \subset I^{-}\left(f, a_{i}\right)$. Moreover, assume that $c \in\left[d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right]$. From the above and (4), there are points $u, v \in[a, b]$ such that $g(u)<$ $d-\left(r_{2}-r_{1}\right) / 4, g(v)>d+\left(r_{2}-r_{1}\right) / 4$ and $[u, v] \subset A$. Since $c \in(g(u), g(v))$, there exists $t \in(u, v)$ such that $f(t)=c$.

If $c \notin\left[d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right]$ then either $g(a)$ or $g(b)$ is not in [$\left.d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right]$. Without loss of generality we can assume that $d+\left(r_{2}-r_{1}\right) / 4<c \leq g(a)$. Observe that $a \in \operatorname{int} A$. Suppose for a moment that $a \notin \operatorname{int} A$. From (1) a is unilaterally isolated of A and from (iv) $g(a) \in\left(d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right)$, which contradicts our assumptions.

Let U be the component of A such that $a \in U$. We will denote by $\left[u_{1}, u_{2}\right]=\mathrm{cl} U$. Of course $u_{2} \in(a, b)$ and either $u_{2} \in A$ or $u_{2} \notin A$. Assume that $u_{2} \notin A$. Obviously, $u_{2}=a_{j}$ for some $j \in \mathbb{N}$.
From (ii) $\left(d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right) \subset K^{-}\left(g, u_{2}\right)$ and consequently there is $x \in\left(a, u_{2}\right)$ such that $f(x)<d$. Since $[a, x] \subset A, c \in(f(x), f(a))$ and $g \in \mathcal{C}(A, B)$, thus $g \mid[a, x]$ has the Darboux property. By the above, there is $t \in(a, x) \subset(a, b)$ with $g(t)=c$.

We will consider the last case. Assume that $u_{2} \in A$. Then by (1) u_{2} is an isolated point of A from the right and (iv) implies that $f\left(u_{2}\right)=d$, and finally $g\left(u_{2}\right) \in\left(d-\left(r_{2}-r_{1}\right) / 4, d+\left(r_{2}-r_{1}\right) / 4\right)$. Therefore $c \in\left(g\left(u_{1}\right), g(a)\right)$ and $g \mid\left[a, u_{2}\right]$ has the Darboux property, which completes the proof.

References

[1] Grande Z.. On the Darboux property of restricted functions, preprint.

PEDAGOGICAL [`NIVERSITY

Institute of Mathematics
Chodkiewicza 30
85-064 Bydgoszcz
Poland

