Problemy Matematyczne 12 (1991), 9–15

On Cartesian Products and Diagonals of Quasi-continuous and Cliquish maps

Tomasz Natkaniec

1. Let two classes of topological spaces $\{X_s\}$, $\{Y_s\}$ and a class of functions $\{f_s\}$, where $f_s : X_s \longrightarrow Y_s$, be given. The transformation associating to each point $x = \{x_s\} \in \prod_s X_s$ the point $\{f_s(x_s)\} \in \prod_s Y_s$ is called the Cartesian product of functions $\{f_s\}$ and is denoted by the symbol $\prod_s f_s$.

For a class of functions $\{f_s\}$, $f_s : X \longrightarrow Y_s$, where X is also a topological space, the transformation associating to each point $x \in X$ the point $\{f_s(x)\} \in \prod_s Y_s$ is called the diagonal of functions $\{f_s\}$ and is denoted by Δf_s . (See e.g. [2], pp. 108-109)

Let Y be a topological space, as well. We say that a function $f: X \longrightarrow Y$ is quasi-continuous at a point $x_0 \in X$ iff for each open neighbourhood U of the point x_0 and for every open neighbourhood V of the point $f(x_0), U \cap \operatorname{int} f^{-1}(V)$ is non-empty (i.e. $x_0 \in \operatorname{int} f^{-1}(V)$). A function is quasi-continuous if it is so at each point of its domain (5, see also [1]).

It is well known that if the functions f_s are continuous then their product and diagonal are continuous. In the first part of the article we investigate the problem whether the product or diagonal of quasicontinuous functions are quasi-continuous. Let us remind first, that (evidently) if a function $f: X \longrightarrow Y$ is quasi-continuous at a point $x_0 \in X$ and $g: Y \longrightarrow Z$ is continuous at the point $f(x_0)$, then the function $g \circ f: X \longrightarrow Z$ is quasi-continuous at x_0 .

T. Natkaniec

Let $p_t : \prod_s Y_s \longrightarrow Y_t$ be t-th projection on Y_t for each $t \in S$, i.e. $p_t(\{y_s\}) = y_t$. Remind that p_t is always a continuous and open function.

Proposition 1 The Cartesian product of functions $\{f_s\}$ is quasi-continuous at a point $\{x_s\}$ iff each function $f_s : X_s \longrightarrow Y_s$ is quasi-continuous at the point x_s .

Proof. Assume first that the function $f = \prod_s f_s$ is quasi-continuous at a point $\{x_s\}_{s \in S}$. Let us fix $t \in S$. Then the transformation $f_1 = p_t \circ f : \prod_s X_s \longrightarrow Y_t$ is quasi-continuous at the point $\{x_s\}$. Let $W \subset X_t$ be an open neighbourhood of the point x_t and let $V \subset Y_t$ be an open neighbourhood of the point $f_t(x_t)$. Then the set $U = \prod_s U_s$, where $U_s = X_s$ for $s \neq t$ and $U_t = W$ is an open neighbourhood of the point $\{x_s\}$, so $\operatorname{int}(U \cap f_1^{-1}(V) \neq \emptyset$. Since $f_1^{-1}(V) = \{\{z_s\} : f_t(z_t) \in V\}$ then

$$\operatorname{int}(W \cap f_t^{-1}(V)) = p_t(\operatorname{int}(U \cap f_1^{-1}(V)) \neq \emptyset.$$

Hence f_t is guasi-continuous at a point x_t . Assume now that for each $s \in S$ the function f_s is quasi-continuous at a point x_s . Let us fix a neighbourhood U of the point $\{x_s\}$ belonging to the standard basis of $\prod_s X_s$ (i.e. the family of all sets of the form $\prod_s W_s$, where every set W_s is open in X_s and $W_s \neq X_s$ only for a finite number of elements of S) and similarly, let V be a neighbourhood of $\{f_s(x_s)\}_{s\in S}$ from the standard basis of $\prod_s Y_s$. Then $U = \prod_s U_s$ and $V = \prod_s V_s$, where for each $s \in S$, U_s is open in X_s , V_s is open in Y_s , $U_s = X_s$ and $V_s = Y_s$ if $s \notin S_0 = \{s_1, s_2, \ldots, s_n\}$, and $x_s \in U_s$, $f_s(x_s) \in V_s$ if $s \in S_0$. Then for each $s \in S_0$ there exists an open, non-empty set $G_s \subset U_s$ such that $f_s(G_s) \subset V_s$. Then the set $W = \prod_s W_s$, where $W_s = X_s$ for $s \notin S_0$ and $W_s = G_s$ for $s \in S_0$, is open and non-empty, $W \subset U$ and $f(W) \subset V$, hence f is quasi-continuous at the point $\{x_s\}$.

Corollary 1 Cartesian product of quasi-continuous functions is quasicontinuous.

- **Proposition 2** (a) If $f = \Delta_s f_s : X \longrightarrow \prod_s Y_s$ is quasi-continuous at a point x_0 , then for each $s \in S$ the function f_s is quasi-continuous at that point.
 - (b) There exist functions $f_i : \mathbb{R} \longrightarrow \mathbb{R}$ (i = 1, 2) that are quasicontinuous but $f_1 \bigtriangleup f_2$ is not quasi-continuous.
 - (c) If $f_s : X \longrightarrow Y_s$, $s \neq s_0$ are continuous at the point $x_0 \in X$ and $f_{s_0} : X \longrightarrow Y_{s_0}$ is quasi-continuous at x_0 then $f = \Delta_s f_s$ is quasi-continuous at x_0 .

Proof. The part (a) is implied from the fact that $f_s = p_s \circ f$ for each $s \in S$.

(b) Suppose that for arbitrary quasi-continuous functions f_1, f_2 the function $f_1 riangleq f_2$ is quasi-continuous. Since the sum $s : \mathbb{R}^2 \longrightarrow \mathbb{R}$, s(x,y) = x + y, is a continuous function, we infer that the class of quasi-continuous functions is closed with respect to addition. This is a contradiction with Grande's result saying that each cliquish function is a sum of four quasi-continuous functions [4]. (See also [7] and [8] for another arguments.)

(c) Let us fix $x_0 \in X$ and an open neighbourhood U of the point x_0 , moreover, let $V \subset \prod_s Y_s$ be a neighbourhood of $f(x_0)$ from the standard basis at that point. Then $V = \prod_s V_s$, where V_s is open in Y_s and $V_s = Y_s$ if $s \notin S_0 = \{s_1, \ldots, s_n\}$. If $s_0 \notin S_0$ then x_0 is a point of continuity of each of the functions $f_s, s \in S_0$. Then the set $W = U \cap \bigcap_{s \in S_0} \operatorname{int}(f_s^{-1}(V_s)) = U \cap f^{-1}(V)$ is open and non-empty, $W \subset U$ and $f(W) \subset V$. Hence f is quasi-continuous at the point x_0 . Let us assume now that x_0 is a point of discontinuity of f_{s_0} and $s_0 \in S_0$. Let $S_1 = S_0 \setminus \{s_0\}$. Then the set $W_1 = U \cap \bigcap_{s \in S_1} \operatorname{int}(f_s^{-1}(V_s))$ is an open neighbourhood of the point x_0 . Since f_{s_0} is quasi-continuous at x_0 , there exists a non-empty, open set $W \subset W_1 \subset U$ such that $f_{s_0}(W) \subset V_{s_0}$. Then $f(W) \subset V$ and consequently, f is quasi-continuous at x_0 . This completes the proof of quasi-continuity of the function f at x_0 .

Corollary 2 If $f: X \longrightarrow Y$ is continuous and $g: X \longrightarrow Z$ is quasicontinuous, then $f \bigtriangleup g$ is a quasi-continuous function.

2. Let Y be a uniform space i.e. Tychonoff space in which the topology is generated by a uniformity \mathcal{U} , see [2], pp. 515-518 or [6], pp. 176-180 for the definitions. Let $f: X \longrightarrow Y$ and $x_0 \in X$. We say that f is cliquish at the point x_0 iff for each $V \in \mathcal{U}$ and for every open neighbourhood \mathcal{U} of x_0 there exists a non-empty open set W such that $W \subset U$ and the diameter of the set f(W) is less than V, i.e. $(y_1, y_2) \in V$ for each $y_1, y_2 \in f(W)$. Let us notice that if Y is a metric space with the metric d (for example the real line with the Euclidean topology) then taking for \mathcal{U} the class

$$\{V_{\varepsilon}: \varepsilon > 0\}, \quad V_{\varepsilon} = \{(x, y): d(x, y) < \varepsilon\}$$

we get the well known notion of a cliquish function with values in a metric space (real cliquish function [1] and [3]).

Notice that for a function $f: X \longrightarrow Y$ the following implications hold:

f is continuous at a point $x_0 \Longrightarrow f$ is quasi-continuous at $x_0 \Longrightarrow f$ is cliquish at x_0 .

Let the class $\{(Y_s, \mathcal{U}_s)\}_{s \in S}$ of uniform spaces be given. The family \mathcal{B} of neighbourhoods of the diagonal

$$\{(\{y_s\},\{y_s\}): y_s \in Y_s\} \subset \prod_s Y_s \times \prod_s Y_s$$

consisted of all sets of the form

$$\{(\{y_s\}, \{z_s\}): (y_{s_i}, z_{s_i}) \in V_{s_i} \text{ for } i = 1, 2, \dots, k \text{ where } k \in N,$$

$$s_1, \dots, s_k \in S \text{ and } V_n \in \mathcal{U}_n \text{ for } i = 1, \dots, k\}$$

induces in $\prod_s Y_s$ a uniformity \mathcal{U} -the Cartesian product of $\{\mathcal{U}_s\}$. The topology in $\prod_s Y_s$ generated by this structure coincides with the Tychonoff topology, if we consider the product of topologies generated by the uniformities \mathcal{U}_s ($s \in S$). (See [2], pp. 531-532 or [6], pp. 182-183.)

Proposition 3 Let $\{X_s\}_{s\in S}$ be a family of topological spaces and let $\{Y_s\}_{s\in S}$ be a family of uniform spaces. The Cartesian product

$$\prod_{s} f_{s} : \prod_{s} X_{s} \longrightarrow \prod_{s} Y_{s}$$

is a cliquish function at a point $\{x_s\}$ iff the functions $f_s : X_s \longrightarrow Y_s$ are cliquish at x_s for each $s \in S$. **Proof.** Assume first that $f = \prod_s f_s$ is cliquish at $\{x_s\}$. Let us fix t from S, an open neighbourhood $U \subset X_t$ of the point x_t and $V \in \mathcal{U}_t$. Then $V_1 = \{(\{y_s\}, \{z_s\}) : (y_t, z_t) \in V\} \in \mathcal{U}.$ Since $W = \prod_s W_s \subset \prod_s X_s$, where $W_s = X_s$ for $s \neq t$ and $W_t = U$ is a neighbourhood of the point $\{x_s\}$, there exists an open set $B = \prod_s B_s$ such that B belongs to the standard basis of $\prod_s X_s$, $B \subset W$ and $\delta(f(B)) < V_1$ (i.e. the diameter of f(B) is less than V_1). Then $B_t \subset U$ and $\delta(f_t(B_t)) < V$, so the function f_t is cliquish at the point x_t . Assume now that for each $s \in S$ the function $f_s: X_s \longrightarrow Y_s$ is cliquish at a point x_s . Let $U = \prod_s U_s$ be a basis neighbourhood of the point $\{x_s\}$, where each U_s , is open in X_s and $U_s = X_s$ for $s \notin S_0 = \{s_1, \ldots, s_n\}$, moreover let V be a set from the uniformity \mathcal{U} for the space $\prod_s Y_s$. We can take that V is of the form $\{(\{y_s\}, \{z_s\}) : (y_{s_i}, z_{s_i}) \in V_{s_i} \text{ for } i = 1, \dots, n\}$, where $V_{s_i} \in \mathcal{U}_{s_i}$. From the cliquishness of the functions f_{s_i} , i = 1, ..., n, the existence of non-empty open sets $W_i \subset U_{s_i}$, such that $\delta(f_{s_i}(W_i)) < V_{s_i}$ is implied. Let $W = \prod_s W_s$ be a base set such that $W_s = X_s$ for $s \notin S_0$ and $W_s = W_i$ for $s = s_i$, i = 1, ..., n. Then $W \subset U$ and $\delta(f(W)) < V$ and, consequently, f is cliquish at $\{x_s\}$.

Proposition 4 Let X be a topological space and let $\{Y_s\}$, $s \in S$, be a family of uniform spaces.

- (a) If the diagonal of the functions f_s , $\Delta_s f_s : X \longrightarrow \prod_s Y_s$ is cliquish at a point $x_0 \in X$, then each of maps $f_s : X \longrightarrow Y_s$ is cliquish at that point.
- (b) If x_0 has the property that for each $s \in S$ there exists a neighbourhood U_s of x_0 on which the function f_s is cliquish, then the diagonal $\Delta_s f_s$ is cliquish at x_0 .

Proof. (a) Assume that $f = \Delta_s f_s : X \longrightarrow \prod_s Y_s$ is cliquish at x_0 . Let us choose $t \in S$, an open neighbourhood U of the point x_0 and $V \in \mathcal{U}_t$. Then the set $V_1 = \{(\{y_s\}, \{z_s\}) : (y_t, z_t) \in V_t\}$ belongs to the uniformity \mathcal{U} of the product space $\prod_s Y_s$, and hence there exists a nonempty, open set $W \subset U$ such that $\delta(f(W)) < V_1$, what means that $\delta(f_t(W)) < V$.

(b) Assume now that $x_0 \in X$ and for each $s \in S$ there exists an open neighbourhood U_s of the point x_0 on which the function f_s is cliquish.

T. Natkaniec

Let U be a neighbourhood of the point x_0 and let $V \in \mathcal{U}$. We can assume that V is of the form $\{(\{y_s\}, \{z_s\}) : (y_s, z_s) \in V_s \text{ for } s \in S_0\}$, where $S_0 = \{s_1, \ldots, s_n\}$ is a finite subset of S and $V_s \in \mathcal{U}_s$ for $s \in S_0$. We can choose (inductively) a sequence of non-empty, open sets $W_i \subset U$ $(i = 1, \ldots, n)$ such that:

- (1) f_{s_i} is cliquish on W_i ,
- (2) $W_i \subset \bigcap \{ U_s : s \in S_0 \} \cap U,$
- (3) $W_{i+1} \subset W_i$,
- (4) $\delta(f_{s_i}(W_i)) \subset V_{s_i}$.

Let $W = \bigcap_{i=1}^{n} W_i$. Then $\emptyset \neq W \subset U$ and $\delta(f(W)) < V$, hence f is cliquish at the point x_0 .

Corollary 3 If all functions f_s , $s \in S$ are cliquish then the diagonal $\Delta_s f_s$ is so.

References

- Bledsoe W. W., Neighbourly functions, Proc. Amer. Math. Soc. 3 (1972), 114-115.
- [2] Engelking R., General Topology, Warszawa 1976 (in Polish).
- [3] Ewert J., On quasi-continuous multivalued maps with values in uniform spaces, Bull. Acad. Pol. Math. 32 (1984), 81-88.
- [4] Grande Z., Sur les fonctions cliquish, Casop. Pěst. Mat. 110 (1985), 225–236.
- [5] Kempisty S., Sur les fonctions quasicontinues, Fund. Math. 19 (1932), 184-197.
- [6] Kelley J. L., General Topology, New York 1955.
- [7] Natkaniec T., Products of quasi-continuous functions, Math. Slovaca, 40 (1990), 401-405

 [8] Natkaniec T., On the maximum and the minimum of quasi-continuous functions, Math.Slovaca 42 (1992), 103-110

WYŻSZA SZKOŁA PEDAGOGICZNA INSTYTUT MATEMATYKI Chodkiewicza 30 85 064 Bydgoszcz Poland