On the Extending of Baire 1 Functions

Ewa Łazarow

Let $\mathbb R$ be the real line, $\mathbb N$ the set of all natural numbers and $\mathcal B$ the σ -algebra of subsets of $\mathbb R$ having the Baire property and I the σ -ideal of sets of the first category on the real line. For $E \subset \mathbb R$, let $\operatorname{int}(E)$, $\operatorname{cl}(E)$ denote, respectively, the interior and the closure of E in the natural topology. In [4] there were introduced notions of I-density point and I-dispersion point of a set E having the Baire property. We recall that 0 is an I-density point of a set $A \in \mathcal B$ if and only if, for every increasing sequence $\{t_n\}_{n\in\mathbb N}$ of real numbers such that $\{\chi_{t_{nm}\cdot A\cap[-1,1]}\}_{m\in\mathbb N}$ converges to 1 except on a set belonging to I.

Further, x_0 is an *I*-density point of $A \in \mathcal{B}$ if and only if 0 is an *I*-density point of the set $A - x_0 = \{x - x_0 : x \in A\}$, and x_0 is an *I*-dispersion point of A if and only if x_0 is an *I*-density point of $\mathbb{R} \setminus A$.

Let $\phi(A)$ denote the set of *I*-density points of A. It turned out (see [4]) that the family $T_I = \{A \subset \mathcal{B} : A \subset \phi(A)\}$ is a topology. It is called the *I*-density topology. Continuous functions mapping \mathbb{R} with the topology T_I into \mathbb{R} with the natural topology are called *I*-approximately continuous. The family of these functions will be denoted by C_I .

For any $x \in \mathbb{R}$, we denote by $\mathcal{P}(x)$ the collection of all intervals [a,b] such that $x \in (a,b)$ and of all sets E of the form

$$E = \bigcup_{n=1}^{\infty} [a_n, b_n] \cup \bigcup_{n=1}^{\infty} [c_n, d_n] \cup \{x\}$$

where, for every n,

$$a_n < b_n < a_{n+1} < x < d_{n+1} < c_n < d_n \text{ and } x \in \phi(E).$$

In [2] there was introduced a topology τ which consists of all sets $U \in T_I$ such that if $x \in U$, then there exists a set $P \in \mathcal{P}(x)$ such that $P \subset \operatorname{int}(U) \cup \{x\}$. It was proved that τ is the coarsest topology for which all I-approximately continuous functions are continuous.

For any subset $M \subset \mathbb{R}$, define $\Delta(M)$ as the set of all x such that, for each $P \in \mathcal{P}(x)$, we have $0 \neq P \cap M \neq \{x\}$.

We shall need the following theorems and lemmas.

Theorem 1 (2) Let $X \subset \mathbb{R}$. Then $\tau \text{-cl}(X) = X \cup \Delta \text{cl}(X) \subset \text{cl}(X)$. Moreover, x_0 is a limit point of X in the τ -topology if and only if $x_0 \in \Delta(\text{cl}(X))$.

Theorem 2 (3) Let $G \subset \mathbb{R}$ be an open set with respect to the natural topology. Then 0 is an I-density point of G if and only if, for every natural number n, there exist a natural number k and a real number $\delta > 0$ such that, for each $h \in (0, \delta)$ and for each $i \in \{1, \ldots, n\}$, there exist two natural numbers $j_r, j_l \in \{1, \ldots, k\}$ such that

$$G \cap \left(\left(\frac{i-1}{n} + \frac{j_r - 1}{nk} \right) h, \left(\frac{i-1}{n} + \frac{j_r}{nk} \right) h \right) = \emptyset$$

and

$$G \cap \left(-\left(\frac{i-1}{n} + \frac{j_l}{nk}\right)h, -\left(\frac{i-1}{n} + \frac{j_l-1}{nk}\right)h\right) = \emptyset.$$

Lemma 1 Let $A \subset \mathbb{R}$. Then $0 \in \Delta(\operatorname{cl}(A))$ if and only if there exists a natural number n such that, for each $k \in \mathbb{N}$ and for each real number $\delta > 0$, there exist $h \in (0, \delta)$ and $i \in \{1, ..., n\}$ such that for each $j \in \{1, ..., k\}$,

$$A \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) h, \left(\frac{i-1}{n} + \frac{j}{nk} \right) h \right) \neq \emptyset$$

$$A\cap\left(-\left(\frac{i-1}{n}+\frac{j}{nk}\right)h,\ -\left(\frac{i-1}{n}+\frac{j-1}{nk}\right)h\right)\neq\emptyset.$$

Proof. Necessity. Suppose that this is not the case. Then, for every natural n, there exist a natural number k and a real number $\delta > 0$ such that, for each $h \in (0, \delta)$ and for each $i \in \{1, ..., n\}$ there exist $j_{\tau}(i, h), j_{l}(i, h) \in \{1, ..., k\}$ such that

$$A\cap \left(\left(\frac{i-1}{n}+\frac{j_r-1}{nk}\right)h,\; \left(\frac{i-1}{n}+\frac{j_r}{nk}\right)h\right)=\emptyset$$

and

$$A \cap \left(-\left(\frac{i-1}{n} + \frac{j_l}{nk}\right)h, -\left(\frac{i-1}{n} + \frac{j_l-1}{nk}\right)h\right) = \emptyset.$$

Let $n \in \mathbb{N}$. Now, we shall define the family of sets $\{P_m^{ij}\}$ where $m \in \mathbb{N}$, $i \in \{1, ..., n\}$ and $j \in \{1, ..., k\}$. For each natural number $i \in \{1, ..., n\}$, we shall say that $h \in P_m^{ij}$ if and only if j is the above-described natural number $j_r(h, i)$, and $m \in \mathbb{N}$ is such that

$$\delta \cdot \left(\frac{(i-1)k+j-1}{(i-1)k+j}\right)^m \le h < \delta \cdot \left(\frac{(i-1)k+j-1}{(i-1)k+j}\right)^{m-1}.$$

We observe that the sets $\{P_m^{ij}\}_{m\in\mathbb{N}}$, $i\in\{1,\ldots,n\}$, $j\in\{1,\ldots,k\}$ have the following properties:

(i)
$$\bigcup_{m=1}^{\infty} \bigcup_{j=1}^{\infty} P_m^{ij} = (0, \delta)$$
 for all $i \in \{1, ..., n\}$;

(ii) if
$$h_1, h_2 \in P_m^{ij}$$
, then

$$\left(\frac{(i-1)k+j-1}{nk}h_1, \frac{(i-1)k+j}{nk}h_1\right)\cap$$

$$\cap \left(\frac{(i-1)k+j-1}{nk}h_2\;,\;\frac{(i-1)k+j}{nk}h_2\right) \neq \emptyset;$$

(iii) if
$$P_m^{ij} \neq \emptyset$$
 and $a_m^{ij} = \inf P_m^{ij}$, $b_m^{ij} = \sup P_m^{ij}$, then

$$\bigcup_{h \in p_m^{ij}} \left(\frac{(i-1)k+j-1}{nk} h, \frac{(i-1)k+j}{nk} h \right) =$$

$$= \left(\frac{(i-1)k+j-1}{nk} a_m^{ij} \; , \; \frac{(i-1)k+j}{nk} b_m^{ij} \right);$$

(iv)
$$\left(\frac{(i-1)k+j-1}{nk}a_m^{ij}, \frac{(i-1)k+j}{nk}b_m^{ij}\right)\cap A=\emptyset,$$

where a_m^{ij} , b_m^{ij} are described above.

To prove the above statements, see [2], theorem 2. Let

$$r = (i-1)k + j$$
, $c_m^{ij} = \frac{r-1}{nk}a_m^{ij} + \frac{1}{3nk}a_m^{ij}$ and $d_m^{ij} = \frac{r}{nk}b_m^{ij} - \frac{1}{3nk}b_m^{ij}$.

Then

$$\left[c_m^{ij}, d_m^{ij}\right] \subset \left(\frac{r-1}{nk} a_m^{ij}, \frac{r}{nk} b_m^{ij}\right)$$

and, for any $m, m' \in \mathbb{N}$, for which $|m - m'| \neq 1$,

$$\left[c_m^{ij}, d_m^{ij}\right] \cap \left[c_{m'}^{ij}, d_{m'}^{ij}\right] = \emptyset.$$

For any $i \in \{1, \ldots, n\}$, and $j \in \{1, \ldots, k\}$, let $F_{ij} = \bigcup_{m=1}^{\infty} [c_m^{ij}, d_m^{ij}]$ and

$$P^{+} = \bigcup_{m=1}^{\infty} \left(\left[\frac{1}{m+1}, \frac{1}{m} \right] \cap \bigcup_{n=1}^{m} \bigcup_{i=1}^{n} \bigcup_{j=1}^{k} F_{ij} \right) \cup \{0\}.$$

Then P^+ is a perfect set, $P^+ \cap \operatorname{cl}(A) = \{0\}$, and 0 is a right-hand I-density point of P^+ (see [2], theorem 2). In a similar way we can find a perfect set P^- such that $P^- \cap \operatorname{cl}(A) = \{0\}$, and for which 0 is a left-hand I-density point. Let $P = P^+ \cup P^-$. Then P is perfect in the natural topology, $P \cap \operatorname{cl}(A) = \{0\}$ and $0 \in \phi(P)$, which gives a contradiction since, for each $P \in \mathcal{P}(0)$, $\{0\} \neq P \cap \operatorname{cl}(A) \neq \emptyset$.

Sufficiency. We suppose that there exists $P \in \mathcal{P}(0)$ such that $P \cap \operatorname{cl}(A) = \{0\}$. Then $\mathbb{R} \setminus P \supset A \setminus \{0\}$. By assumption, we have

that there exists $n \in \mathbb{N}$ such that, for each $k \in \mathbb{N}$ and for each real $\delta > 0$, there exist $h \in (0, \delta)$ and $i \in \{1, \ldots, n\}$ such that, for any $j_{\tau}, j_{l} \in \{1, \ldots, k\}$,

$$\begin{split} & \text{IR} \setminus P \cap \left(\left(\frac{i-1}{n} + \frac{j_r - 1}{nk} \right) h \;,\; \left(\frac{i-1}{n} + \frac{j_r}{nk} \right) h \right) \supset \\ & A \cap \left(\left(\frac{i-1}{n} + \frac{j_r - 1}{nk} \right) h \;,\; \left(\frac{i-1}{n} + \frac{j_r}{nk} \right) h \right) \neq \emptyset \end{split}$$

or

$$\begin{split} & \text{IR} \setminus P \cap \left(-\left(\frac{i-1}{n} + \frac{j_l}{nk}\right) h \;,\; -\left(\frac{i-1}{n} + \frac{j_l-1}{nk}\right) h \right) \supset \\ & A \cap \left(-\left(\frac{i-1}{n} + \frac{j_l}{nk}\right) h \;,\; -\left(\frac{i-1}{n} + \frac{j_l-1}{nk}\right) h \right) \neq \emptyset. \end{split}$$

Thus, by lemma 1, 0 is not an *I*-dispersion point of $\mathbb{R} \setminus P$ which gives a contradiction since $0 \in \phi(P)$. So, the lemma is proved.

We shall use the above lemma for each $x \in \mathbb{R}$ by translating the set if necessary.

Theorem 3 Let $A \subset [0,1]$. Each Baire one function restricted to A can be extended to [0,1], resulting in an I-approximately continuous function, if and only if $\Delta(cl(A)) = \emptyset$.

Proof. Necessity. Let $A \subset [0,1]$ be such that $\Delta(\operatorname{cl}(A)) \neq \emptyset$. We may assume that $0 \in \Delta(\operatorname{cl}(A_1))$ and $A_1 = \{x \in A : x > 0\}$. By lemma 2, we know that there exists a natural number $n \in \mathbb{N}$ such that for each $k \in \mathbb{N}$ and for each real $\delta > 0$, there exist $h \in (0,\delta)$ and $i \in \{1,\ldots,n\}$, such that, for each $j \in \{1,\ldots,k\}$,

$$A_1 \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{nk} \right) h , \left(\frac{i-1}{n} + \frac{j}{nk} \right) h \right) \neq \emptyset.$$

We shall define sequences $\{x_p\}_{p\in\mathbb{N}}\subset A_1, \{x_p'\}_{p\in\mathbb{N}}\subset A_1$ such that for each $p\in\mathbb{N}, x_p\neq x_p'$ and

$$0 \in \Delta\left(\operatorname{cl}\left(\left\{x_{p}\right\}_{p \in \mathbb{I\!N}}\right)\right) \cap \Delta\left(\operatorname{cl}\left(\left\{x_{p}^{'}\right\}_{p \in \mathbb{I\!N}}\right)\right).$$

Let k = 1. For $\delta = 1$, there exist $h_1 \in (0, \delta)$ and $i \in \{1, \ldots, n\}$ such that $A_1 \cap \left(\frac{i-1}{n}h_1, \frac{i}{n}h_1\right) \neq \emptyset$.

Let $x_1 \in A_1 \cap \left(\frac{i-1}{n}h_1, \frac{i}{n}h_1\right)$. Then for $\delta = x_1$, there exist $h_1' \in (0, \delta)$ and $i \in \{1, \dots, n\}$ such that $A_1 \cap \left(\frac{i-1}{n}h_1', \frac{i}{n}h_1'\right) \neq \emptyset$.

Let $x_1' \in A_1 \cap \left(\frac{i-1}{n}h_1, \frac{i}{n}h_1\right)$. Assume that the sequences

$$\left\{ x_{p} \right\}_{p \leq \frac{r(r+1)}{2}}, \ \left\{ x_{p}^{'} \right\}_{p \leq \frac{r(r+1)}{2}}, \ \left\{ h_{p} \right\}_{p \leq r}, \ \left\{ h_{p}^{'} \right\}_{p \leq r},$$

where $r \in \mathbb{N}$, have been defined.

Let k = r + 1. For $\delta = x'_{\frac{r(r+1)}{2}+1}$, there exist $h_{r+1} \in (0, \delta)$ and $i \in \{1, \ldots, n\}$ such that for each $j \in \{1, \ldots, r+1\}$,

$$A_1 \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{n(r+1)} \right) h_{r+1}, \left(\frac{i-1}{n} + \frac{j}{n(r+1)} \right) h_{r+1} \right) \neq \emptyset.$$

Let

$$x_{\frac{r(r+1)}{2}+j} \in A_1 \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{n(r+1)} \right) h_{r+1}, \left(\frac{i-1}{n} + \frac{j}{n(r+1)} \right) h_{r+1} \right)$$

for each $j \in \{1, ..., r+1\}$.

Then for $\delta = x_{\frac{r(r+1)}{2}+1}$, there exist $h'_{r+1} \in (0, \delta)$ and $i \in \{1, \ldots, n\}$ such that for each $j \in \{1, \ldots, r+1\}$,

$$A_1 \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{n(r+1)} \right) h'_{r+1}, \ \left(\frac{i-1}{n} + \frac{j}{n(r+1)} \right) h'_{r+1} \right) \neq \emptyset.$$

Let

$$x'_{\frac{r(r+1)}{2}+j} \in A_1 \cap \left(\left(\frac{i-1}{n} + \frac{j-1}{n(r+1)} \right) h'_{r+1}, \left(\frac{i-1}{n} + \frac{j}{n(r+1)} \right) h'_{r+1} \right)$$

for each $j \in \{1, ..., r+1\}$.

Now, we shall prove that

$$0 \in \Delta \left(\operatorname{cl} \left(\left\{ x_{p} \right\}_{p \in \mathbb{I} \mathbb{N}} \right) \right) \cap \Delta \left(\operatorname{cl} \left(\left\{ x_{p}^{'} \right\}_{p \in \mathbb{I} \mathbb{N}} \right) \right).$$

Let P be a perfect set such that $P \cap \{x_p\}_{p \in \mathbb{N}} = \emptyset$ and let $G = \mathbb{R} \setminus P$. For any $k \in \mathbb{N}$ and $\delta = x'_{(k-1)(k-2)+1}$, there exist $h_k \in (0, \delta)$ and $i \in \{1, \ldots, n\}$ such that for each $j \in \{1, \ldots, k\}$,

$$\{x_p\}_{p\in\mathbb{IN}}\cap\left(\left(\frac{i-1}{n}+\frac{j-1}{nk}\right)h_k,\left(\frac{i-1}{n}+\frac{j}{nk}\right)h_k\right)\neq\emptyset.$$

Let $\{h_{k_s}\}_{s\in\mathbb{I}\mathbb{N}}$ be a subsequence of $\{h_k\}_{k\in\mathbb{I}\mathbb{N}}$ corresponding to the same $i\in\{1,\ldots,n\}$. Then for each subsequence $\{h_{k_{s_r}}\}_{r\in\mathbb{I}\mathbb{N}}$ of $\{h_{k_s}\}_{s\in\mathbb{I}\mathbb{N}}$

$$\limsup_{r \to \infty} \frac{1}{h_{k_{-}}} \cdot G$$

is residual in $\left[\frac{i-1}{n}, \frac{i}{n}\right] \subset [0, 1]$.

Thus 0 is not I-dispersion point of the set G and, thereby, of the set P. Therefore for each $P \in \mathcal{P}(0)$, $P \cap \{x_p\}_{p \in \mathbb{N}} \neq \emptyset$.

In a similar way we can prove that $0 \in \Delta\left(\operatorname{cl}\left(\left\{x_p'\right\}_{p \in \mathbb{I}\mathbb{N}}\right)\right)$.

Let

$$g(x) = \begin{cases} 1 & \text{at } x = x_n \text{ for } n = 1, 2, \dots \\ 0 & \text{at } x \notin \{x_n\}_{n \in \mathbb{N}} \end{cases}$$

The function g is Baire 1, since for each $n \in \mathbb{N}$,

$$x_{\frac{(n+1)n}{n}+1} < \dots < x_{\frac{(n+1)n}{2}+n} < x'_{\frac{n(n-1)}{2}+1} < \dots < x'_{\frac{n(n+1)}{2}+(n-1)} < x_{\frac{(n-1)(n-2)}{2}+1}.$$

Let $f:[0,1] \longrightarrow \mathbb{R}$ and f(x)=g(x) for all $x \in A$. We suppose that $f \in C_I$. Then the sets $\{x:f(x)>0\} \in \tau$, $\{x:f(x)<1\} \in \tau$ and $0 \in \{x:f(x)>0\} \cup \{x:f(x)<1\}$. We suppose that $0 \in \{x:f(x)>0\}$. Then there exists $P \in \mathcal{P}(0)$ such that $P \subset \inf\{x:f(x)>0\} \cup \{0\}$. This is a contradiction since $\emptyset \neq P \cap \{x'_n\}_{n \in \mathbb{N}} \subset \{x:f(x)\leq 0\}$. In a similar way we can show that $0 \notin \{x:f(x)<1\}$. Thus $f \notin C_I$.

Sufficiency. It results from the following theorem [1; 3-e, 21-a, p. 121]: Let τ be a fine topology on a metric space P having the Lusin-Menchoff property. Let M be a τ -isolated G_{δ} subset of P. If f is a real Baire 1 function on M, then f can be extended to a real τ -continuous

Baire 1 function on P.

References

- [1] Lukes J., Maly J., Zajicek L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Mathematics 1189, Springer Verlag.
- [2] Lazarow E., The Coarsest Topology for I-approximately continuous function, CMUC 27, (4), (1986).
- [3] Lazarow E., On the Baire Class of I-approximately Derivatives, Proc. Amer. Math. Soc., Vol. 100, (No. 4), (1987).
- [4] Poreda W., Wagner-Bojakowska E., Wilczyński W., A category analogue of the density topology, Fund. Math. CXXV (1985).

UNIVERSYTET ŁÓDZKI INSTYTUT MATEMATYKI Banacha 22 90-238 Lódź, Poland WYŻSZA SZKOŁA PEDAGOGICZNA INSTYTUT MATEMATYKI Chodkiewicza 30 85-064 Bydgoszcz, Poland