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On asymmetry of multifunctions

Witodzimierz Slezak

A multifunction F : X —» Y is a correspondence which assigns to
each point in a set X at least one point in a set Y. If X and Y are
topological spaces, F : X — »Y is said to be closed at a point xg G X
if for each point yo G F(x0) there exist two open neighbourhoods V (x0)
and U(yo) of the points x0 and yO0, respectively, such that the following
implication holds

x G V(a;0) => F(x0) fi U(y0) = 0.

This notion was investigated e.g. in [11] under the name cofinal continu-
ity. If F is cofinally continuous at each point x G X, it is briefly called
cofinally continuous (or sometimes p-usc). F is cofinally continuous if
and only if its graph

(1) GrF = {®,y) :y € F(x)} CX xY

is closed in the product space X x Y. It iseasy to see that F is cofinally
continuous if and only if its inverse multifunction Y —*X
F-1(y) = {x GX :y € ~(z)} is cofinally continuous. If F : X — =Y
is cofinally continuous at a point Xo, then the value F{xo) is closed in
Y. For compact range spaces V, F : X — >Y s cofinally continuous
if and only if F is upper semicontinuous and has closed values. Let us
recall, that a multifunction F : X — *Y is upper semicontinuous if the
inverse image

) F~(D) = {x GX :F(x) fID/0}
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of each set D closed in Y, is closed in X. For more informations con-
cerning to the existing various kinds of continuity of multifunctions see
[10], [11], [9], The notion of cluster set for multifunctions is introduced
in [14], [5] and [8] as follows. We say that y is an element of the cluster
set of F : X — »Y at x, denoted C(F,x), if there exists a net Xd G X,
d G D and a net yj G F(xd) such that Xd is MS-convergent to x and
yd is MS-convergent to y. D is here an apropriate directed set. Thus
the cluster set may be treated as a formalization of the set of ”limit
points” of our multifunction F.
Denoting by CL the closure operator in Y, we have

C(F,x) = P){CLF(f7) : U G N(x)},

where N(x) denotes the filterbase of neighbourhoods at x, and the
image F(U) is defined for multifunctions as follows

HU) = U{C(x) : X e U).

In [5] the following theorem is essentially proved.

theorem O [5]. The following conditions are equivalent for multifunc-
tion F : X —*Y

(i) F has closed graph (1) i.e. F is cofinally continuous
(11) F(x) = Pry {*} x Y n CL(GrF)), x GX
(iii) C(F,x) = F(x), x GX.

An inspection of the proof gives also a local version of the above the-
orem: F is cofinally continuous at x if and only if F(x) = C(F,x). In
a case if F is single valued the cofinal continuity reduces to usual con-
tinuity provided the range space is compact and then we obtain from
theorem 0 the result of Weston [13]. The reader can easily construct
an example where cardF(x) = 1, i.e. F(x) — {f{x)}, C(f,x) is a
singleton yet / is not continuous using a non-compact range space Y.
At present we define a relation on topologies analogous to one defined
by Ulysses Hunter in [4]. Applying cluster set techniques we obtain
some information on the set of cofinal discontinuities of an arbitrary
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multifunction. This seems to be of some interest in connection with
the result of [6], where the conditions on Borel measurability of multi-
functions of two variables are formulated and also in connection with
the result of [1], where in terms of cluster sets J. Ceder characterised
multifunctions possessing a selector with the Darboux property.

A collection M of subsets of X is called a cr-ideal of sets in X if

(@) AGM and B C A implies that B G M,
(b) AnGM, n=1,2,3,..., implies that (J*Li A,, G M,
(c) X $ M.

Two topologies T and S on A' are said to be related modulo M, denoted
T rei S mod M, if for any subset A of X, the 7'—and S closure
of A differ by a set in M

CLt(A) A CL5(A) GM, AAB = (A\B)U (B\A).

Theorem 1 Let M be a cr-ideal of subsets of a bitopological space
X, T,S)and T rei SmodM. IfF : X —*Y is an arbitrary
multifunction from the space X into the second countable space Y , then

Ct{F,x) = Cs{F,x) for euery x GX\A forsome A GM

Proof. Let {[/,, :n = 1,2,3,...} be a countable open basis for Y.
Observe that

AsymF = {x GX : Ct{F,x)”" Cs{F,x)} = E UD,

where
E ={xe X : Ct(F,x)ECs(F,x)}

and
D={xeX: Cs(F,x)£Ct(F,x)}

To show that E GM, put forn =1,2,...

En={xGX : x GCLTF (Un) and x 0 CLSF (Un)}
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where the big inverse image is defined by formuta (2). Note that in
compliance with the assumption that T rei S mod M, each En be-
longs to M and hence, by virtue of (b) also UMLiI Enisin M. We claim
that E is included in this union U”Li En. Indeed, if x is in E then there
exists an y in Y such that for every V.G N(y) and for every G G N(x)

F(G) NV # 0 ie XGCLtF~(V),

but F~(N(y)) does not accumulate at x with respect to S, that means
there is a W\ in N(y) and G\ in Ns(x) such that

F(Gi)nVi =0 ie. X CLsF~(VI).

Since {Un :n = 1,2,3,...} is a basis for Y, there exists some positive
integer k such that y G Uk ¢ V. We conclude that x is in Ek and
hence we have the claim. Thus E GM and a similar argument shows
that D G M, completing the proof.

Remark 1 In case of single valued functions this theorem reduces to
a part of theorem 1 on p.78 in [12]. Note that Swiatkowski wrongly
assumed the separability of Y instead of second axiom of countability
in his theorem.

Theorem 2 Let F : X —>Y be an arbitrary multifunction from X
into the second countable Hausdorjf space Y. Let M be a a-ideat of
subsets of X with T and S two topologi.es on X related modulo M .

(a) IfF is cofinally continuous with respect to T, then the set of cofinal
discontinuities of F with respect to S is an element of M .

(b) IfF : X —>Y is either cofinally continuous with respect to S
or with respect to T at. euery point of X , then the set of cofinal
discontinuities with respect to the intersection T fi S is an element

of M.

Proof. By theorem O we have F(x) = Ct{F, x) for all x GX. Applying
theorem 1 we find a set A G M such that Cs(F,x) = Ct{F,x) for
X GX \ A. Therefore F(x) = Cs{F,x) for x GX \ A and, taking into
account once again the local version of theorem 0 we deduce that F is
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cofinally continuous with respect to S at all points x G X \ A,
To prove part (b) of Theorem 2, first observe that

Ct{F,x)n Cs(F,x) C CTns{F,x) C CT(F,x) UCs(F,x).

Now, there exists an subset A belonging to M such that for x G A\A we
have that Ct(F,x) — Cs(F,x). Since our multifunction F is cofinally
continuous either with respect to T or with respect to S, we have that

Ct(F,x) = CS(F, x) = F{x) C Y iff x € X \ A.

Hence, if x G X \ A we have Crns{F, x) = F(x) and conseguently F
is cofinally continuous at x G X \ A with respect to intersection of
topologies T fi S. We conclude that the set of cofinal discontinuities of
F with respect to T Pi S is a subset of A and hence an element of M .
The proof is complete.

Remark 2 This theorem even in single-valued case is stronger than
the corresponding one in [3] (th. 3.5). Namely Hamlett dealt with the
topology generated by the union T US of original topologies instead if
its intersection.

In case where Y is compact we obtain the following corollary.

Corollary 1 Let F : X — »Y be an upper semicontinuous multifunc-
tions with compact range Y and closed ualues. IJ S is another topology
on X which is related to the initial topology T modulo M, then the set
of points at which F fails to be upper semicontinuous with respect to S
is an element of M. Moreouer if at each point x G X, F is either upper
semicontinuous with respect to T or upper semicontinuous with respect
to S, then it is upper semicontinuous with respect to both topologies
simultaneously, except of a set of points belonging to M.

An important conseguence of Theorem 2 in case where X is the real
line is the following:

Theorem 3 Let F : X — >Y be an arbitrary multifunction from the
real line into a second countable Hausdorffspace. If F is either cofinally
continuous from the right or cofinally continuous from the left at euery
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real number x G X, then F has at most countably many points, at which
it fails to be cofinally continuous with respect to the Euclidean topology
on X .

Proof. Let M be the er-ideal of countable sets of the real line X. IfR
is the topology on X generated by {[x,x+r): xGX , r>0}and L
is the topology on X generated by {(a: —r,x] : x GX , r > 0} then
it is easy to show that L is related to R modulo M (see e.g. Hunter
[4], Example 1). Observe that L fi R is the usual Euclidean topology.
It suffices to apply Theorem 2 to obtain the thesis.

In case when Y is compact and F has closed values, a similar the-
orem is valid for upper semicontinuity in place of cofinal continuity.

If Q is a subset of then we can define the cluster set of F :X —>Y
at x G X relative to Q as follows (cf. [8], [5]):

C(F,x,Q) =f)CLF(UnQ),

where the intersection is taken over all neighbourhoods U G N(x) of x
in X with F{U fi Q) = U{E(2) : t GUHQ].

From this definition it is elear that C{F,x, Q) is atways closed ( but
possibly empty ) subset of Y . In the theory of multivalued functions of
complex variable esspecially important are radial, angular and curvi-
linear cluster sets obtained from (15) by suitably choosen Q. In order
to generalize the Theorem 3 to higher dimensions we must define a no-
tion of a point of asymmetry of a multifunction F : X — »Y where X
stands for an n-dimensional Euclidean space. Let in this space, besides
the natural topology, another topology T be distinguished.

We will denote by CL"A, DeryH etc. the closure of the set A C X,
the set if its accumulation points, etc. with respect to the topology T.
When the topology T coincides with the natural topology, we omit thisv
additional notation.

A point i G | will be called a T-assymmetry point of a multifunction
F : X — >y if there exists an (n —1I)-dimensional hyperplane H
passing through x such that

Ct(F,x,X+)C Ct(F,x,X-),

where X + and X~ denote the halfspaces being the components of the
set X \ H. Observe that Theorem 3 on countability of the set of asym-
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metry points of a multifunction of one real variable cannot be car-
ried over to multifunctions of many variables, as the following example
shows

(17) R*I{x,»)"F{x,y) ={["

However, in this case the cr-ideal of countable sets may be replaced
by the u-ideal of meager sets

Theorem 4 Let F : X — >Y be a multifunction defined on an n-di-
mensional Euclidean space X and takmg his uahies in a second count-
able space Y. The set of assymetry points of F is of the first category.

Proof. Acting as in the proof of Theorem 2 and 1 it suffices to prove
that the sets

AsymB = Der(B fi A+) A Der(Z? HX -),

for B = F~(Un), n = 1,2,... are nowhere dense. Namely let B C X
and let K be an arbitrary bali in the space X. We will show that
there exists a bali Ki C K disjoint with the set AsymB. First, if K
is disjoint with AsymB it suffices to put AT — K. So let x £ K fi
AsymjB. Conseguently there exists a decomposition X = X +UH UA'~
corresponding to the point x and such that x £ AsymB. Without loss
of generality we may assume that x 0 Der(Z? D A'+). Then there exists
a bali KO centered at x such that KqC\X+C\B — 0. Now let K\ be a bali
contained in IRODX +. The set ATfiB C KODX +(TB must be empty
which implies that the bali AT does not contain any accumulation point
of the set B and conseguently any of its asymmetry points. That ends
the proof.

R-emark 3 This proof is almost idenitcal with the proof of Theorem 4
in [12], only the meaning of the set B is different. Note that a formuta
(7) in Theorem 3 in cited Swigtkowski’s paper concerns the points of
T-symmetry, but not T-asymmetry, as it is errorously statecl.

Repeating the proofs of Theorem 5 and 6 from [12] with the obvious
changes we can obtain a characterization of T-asymmetry points where
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T is density topology, with respect to the ordinary differentiation basis.
Such points will be called ordinary approximative asymmetry points.
In fact, we have

Theorem 5 The ordinary approximative asymmetry points of a mul-
tifunction F : X — >Y defined on afinite dimensional Euclidean space
X form a set of the first category. Moreouer, the Lehesgue measure of
the set of ordinary approximative asymmetry points of F is equal to

Zero.

The cr-porosity of the set of approximative symmetry points, in the
spirit of [15], as well as asymmetry points with respect to another fine
topologies (Hashimoto topology e.g.) will be investigated in a later

paper.
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