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On asymmetry of multifunctions
Włodzimierz Ślęzak

A multifunction F  : X  — » Y  is a correspondence which assigns to 
each point in a set X  at least one point in a set Y . If X  and Y  are 
topological spaces, F  : X  — » Y  is said to be closed at a point xq G X  
if for each point yo G F ( x 0) there exist two open neighbourhoods V (x0) 
and U(yo) of the points x 0 and y0, respectively, such th a t the following 
implication holds

x  G V(a;o) = >  F ( x 0) fi U(y0) =  0.

This notion was investigated e.g. in [11] under the name cofinal continu- 
ity. If F  is cofinally continuous at each point x  G X ,  it is briefly called 
cofinally continuous (or sometimes p-usc). F  is cofinally continuous if 
and only if its graph

(1) G rF  =  {(®, y)  : y € F( x) }  C X  x Y

is closed in the product space X  X Y. It is easy to see that F  is cofinally 
continuous if and only if its inverse multifunction : Y  — * X  , 
F -1 (y) =  {x G X  : y € ^ (z )}  is cofinally continuous. If F  : X  — ■> Y  
is cofinally continuous at a point Xo, then the value F{ xo) is closed in 
Y . For compact rangę spaces V , F  : X  — > Y is cofinally continuous 
if and only if F  is upper semicontinuous and has closed values. Let us 
recall, th a t a multifunction F  : X  — * Y  is upper semicontinuous if the 
inverse image

(2) F~( D)  =  {x  G X  : F(x)  f l D / 0 }
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of each set D closed in Y , is closed in X .  For more informations con- 
cerning to the existing various kinds of continuity of multifunctions see
[10], [11], [9], The notion of cluster set for multifunctions is introduced 
in [14], [5] and [8] as follows. We say that y is an element of the cluster 
set of F  : X  — » Y  at x,  denoted C ( F , x ), if there exists a net Xd G X , 
d G D and a net yj  G F(xd)  such that Xd is MS-convergent to x  and 
yd is MS-convergent to y. D is here an apropriate directed set. Thus 
the cluster set may be treated as a formalization of the set of ”limit 
points” of our multifunction F.

Denoting by CL the closure operator in Y,  we have

C( F, x )  =  P){CLF(f7) : U G N( x) } ,

where N( x )  denotes the filterbase of neighbourhoods at x,  and the 
image F(U)  is defined for multifunctions as follows

H U )  =  U { C ( x )  : X e  U ) .

In [5] the following theorem is essentially proved.

t h e o r e m  0 [5]. The following conditions are equivalent fo r  multifunc
tion F  : X  — * Y

(i) F  has closed graph (1) i.e. F  is cofinally continuous

(11) F( x)  = Pry  ({*} x Y  n  C L (G rF)), x  G X  

(iii) C( F, x )  = F(x) ,  x  G X .

An inspection of the proof gives also a local version of the above the
orem: F  is cofinally continuous at x  if and only if F( x)  =  C( F, x) .  In 
a case if F  is single valued the cofinal continuity reduces to usual con
tinuity provided the rangę space is compact and then we obtain from 
theorem 0 the result of Weston [13]. The reader can easily construct 
an example where cardF (x) =  1, i.e. F( x)  — { f {x) } ,  C ( f , x )  is a 
singleton yet /  is not continuous using a non-compact rangę space Y.  
At present we define a relation on topologies analogous to one defined 
by Ulysses H unter in [4]. Applying cluster set techniques we obtain 
some information on the set of cofinal discontinuities of an arbitrary
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multifunction. This seems to be of some interest in connection with 
the result of [6], where the conditions on Borel measurability of m ulti
functions of two variables are formulated and also in connection with 
the result of [1], where in terms of cluster sets J. Ceder characterised 
multifunctions possessing a selector with the Darboux property.

A collection M  of subsets of X  is called a cr-ideal of sets in X  if

(a) A  G M  and B  C A implies tha t B  G M,

(b ) A n G M,  n = 1 ,2 ,3 , . . . ,  implies tha t (J^Li A„ G M,

(c) X  $  M.

Two topologies T  and S  on A' are said to be related modulo M,  denoted
T  rei S  mod M , if for any subset A of X , the 7 '— and S  closure
of A  differ by a set in M

CL t (A)  A  CL5(A) G M,  A A B  = (A \ B ) U ( B\ A) .

T h e o re m  1 Let M  be a cr-ideal o f subsets o f a bitopological space 
(X , T , S ) and T  rei S  mod M . I f  F  : X  — * Y  is an arbitrary 
multifunction from  the space X  into the second countable space Y , then

Ct {F, x ) =  Cs{F, x)  fo r  euery x  G X \ A  for some A  G M

Proof. Let {[/„ : n = 1,2 ,3 , . . .}  be a countable open basis for Y . 
Observe tha t

A sym F =  {x  G X  : Ct {F, x ) ^  Cs{F, x) }  =  E  U D,

where
E  = { x e  X  : Ct (F, x ) £ C s ( F , x )}

and
D = { x e X :  Cs ( F , x ) £ C t ( F, x )}.

To show th a t E  G M , put for n = 1 ,2 , . . .

En = {x  G X  : x  G CLTF  (Un) and x  0  CLSF  (Un)}
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where the big inverse image is defined by formuła (2). Note th a t in 
compliance with the assumption tha t T  rei S  mod M , each E n be- 
longs to M  and hence, by virtue of (b) also U^Li E n is in M.  We claim 
tha t E  is included in this union U^Li E n. Indeed, if x is in E  then there 
exists an y in Y  such tha t for every V  G N( y)  and for every G G N( x )

F( G)  n V  #  0 i.e. X G CLt F ~ ( V ) ,

but F~( N( y ) )  does not accumulate at x  with respect to S,  tha t means 
there is a V\ in N( y)  and G\  in Ns( x)  such that

F (G i)n V i =  0 i.e. X CLs F~( Vl ).

Since {Un : n =  1 ,2 ,3 ,. . .}  is a basis for Y ,  there exists some positive 
integer k such tha t y G Uk ę  V\. We conclude tha t x  is in Ek and 
hence we have the claim. Thus E  G M  and a similar argum ent shows 
th a t D G M,  completing the proof.

R e m a rk  1 In case of single valued functions this theorem reduces to 
a part of theorem 1 on p.78 in [12]. Note tha t Świątkowski wrongly 
assumed the separability of Y  instead of second axiom of countability 
in his theorem.

T h e o re m  2 Let F  : X  — > Y  be an arbitrary multifunction from  X  
into the second countable Hausdorjf space Y . Let M  be a a-ideał of 
subsets o f X  with T  and S  two topologi.es on X  related modulo M .

(a) I f  F  is cofinally continuous with respect to T , then the set o f cofinal
discontinuities o f F  with respect to S  is an element o f M .

(b ) I f  F  : X  — > Y  is either cofinally continuous with respect to S
or with respect to T  at. euery point o f X , then the set o f cofinal 
discontinuities with respect to the intersection T  fi S  is an element 
o f M .

P ro o f . By theorem 0 we have F(x)  = C t {F,  x ) for all x G X .  Applying 
theorem 1 we find a set A  G M  such th a t Cs( F, x )  =  C t { F , x ) for 
x  G X  \  A.  Therefore F( x)  =  Cs{F, x)  for x  G X  \  A  and, taking into 
account once again the local version of theorem 0 we deduce th a t F  is
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cofinally continuous with respect to S  at all points x  G X  \  A.
To prove part (b) of Theorem 2, first observe that

Ct {F, x ) n  Cs ( F , x ) C CTn s{F ,x ) C CT(F, x)  U Cs (F,x) .

Now, there exists an subset A  belonging to M  such tha t for x  G A \A  we 
have tha t Ct ( F , x ) — Cs(F, x) .  Since our multifunction F  is cofinally 
continuous either with respect to T  or with respect to S,  we have that

C t(F , x ) = CS(F, x) = F{x)  C Y  iff x  € X  \  A.

Hence, if x  G X  \  A  we have Crns{F, x) =  F(x)  and conseąuently F  
is cofinally continuous at x G X  \  A  with respect to intersection of 
topologies T  fi S.  We conclude tha t the set of cofinal discontinuities of 
F  with respect to T  Pi S  is a subsęt of A  and hence an element of M . 
The proof is complete.

R e m a rk  2 This theorem even in single-valued case is stronger than 
the corresponding one in [3] (th. 3.5). Namely Ham lett dealt with the 
topology generated by the union T  U S  of original topologies instead if 
its intersection.

In case where Y  is compact we obtain the following corollary.

C o ro lla ry  1 Let F  : X  — » Y  be an upper semicontinuous multifunc
tions with compact rangę Y  and closed ualues. IJ S  is another topology 
on X  which is related to the initial topology T  modulo M , then the set 
o f points at which F  fails to be upper semicontinuous with respect to S  
is an element o f M . Moreouer i f  at each point x  G X , F is either upper 
semicontinuous with respect to T  or upper semicontinuous with respect 
to S , then it is upper semicontinuous with respect to both topologies 
simultaneously, except o f a set o f points belonging to M .

An im portant conseąuence of Theorem 2 in case where X  is the real 
line is the following:

T h e o re m  3 Let F  : X  — > Y  be an arbitrary multifunction from  the 
real line into a second countable Hausdorff space. I f  F  is either cofinally 
continuous from  the right or cofinally continuous from  the left at euery
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real number x  G X , then F  has at most countably many points, at which 
it fails to be cofinally continuous with respect to the Euclidean topology 
on X .

P ro o f . Let M  be the er-ideal of countable sets of the real line X .  If R  
is the topology on X  generated by {[x, x +  r) : x  G X  , r > 0} and L 
is the topology on X  generated by {(a: — r,x ] : x  G X  , r  >  0} then 
it is easy to show that L is related to R  modulo M  (see e.g. Hunter
[4], Example 1). Observe tha t L fi R  is the usual Euclidean topology.
It suffices to apply Theorem 2 to obtain the thesis.

In case when Y  is compact and F  has closed values, a similar the
orem is valid for upper semicontinuity in place of cofinal continuity.

If Q is a subset of then we can define the cluster set of F  : X  — > Y
at x  G X  relative to Q as follows (cf. [8], [5]):

C ( F , x , Q)  = f ) C L F ( U n Q ) ,

where the intersection is taken over all neighbourhoods U G N( x )  of x 
in X  with F{U  fi Q) = U{E(2) : t G U H Q ] .

From this definition it is elear tha t C{ F , x , Q ) is ałways closed ( but 
possibly empty ) subset of Y . In the theory of multivalued functions of 
complex variable esspecially im portant are radial, angular and curvi- 
linear cluster sets obtained from (15) by suitably choosen Q.  In order 
to generalize the Theorem 3 to higher dimensions we must define a no- 
tion of a point of asymm etry of a multifunction F  : X  — » Y  where X  
stands for an n-dim ensional Euclidean space. Let in this space, besides 
the natural topology, another topology T  be distinguished.

We will denote by CL^A, DeryH etc. the closure of the set A  C X ,  
the set if its accumulation points, etc. with respect to the topology T.  
W hen the topology T  coincides with the natural topology, we omit th isv 
additional notation.
A point i G l  will be called a T-assym m etry point of a multifunction 
F  : X  — > y  if there exists an (n — l)-dim ensional hyperplane H  
passing through x  such that

Ct ( F , x , X +) Ć C t ( F, x , X - ) ,

where X + and X ~  denote the halfspaces being the components of the 
set X  \  H.  Observe th a t Theorem 3 on countability of the set of asym-
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m etry points of a multifunction of one real variable cannot be car- 
ried over to multifunctions of many variables, as the following example 
shows

(17) R ’ l { x , » ) ^ F { x , y )  = {  [ ^

However, in this case the cr-ideal of countable sets may be replaced 
by the u-ideal of meager sets

T h e o re m  4 Let F  : X  — > Y  be a multifunction defined on an n -d i-  
mensional Euclidean space X  and takmg his uahies in a second count
able space Y . The set o f assymetry points o f F  is o f the first category.

P ro o f . Acting as in the proof of Theorem 2 and 1 it suffices to prove 
th a t the sets

AsymB  = Der(B  fi A + ) A Der(Z? H X - ),

for B  = F~( Un), n =  1 ,2 , . . .  are nowhere dense. Namely let B  C X  
and let K  be an arbitrary  bali in the space X .  We will show that 
there exists a bali K i C K  disjoint with the set AsymB. First, if K  
is disjoint with AsymB it suffices to put AT — K.  So let x £ K  fi 
AsymjB. Conseąuently there exists a decomposition X  = X + U H  UA'~ 
corresponding to the point x  and such that x  £ AsymB. W ithout loss 
of generality we may assume that x 0  Der(Z? D A'+). Then there exists 
a bali K 0 centered at x such that K qC\X+ C\B — 0. Now let K\ be a bali 
contained in I<0 D X +. The set AT fi B  C K 0 D X + (T B  must be empty 
which implies th a t the bali AT does not contain any accumulation point 
of the set B  and conseąuently any of its asymmetry points. That ends 
the proof.

R -em ark 3 This proof is almost idenitcal with the proof of Theorem 4 
in [12], only the meaning of the set B  is different. Note tha t a formuła 
(7) in Theorem 3 in cited Świątkowski’s paper concerns the points of 
T-sym m etry, but not T-asym m etry, as it is errorously statecl.

Repeating the proofs of Theorem 5 and 6 from [12] with the obvious 
changes we can obtain a characterization of T -asym m etry points where
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T  is density topology, with respect to the ordinary differentiation basis. 
Such points will be called ordinary approximative asym m etry points.

In fact, we have

T h e o re m  5 The ordinary approximative asymmetry points o f a mul- 
tifunction F  : X  — > Y  defined on a finite dimensional Euclidean space 
X  form  a set o f the first category. Moreouer, the Lehesgue measure of 
the set o f ordinary approximative asymmetry points o f F  is equal to 
zero.

The cr-porosity of the set of approximative symmetry points, in the 
spirit of [15], as well as asymmetry points with respect to another fine 
topologies (Hashimoto topology e.g.) will be investigated in a later 
paper.
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