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Decomposabłe subsets are S-convex
Włodzimierz A . Ślęzak

Let (O, E,/z) be a measure space, where S is a cr-algebra of subsets 
if U and /z is a finite nonatomic measure on E. Given a Banach space E 
with the norm | • |, let L 1 =  Lx(0 , E)  be the Banach space of all 
Bochner ^-integrable functions y : fi * E,  endowed with the noim

( I )  || y  | | i =  J  I y ( w )  I M “ )-

A subset K  C Ll is said to be decomposabłe (cf. [14], [20], [2] [4], [10],
[II], [5]) if ku k2 e  K ,  A e  s  implies IA ■ h  +  Iq\a • h  6 K , where IB 
stands here for the indicator ( =  characteristic function ) of a subset 
B e  S. Decomposabłe subsets have many applications in the theory 
of multifunctions, sińce the set of all integrable selections for a given 
multifunction F  : D — * E is decomposabłe. In the present note we 
investigate the relationships between decomposability and others kinds 
of generalized conexity ([12], [13], [6], [15] -  [18], [30]), mainly the 5- 
convexity introduced by L. Pasieki (see [21] -  [25], [28] [29]). This 
allows us to deduce, as a corollaries of existing for 5 -convexity results, 
some new and seemingly interesting properties of multifunctions with 
decomposabłe values. In the seąuel Y  (=  L1) will allways denote a 
separable Lebesąue space.

Definition 1 [16] A C-convexity on a set Y  is a collection C  of subsets 
of Y  such that C  is closed under formation of intersections, in particular



0 G C  and Y  £ C. Associated to a convexity C  on Y  is a hull-operator 
hc  defined on B  C Y  as follows

(2) P( Y )  9 B  i— ■> hc {B)  =  f ) { ^  - B  C K  C C }  C C C  P ( Y) ,  

where P ( Y )  — { B  : B  C Y } .
The hull of a finite set is called a polytope. After Hammer [13], a 
convexity structure C  having the property

(3) hc (B)  =  U {^ c (T )  : T C B  , card T  <  tt0}

will be called domain finite.

P ro p o s itio n  1  The family C o f all decomposabłe subsets o f Y  consti- 
tutes a C-convexity which is domain-finite.

P r o o f . Obviously the intersection of any family of decomposabłe 
subsets is decomposabłe. Denote by dec the operator (2) defined for 
the family C  of decomposabłe sets. We give another characterization 
of this hull-operator. Let A „, n =  1 , 2 , . . .  be the family of all n-tuples 
(A i, A 2, . . . ,  A n) of measurable subsets A,- G £  such that

( 4 )  , , ( n  \  U  Ai) =  o

i=l

and

(5) p(Ai n A m) -  0 if m € { 1 ,2 , . . .  ,n }  \ {*'}.

Next define for n =  1 ,2 , . . .  and for B  C Y

(6 ) hn(B)  =  {IaiV 1 +  Ia2U2 +  • • • +  IAnUn 6  h  : Uh • ■ • 1 Un € B,
(A i, A 2 , . . . ,  A n) G A „ } ,

and, assuming ho(B) =  B , let us put

OO

(7) h( B) =  IJ
71=0
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Observe, that for any subset B  C Y  we have decB  =  h(B).  In fact, 
if ki £ hn(B)  and &2 € hm(B)  then clearly +  Ięi\Ak? belongs 
t° hn+m(B)  which in turn is contained in h(B).  Thus h(B)  is de- 
composable and bearing in mind that B  C h(B),  according to (2), 
dec(B) C h(B).  On the other hand, if K  is any decomposabłe subset
containing B,  then clearly hn(B)  C I (  for all n =  1 ,2 ,___

In order to prove (3) observe that

(8 ) hn(B)  =  (J {  dec {y i , y2, " - , y n} ■ (j/i, 2/2 , • • •, yn) 6  Y n).

That ends the proof.

R em ark  1 The closure operator (2) ^njoys certain properties identical 
to those of the closure operator in topology, among which are:

(9) B C d e c B , B  G P(Y) ,

( 1 0 ) Bi  C B 2 = >  dec Bi C dec B?

(11) dec(dec B) — dec B

(12) B e C  «= >  dec B — B.

Definition 2  [31] If, in addition to convexity C, the set Y  also carries 
a topology, then (Y, C ) is called a topologica.1 convex structure (cf. also
[16], [17], [30]) provided all polytop es are closed. In a topological convex 
structure we may define a closed-convex hull operator

hc  : P ( Y )  — ► P ( Y )

by formuła

(13) h*c (B ) =  f ] { D :  B  C D =  clD € C} ,

where cl : P ( Y )  — * P ( X )  is the closure operator in the topological 
space Y.  Note that in generał h*c (B )  differs from clhc(B) .  The eąuality 
M B)  =  d  hc {B)  holds if our topological convex structure (Y, C , cl) is 
closure stable, it means the closure of a C-convex set is C-convex again.
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Proposition 2 The family C of all decomposabłe subsets o f Y  consti- 
tutes a topological convex structure which is closure-stable.

Proof. Observe that the limit of a seąuence of terms of the form 
lA1yi +  lA2y2 +  --- +  lA„yn with fixed y i , y2, . . .  , yn and (Au A 2, . . . ,  A n) 
runing over A „ must be of the same form, so that all polytopes are 
closed. It is also easily checked, by passing to the limit, that the closure 
of any decomposabłe set must be decomposabłe.

Following Pasieki ([21] - [26]) a set Y  is 5-linear if there is a mapping 
S : Y  x [0,1] x Y  — ■> Y  such that S (a,0 , b) =  6 and 5(a, 1 , b) =  a 
for all a, b 6  Y.  Note that the pair (Y, S) is a convex prestructure in 
the sense of Gudder, Schroeck [12]. For any subset B  of 5-linear set Y  
define

(14) coS(B)  =  f ) {Z )  C Y  : B C S * (B  x [0,1] x D)  C D) ,  

where

S * ( B x [ 0 , l ] x D )  = IJ U
aeB 0 < ł < l  beD

Observe that coS : P { Y ) — > P{ Y )  is a preconvex hull operator on Y  
that means that the following two conditions, analogous to (9) and (10) 
are satisfied

(15) B  C coSB  for any B C.Y,

(16) Bi C B2 = >  coS Bi C coS B 2 for any B i , B 2 C Y.

Therefore the family

(17) Cs =  { B C Y :  B =  c o S B }

is a (7-convexity on Y.  There exists an example showing that coS  may 
fail to be a convex hull operator, namely coS coS coS  in generał 
(see [28] ). But if we define hcs as in (2) then there exists an (possibly 
transfinite) iteration coS o coS o coS o . . .  coS o . . .  giving hcs =  (coS)a. 
Evidently coS <  hcs on P(Y) .  In case when the space (Y, S) is endowed
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with a topological structure, it is then to impose certain continuity- 
like conditions on S. An 5-linear topological space is 5-contractible if 
* % ,-,• ) : [0 , 1 ] X Y  — > Y  is a homotopy joining the identity 5 (a ,0 , •) 
with a constant map. In the special case when S is continuous on 
Y  x  [0,1] X Y  as a function of 3 variables, the above notion coincides 
with the notion of eąuiconnected space, as defined in [6] - [9], [15]. In 
this case S is called an eąuiconnecting function.

P ro p o s it io n  3 There exists an equiconnecting function

S : Y  x [0,1] x Y  — » Y  

fo r  which each decomposabłe subset oj Y  is S-convex.

P r o o f . First define a multifunction H  : Y  x Y  — * Y by formuła

(18) H( y i , y 2) =  dec( {yu y2})  e  C.

We shall prove that H is lower semicontinuous on the space Y  x Y. 
This means that y° € H(y^,y°)  and U open containing y° imply that 
there is an open set G  in Y  x V  such that whenever {y\,yf) (E G  then 
H ( y i , y 2)T\U ±  0. Let U be an open set in Y. We may suppose without 
loss of generality that U is a bali U =  B( y , r )  C Y.  If H(y^,y^)C\U 0,
then there exists a measurable subset A € E such that

(19) || i A yi +  h\A y° - v  lli< r-

Thus there is a positive number rj for which

(20) /  | IAy°(u>) +  In\Ay“(w) -  y H  I dft(u>) =  r -  n.
J n

For any y{ e  B(y f ,  ^ ) ,  i € {1 ,2 } , the following estimate holds

( 21 )  II i A y i +  h \ A V 2  -  y  | | i  <  || i A y i  — l A y\  1 1 1  +

- I -  I I  IAy °  -  IAy  -  Iu\Ay  +  Iq\aV2 1 1 1  +  I I  Jn\AV2 ~  h \ A V 2 | | i  <

^ 112/1 -  2/1 111 +  || Iay°i +  in\Ay2 -  y 111 +  II ~ y* 111 <

n  / x , r i r i ^< T  + ( r - r , )  + J  = r - J < r.
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Therefore H( y i , y 2) fi U ^  0 for any (j/i, 2/2) belonging to the open 
neighbourhood G =  B(y®, ^-) X B( y2l of the arbitrarily chosen point 
(2/1 ? 2/°) & y  X Y- Since (j/°, 2/°) was arbitrary, we infer that H  is lower 
semicontinuous on the entire space Y  x Y .  Next define a multifunction 
P  : Y  x [0,1] x Y  — * Y  by formuła:

(2 2 ) p (v  1 1/ i - /  for ° < f < 1(22) P(yi,t,y2) - |  {ya_(} f o r * € { 0 ) 1 }

By the lower semicontinuity of H we infer, by a routine manner, the 
lower semicontinuity of P  on Y  x [0,1] x Y.  Since the domain Y  X 
[0 , 1 ] x Y  is separable (as a product of separable spaces ) and sińce H 
has closed, decomposabłe values, as it is shown in Proposition 5, we 
may apply Pasicki’s selection theorem ( [24], th.3 p. 73 ) to obtain a 
continuous selection

5 : h x [ 0 , l ] x y  — >Y

for multifunction P.  This is the reąuired eąuiconnecting function sińce, 
by (22), ^ (t /i,0 ,2/2 ) =  2/2 and £ ( 2/1 , 1 , 2/2 ) =  2/i- Let I< C Y  be any
decomposabłe subset. Obviously K  C S *  ( K  x [0,1] x K) .  On the
other hand S(y\, t , y2) G /^(j/i, ,̂ 2/2) ^  c?ec{?/i, 3/2} Q K  whenever 
2/i, 3/2 C K  — decK.  Thus S * ( K  x [0,1] x K )  C K  and we have finally

(23) K  =  dec I< =  coS(K) .

That ends the proof. For a nonempty subset K  C Y  and for a positive
number r let us write

(24) B ( K , r ) = { y e Y :  d(y,I<)<  r }  =  [_ : k €

where d(x, K )  is the distance function induced by the norm in Y.

Definition 3 ( [24], df. 5 on p.67) A metric space Y  is said to be 
uniformly of Pasicki’s type II for balls if it is 5-contractible for an S 
satisfying the following condition: for any e >  0 there is 6 >  0 such 
that for any subset K  C Y  the following inclusion holds

(25) S * ( B ( K , 6 )  x [0,1] x B{ K, 6 ) )  C B(*(I< x [0,1] x I ( ) , e ) .
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Proposition 4 The Lebesque space Y  =  Li endowed with the eęuicon- 
necting function S from Proposition 3 is uniformly of Pasieki s type II 
for  balls.

Proof. Take a positive reał number r >  0 and two arbitiary points 
t/i, y2 belonging to B(I<, r). There exist k, € I<, i <E {1 ,2 }, such that 
Vi G B(ki ,r) .  We have

(26) || IAyx +  Iq\aU2 -  (L-ł^i +  In\Ah) ||i =

II (j/i -  h )  + Ięi\A { y 2  -  h )  ||i<|| 2/i -  fci Hi + II ( V2 "  **) HJ< 2r’ 
for each A £ S. Since, by (22) and (18),

(27) S(y i , t , y2) =  IaV\ +  h\AV2

for an adeąuate A  G £  and sińce (3/1 ,<, 1/2) € B ( K , r )  X [0,1] x B ( K , r )  
was arbitrary, we have in fact that

(28) S(y i , t , y2) =  B ( IAk 1 +  7 n\A 2̂ 5 2 r).

Obviously L4 L1 +  In\Ak2 G S(A ' x [0,1] x A ). Thus

(29) S * { B { K , r )  x [0,1] x £ ( A » )  C £ (* (/v  x [0,1] x A '),2r).

Taking <5 =  f  we obtain the desired inclusion (25) achieving the proof.

Remark 2 A metric space F  is called uniformly of Pasickds type 0 
for balls (see [24], [25], [26]) if it is S-contractible for an S satisfying 
the following condition: for any e >  0 theie is a 6 >  0 such that foi 
any subset K  C Y  we have

(30) coS B(I\, <5) ę  B(coS  A ,e ).

Obviously there is no S-contraction 5  on Y  =  L 1 with exactly decom- 
posable sets being 5 -convex and inverting Y  mto 5-contractible space 
of type 0 uniformly for balls. In fact coS B{K,S)  =  dec B ( K , 6 )  must 
be unbounded for any nonempty K  C Y  as it may be observed by 
constructing easy examples.
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Definition 4 [19] A collection K  of nonvoid, closed subsets of a topo­
logical space Y  is said to be equi-locally connected if for any point 
y G \J{B : B  £ K ]  and for any open neighbourhood U C Y  of this
point y there may be chosen a neighbourhood V  C Y  of y with the 
property that any two points joint by a connected subset of U fi B.

Proposition 5 The family o f all nonempty, closed, decomposabłe sub­
sets o f  Lebesgue space Y  — L\ is equi-locally connected in the Nepom- 
nyashchij sense reminded aboue.

Proof. An arc L =  {S(y\, t, yf) • 0 <  t <  1} is connected and
contained in U D  B( y , r )  whenever 7/1 , 7/2 belong to V  =  J3(j/,|). Ob- 
viously L C B  =  dec B  if { 7/1 , 7/2 } Q B , achieving the proof.
Let us recall that a multiselection for a multifunction F  : X  — > Y  is a 
second multifunction G : X  — > Y  with the property that G(x)  C F(x )  
for all x € X .  If moreover, G(x)  =  { f { x ) } ,  where /  is single-valued, 
then /  is called a selection for F.  Since each decomposabłe subset 
is (e.g. by Proposition 2) arcwise connected, we may apply, in view 
of Proposition 5, a result of G.M. Nepomnyashchij ([19], th. 1.1 ) to 
decomposabłe-valued multifunctions, obtaining the following theorem 
on extensions of continuous multiselections

Proposition 6 Let X  be paracompact topological space, Y  =  L1 the 
Lebesgue space and F  : X  — » Y  a lower semicontinuos multifunction 
with closed, decomposabłe ualues. Let A be a closed subset o f  X  and 
suppose we have a continuous multiselection Ga '■ A  — » Y  with com­
pact ualues. Then there exists a continuous multifunction G : X  — > Y  
with compact ualues such that

(31) G{a)  =  Ga {cl) C F(a)  for all a € A =  cl A,

(32) G(x)  C F(x )  fo r  all x £ X.

I f  moreouer, all ualues of Ga are connected, then G may be chosen 
also with connected ualues. The continuity o f G, Ga is considered, 
the hyperspace of closed, decomposabłe subsets being eąuiped with the 
exponential Yietoris topology.
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Proposition 4 permits us to apply a fixed-point theory for functions 
and multifunctions with values in S^contractible spaces of type II, de- 
veloped in [23], [25], [26] especially for multifunctions defined on finite- 
dimensional paracompact spaces. We include here the only sample of 
this kind.

P ro p o s itio n  7 Let F  : D  — * Y  be a compact multifunction defined 
on a compact subset D o f Y  and having closed, decomposable values. 
Then there exists d 6 D such that d G F(d) provided

F { D )  =  { J { F ( x ) :  x e  D]

is finite dimensional in the sense of cover dimension.

By using Proposition 4 we may also obtain a selection theorem without 
any assumption on the metrizability of the domain space, in contrast 
to the results from [2], [3], [10].

P ro p o s it io n  8 Let X  be a finite dimensional paracompact space. Any 
lower semicontinuous multifunction F  : X  — * Y  with closed, decom­
posable ualues admits a continuous selection.

P r o o f  This follows directly from theorem 2 on p. 67 in [24] due to our 
Proposition 4.

D efin ition  5 [19]. Let Y  be a topological space, K  =  {B j : j  G J }
any family of nonempty closed subsets of Y  and

(33) C[K\ =  { J { C ( B j ) :  j e J ),

where C(Bj )  denote the family of all connected and compact subsets
of Bj ( that means subcontinuous map l : C[I\ ] — > Y  fulfilling two 
following axioms

(34) J (W )  =  ^ f°r each singleton V1) € K

(35) l (H)  € Bj  for each H  € C{Bf )  and Bj G K,  

is called a 7C-preserving retraction.
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In the presence of such a retraction Proposition 7 remains true in 
case of single-valued G and Ga - My conjecture is that the family of all 
closed decomposabłe subsets of a separable Lebesgue space L1 admits a 
retraction preserving this family in the sense of Definition 5. Since the 
family H  of all compact, connected subsets of Y  — L1 endowed with 
Vietoris finite topology is a metrizable, separable space, it suffices to 
prove the lower semicontinuity of the following multifunction

(36) H 3 B  i— » P ( B )  =  cl dec(B)  E I<

and then a selection theorem of A. Bressan and G. Colombo [3] can be 
applied in order to obtain (33) and (34). That program seems to be 
difficult. In connection with a result of [27] establishing the structure of 
the set of fixed points of a multivalued contraction with convex values, 
we include here the following corollary from [4]

P ro p o s itio n  9 Let F  : Y  — > Y  be a contractive multifunction with 
closed, decomposabłe ualues, i.e.

(37) dH( F ( u ) , F ( v ) ) < k \ \ u - v \ \ u

fo r  some Lipschitz constant k <  1, all u and v belonging to Y , while
du denotes the Hausdorff generalized distance

(38) dn{A,  B)  =  max{sup inf || a — b ||, sup inf || b — a || }.
aeA b̂ B beB â A

Then the set o f fixed points o f F

(39) Fi x F  =  {u E Y  : u E F(u) }

is an absolute retract fo r  separable metric spaces.

It remains an open problem whether the set (39) is an absolute ex- 
tensor for paracompact spaces, sińce the separability of Y  is essential 
in the proofs of the results of [3], [4]. Note that boundedness assumed 
in Theorem 1 in [4] is unessential and that under the assumption that 
conjecture stated before is true, one can easily obtain a positive answer 
to this problem. These possibilities will be investigated later.
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