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On the Geometrical Properties of 
Starlike Maps in Banach Spaces
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1. Introduction.
Let us denote by X  the complex Banach space with the norm || • ||. 

The open bali {.t € X  : ||.t — .To|| <  r}  is denoted by B(xo,r) ;  the
unit bali, for short by 5 (0 ,1 )  =  B.  The class of all continuous linear 
functionals on X  regarded as a complex linear space we denote by X  . 
For each x £ X  we define the set

T(x )  =  { x ‘ £ X '  : ||x'|| =  1, x \ x ) =  ||x|| }.

If Y  is another complex Banach space and fi is the region in X  then 
the function /  : fi — » Y  is called (F)-dilTerentiable at the point x 0 £ fi 
when there exists the limit

Jim ~ [ f ( x o +  /3h) -  f ( x 0)] =  D f ( x 0)(h)

for all h £ X  and D f ( x 0) is the bounded linear operator from X  into 
T , what means D f ( x 0) £ L ( X , Y ) .  The norm in L(X,  V') will be

||d|| =  sup{ ||v4(x)|| : ||x-|| <  1 } for A £ L ( X , Y ) .

Fhe letter I  will always represent the identity map on X .  We cali the 
map /  : fi — ► X  holomorphic on fi C X  wlien /  is (F)-differentiable at



60 T. Poreda

all points of fL By H(fi)  we denote the class of holomorphic functions 
given on fi with values in X .  Then let M  be the following subset of 
H(B):

M  =  { h e  H(B)  : /i(0) =  0, Dh{0) =  / ,  re x\h(x) )  >  0

for x £ B  — {0 } and x £ T(x) } .

We shall say that the function /  £ H(B)  is a starlike map if and only 
if /  is one-to-one, /(O ) =  0 and (1 — t ) f ( B )  C f ( B ) for all t £ [0,1].

In this paper we will study the class Go(B)  of all function /  £ H(B)  
which satisfy the conditions : / ( 0) =  0 , D f ( 0 ) — I, f  is locally 
biholomorpliic on B  and f ( B )  is a starlike region in X.

We will consider X  with a semi-inner product structure (introduced 
by Lummer and Philips in [5] and [6]) to obtain the results analogous 
as in [4]. In a Banach space X  we get the semi-inner product as it 
follows. Let us choose one nonzero element with the norm eąual to 1 
from each complex line in X  containing the point x =  0 and denote the 
set of all chosen elements by AV Then, for each y £ X 0 let us insert 
any functional Jo(y) € T(y).  We have defined the map Jo : Xq — > X  .
Let us extend that map onto X  puttingJ(Ay) =  AJo(y) for y £ X q and
A £ C (C denotes the set of complex numbers). Now we can define the 
semi-inner product denoted by (•, •). For x , y  £ X  we put

(x ,y )  =  J{y)(x) .

It has the following properties:

a) it maps x X  into C,

b ) (x +  y , z )  =  (x, z) +  (y, z), (\x, y) =  \ (x , y),  (x , Ay) =  \(x,  y)
for x , y  £ X  and A £ C,

c) (x , x ) =  11ar112 for each x £ X

d ) \(x,y)\2 <  (^,ar) • {y,y)  for x, y £ X.
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2. The parametric representation of starlike maps of the 
unit bali in Banach spaces.

L em m a  1 Let h € M . Then for  each x £ B the initial value problem 

0v
( 1 ) - ( x , t )  =  - h ( v ( x , t ) ) ,  v(x,0)  =  x

has the unique solution v(x , t )  which is defined for  all t >  0. Fur- 
thermore, for all these t the function vt( x ) =  v(x, t )  is the uniualent 
Schwarz function on B which has its deri.vat.ives for  all orders with 
respect to the pair o f variabl.es ( x , t )  £ B  x [0,oo).

The following inequaliti.es hołd

(2)
IM*.*)II >  r -t INI 

(i+lk(^,t)ll)2 — (i+IWI

IMfillll <  e-t
(i-l|v(*,ł)||)a -  (i-INI)2 

fo r  all x £ B  and t >  0.

Proof. The existence and uniąueness of the solution of the problem
(1) follow from Lemma 5 in the paper [3]. From that paper we have as 
Weil that the function vt(x)  =  v ( x , t ) is the univalent Schwarz function 
on B  for every fixed t >  0. By applying Theorem IX 5 from [7] to the 
function v the existence of its derivatives of all orders with respect to 
ix ,t)  £ B  X [0,oo) can easily be proved. Hence we have to prove only 
the ineąualities (2). Lemma 5 in [3] implies that for almost every t >  0 
We have

Using the ineąality (24) from [3] and Dh.(0) =  /  we obtain for all x £ B  
and almost all t £ [0 , oo)

re (h(v (x , t ) ) , v ( x , t ) )  >  j +  ||^(^)|}^ ^ ’ *)H2-

Hence
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for x G B  and a.e. on [0, oo).
Since ||u(m,f)|| is an absolutely continuous function with respect to 

the parameter t , then by integrating each side of the ineąuality

1 + ||v (a r ,i) || d | |u ( x , i ) | [  <
(1  -  ||u(x,t)||)||u(x,t)|| dt 

on the interval [0 , t] we obtain

I K M ) | |  ^  - t  I N< e
(1 -  ||u(x,f)l|)2 (1 — ll^ll)2

for x G B  and t >  0.

The proof of the second ineąuality of (2) is analogous.

Lemma 2 If  h G M  then

< 2

fo r  x G B.

Proof. Let x G B  and 2: /  0. Considering the construction of semi- 
inner product we notice that if h G M  then the function

p( A) =
x ) ôr 0 <  |A| <  1

1 for A =  0

is holomorphic for |A| <  1 , and re p(A) > 0 for |A| <  1. Thus

|p (0)1 <  2 .

It can also be shown that

( t < d 2 H  0 ) ( x , x ) , x )

p (°) =   iTiii---------- ‘I N I
Then
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(4) | ( iD JM 0 )(* ,x ) ,* > | < 2  

which ends the proof.

Theorem 1 Let h £ M  and fo r  x  £ B and t >  0,v(x, t)  be the solution 
of the problem (1) and be an invertible linear operator. Then v
satisfies the differential eąuation

d v , . ,  . . d v . .
(5) —  (x, t)h(x) =  t)

fo r  x  £ B and t >  0.

Proof. The proof of Theorem 1 from [4] can be strictly repeated in 
our case.

Theorem 2 I f  a function v =  v(x , t )  for  x  6 B and t > 0 satisfies the 
eęuation (1) with any fixed h £ M , then for  all x £ B there exists the 
limit

(6) lim ełv(x,  t) =  f ( x )
t —*oo

and the function f  is holomorphic on B.

Proof. We denote u(x , t )  =  eiv (x , t )  for x £ B  and t >  0. Thus u 
fulfils the equation

(7) — (x, t )  =  u(x , t )  — eth(e~iu ( x , t ) ) ,  u(x,  0) — x.

For x  £ B  we will denote G (x) =  li(x) — x .G  is holomorphic on B,  
G (0) =  0 and D G( 0) =  0 . Using the new notation we can rewrite (7) 
m the form

(7') ^ ( x , t )  =  - e tG(e~łu ( x , t ) ) ,  u ( x , 0 )  = x
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for x  £ B  and t >  0.
Now after we integrated the equation (7 ) on the interval [̂ 1 ,^2], where 
0 <  t\ <  t2 we obtain

(8 ) u(z,  f2) — u(z, t\) — — /  eTG(e Tu(z,T))dr.
J t  1

For G is holomorphic on B  so it is also locally bounded on B.  Hence 
there exists such a bali 5 (0 , r) C B  that for all x £ 5 (0 , r) we have 
||G(:r)|| <  I(  where I\ is a positive constant from Cauchy integral 
formuła (see [2] p.101 ) there exists another bali 5 (0 , 5) C 5 (0 , |) such 
that for all a, 2; € 5 (0 ,5 )  the following eąuality holds

Since a,x  € 5 (0 ,5 )  then a +  tx £ 5 (0 , r) when |i| =  1 . Combining 
this fact with (9) we will get

for a, x £ 5 (0 ,5 ). The second derivative of G  at the point a £ 5  is a 
bilinear operator, then

(9)
1
2!

D 2G(a) (x , x )  — - —t /  f ( a  +  tx)t  3dt

(10)

when a £ 5 (0 , 5) and y £ X.
Now we use the Taylor formuła and ineąuality (10) to obtain

(U)

for 3/ £ 5 (0 , 5).
On account of (2), for each r £ (0,1) there exists some Tr >  0 such 
that, for t  >  Tr and ||.r|| < r
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Using (8 ) and ( 1 1 ) we establish

(12) \\u(x,t2) -  u(x,ti)\\ <  K  [  T2e~Tdr.
J t  i

for ||x|| <  r and t \ , t 2 >  Tr .

The function g(r)  =  r 2e_T is integrable on the interval (0, oo). This 
implies that for every £ >  0 there exists tt >  0 such that for t\,t2 >  t t

sup ||n(x, ti) — u(x,  2̂) || <  £•
||x||<r

Hence, the Weierstrass theorem (see [2], proposition 6.5 ) and com-
pleteness of X  yield that there exists lim^oo u(x, t) for all x £ B  and
it forms the holomorphic function on 13. It ends the proof.

\
Corollary 1 If  v =  v(x , t )  for  x € B and t >  0 fulfils the initial value 
problem (1) xoith some h £ M , then

(13) lim (—e~l — ( x , t ) ) =  Ynn etv(x , t )
t —+oO ( j t  t —> 00

for all x £ B.

Proof. We will use the notations as in Theorem 2. It remains to show 
that for all x £ B

f)u
lim —  (x ,t)  =  0 . 
t->°° ot

Considering (7 ) we can remark that for t >  t t and ||x|| < r

| | ^ (x , i ) | l< A - iV .

It implies that lim^oo fy(®, <) =  0 for x £ B what completes the proof. 
Lemma 1 lets us to prove, similarly as in [4], the following theorem.

T h e o rem  3 Let h £ M  and v — v(x , t )  for  x £ B and t >  0 be the 
solution o f  (1). Then the limit

lim ełv(x,  t) =  f ( x )t—f 00

25 a starlike function on B such that /(O ) =  0, D f ( 0) =  /  and 
f { v ( x , t ) )  =  e~lf ( x )  for  x £ B and t >  0.
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Theorem 4 Let h £ M  and v — v ( x , t ) fo r  x  £ B and t >  0 be a 
solution o f equation (1). If a map f  defined by the equality

f ( x )  — lim etv(x , t )  fo r  x  £ Bt—►CO

is locally biholomorphic, then it satisfies the equation

D f ( x )h ( x )  =  f ( x ), fo r  x £ B.

Furthermore, f  is a unique locally biholomorphic solution o f this equa- 
tion such that /(O ) =  0, D f { 0) =  I.

Proof. Let v and /  satisfy the assumption our theorem. From 
Theorem 3 we infer that

f ( v ( x , t ) )  =  e~tf ( x ) ,  for x £ B  and t >  0.

This eąuality implies that 

dv
D f ( v ( x , t ) ) — (x, t )  =  e~lD f ( x ) ,  for x  £ B  and t >  0.

Since /  is a locally biholomorphic map then, in virtue of the above 
eąuality, we obtain that t) is an invertible linear operator for
x £ B  and t >  0. A continuation of the proof of this theorem runs 
similarly as that of Theorem 4 from [4].

Theorem 5 / /  /  £ Go{B), then

f ( x )  =  lim ełv(x, t ) ,t—►CO

where v(x , t ) ,  fo r  x £ B and t >  0 is a solution o f equation (1) with 
function h(x)  =  ( D f ( x ) ) ~ 1f ( x ) f or  x  £ B

Proof. From the assumption it follows that (D / ) _1 o /  £ M.  So by 
Theorem 2 for all x £ B  there exists the limit lim^oo etv(x,  t). Since 
h =  (D f ) ~ 1 o /  and v satisfies the ecjuation ( 1 ), we have

9 f ( v ( x , t ) )  _  and y (X)Q) =  x



for x  £ B  and t >  0. Integrating this eąuation we get

f ( v ( x , t ) )  =  e_tf ( x )  for x £ B  and t >  0.

Hence
v (x , t )  =  f ~ 1(e~tf ( x )) for x E B  and f >  0.

It is not difficult to show that lim^oo etv(x , t )  — f ( x )  for x E B.

3. The geometrical properties of starlike maps of the unit 
bali in Banach spaces.

Theorem 6 / / /  £ Go{B), then the following inequalities hołd 

"adl .  ........  . 11x 11
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(U ) (1  +  W )2 -  11/(1)11 -  ( 1  -  IWI)2

for all x  £ B.

Proof. Since /  £ Go(B)  then from Theorem 7 in [3], there exists such 
a function h £ M  that /  satisfies the eąuation

D f ( x ) h ( x )  = f ( x )  for all x  £  B.

Theorem 5 shows that

f ( x )  =  lim etv (x , t )  for x £ B,
t —+oo

where v(x , t )  fulfils (with the given function h) the eąuation (1). Hence

ll/W II =  ,lim ^ I H M )!!  for x  € B ■t —►CO

The ineąualities (2) take place for the function u, so

lim ||u(x,t)\\ =  0
t —►CO

lor x e B  and conseąuently

f°r all x E B.
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( is )  i i w w n i  >
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1 +  IW I

Proof. Let /  E Go(B).  There exists h E M  such that /  satisfies the 
eąuality

D f ( x ) h ( x )  — f ( x )  for x E B.

(see Th. 7 from [3] ). Next we can remark that

(h(x) , x)  =  ( (D f ( x ) ) ~ 1f ( x ) , x )

for x E B  and, considering (24) from [3], that

(16) re (h(x) , x )  >  ||x||2 f ° r x E B.

Using the properties c) and d) of the semi-inner product we obtain

(16') |(&(x),x)| <  ||(D /(x))"1 /(x)|| • ||x|| for x E B.

The properties of the linear operator’s norm and the ineąualities
(14) give us

II (C /(x ))-/(x )| |  <  | | (fl /W )- 1 ( 1 ^ ||)2 for

and further, applying (16) and (16’ )

'I1 "2™  s+  IHI -  uv "  11 (1  -  w il)2

It gives (15).

Theorem 8 If  f  E Ga{B), then

(17) l (^ W 2/ (0 )W x ),x )|  <  2 for x  E B.

for x  E B.
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P ro o f. The paper [3] shows the existcnce of such a function h G M  
that D f ( x )  h(x)  — f ( x )  for x 6 B.  Let us fix x-o € B. We will consider 
two functions

Gro(A) =  D f(\ x 0)h\\x0),

HX0(X) = f ( X x 0)

for |A| <  1 . They are holornorphic on the unit bali in C and map it into 
the Banach space X .  Naturally Gxo =  HXq.
It is easy to show that

Gxo(0) =  2D2f ( 0 ) ( x o, x o) +  D2/i(0)(aro,x o)

and

IIX0( 0 ) =  D 2f (  0 )(xo,x o)

Hence
D 2 f (0) (xo,  xo) +  D 2li(0)(.x-o,x’o) =  0.

Taking an arbitrary x G B we can obtain

D 2f ( 0 ) ( x , x )  =  - D 2h(0)(x,x) .

Now one should apply lerama 2 to get (17).

T h eorem  9 / / /  G Qo{B), then for each n G N nad n >  2

(18) || l£>W /(o)(x ")|| <  L ( n +  1)2 fo r  nn x e  B .
n! 4

P ro o f. Let x  be the fixed functiona.1 from X'  such that 11.-c' 11 =  1 and 
let x0 g B.  We define the function FXo in the following way

Fxo(X) =  x \ f ( X x 0)) for |A|< 1 .

This function is holornorphic on the unit bali in C and with regard to 
theorem 6 , satisfies the condition
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Applying the Cauchy ineąuality to

f W ( 0) =  z '(D <">/(0 ) ( * ; ) )  for

we get

| i* '(D « " » / ( 0) W ) ) l  <  r „ - , ( 1 ll̂ °J!||

for each 0 < r <  1 and n E N,  n >  2. Since

I N I e2

min ----- "~u" —  <  — (n +  l )2 for n >  2 ,
o<r<i rn_1(l — ?'||ar01|)2 4

then

(19) | i l '( r > W / ( 0 ) W ) l <  j ( «  +  l )2 for rc >  2.

Using Theorem 813 from [1] p.139, for any fixed xq E B  and n >  0 
we conclude that there exists such a functional x0 E X  that ||x0|| =  1 
and

4 (£>W / (  0 )(xS)) =  ||£><” > /(0)(x o” )||.

Now, applying (19) we obtain (18).

Remark In the case X  — C the results of Theorems 6,7 and 8 as- 
sume the form of the well know estimations for starlike functions of one 
complex variable. So when X  =  C the ineąuality (14) gives us

<  \f{z)\ <  77 K  i\o for \z \ <(l +  \ z \ ) * - ' J ' " - ( 1 - k l )2 

from (15) we get

-  (T -  \z\y  for <  1

and from (17)

l ^ / ' ( 0)l <  2 .

This fact implies that we cannot improve obtained results generally for 
an arbitrary Banach space.
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