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On the Geometrical Properties of
Starlike Maps in Banach Spaces

Tadeusz Poreda

1. Introduction.

Let us denote by X the complex Banach space with the norm ||}
The open bali {{t € X : [It—To]] < r} is denoted by B(xo,r); the
unit bali, for short by 5(0,1) = B. The class of all continuous linear
functionals on X regarded as a complex linear space we denote by X .
For each x £ X we define the set

T(x) = {x"'£ X" : IKI = 1, x\x) = KMl }

If Y is another complex Banach space and fi is the region in X then
the function / : fi — » Y is called (F)-dilTerentiable at the point x0 £ fi
when there exists the limit

Jim ~[f(xo0+ /3n) - f(x0)] = Df(x0)(h)

for all h £ X and Df(x0) is the bounded linear operator from X into
T, what means Df(x0) £ L(X,Y). The norm in L(X, V) will be

ldll = sup{ 1MXII: Il < 1} for A £ L(X,Y).

Fhe letter I will always represent the identity map on X. We cali the
map / : fi — »X holomorphic on fi C X wlien / is (F)-differentiable at
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all points of fL By H(fi) we denote the class of holomorphic functions
given on fi with values in X. Then let M be the following subset of
H(B):

M = {he H(B) : /i(0) =0, Dh{0) =/, rex\h(x)) > 0

for x £ B —{0} and x £ T(x)}.

We shall say that the function / £ H(B) is a starlike map if and only
if / is one-to-one, /(O) = 0 and (1 —t)f(B) C f(B) for all t £ [0,1].

In this paper we will study the class Go(B) of all function / £ H(B)
which satisfy the conditions : /(0) = 0, Df(0) — 1, f is locally
biholomorpliic on B and f(B) is a starlike region in X.

We will consider X with a semi-inner product structure (introduced
by Lummer and Philips in [5] and [0]) to obtain the results analogous
as in [4]. In a Banach space X we get the semi-inner product as it
follows. Let us choose one nonzero element with the norm egual to 1
from each complex line in X containing the point x = 0 and denote the
set of all chosen elements by AV Then, for each y £ X0 let us insert
any functional Jo(y) € T(y). We have defined the mapJo:Xq — > X .
Let us extend that map onto X puttingJ(Ay) = AJo(y)fory£ X cand
A £ C (C denotes the set of complex numbers). Now we can define the
semi-inner product denoted by (e, ). For x,y £ X we put

(x,y) = I{y)(x).
It has the following properties:
a) it maps X X into C,

b) (x+vy.z) = (x,2) + (y,2), \x,y) = \(X,y), (X, AY) = \(X,y)
for x,y £ X and AE£ C,

c) (x,x) = Hal1l for each x £ X

d) \(xyN\2< (Mar) o{y,y) for x,y£ X.
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2. The parametric representation of starlike maps of the
unit bali in Banach spaces.

Lemma 1 Let h€ M. Then for each x £ B the initial value problem
Ov
() -(x,t) = -h(v(x,1)), V(x,0) = X

has the unique solution v(x,t) which is defined for all t > 0. Fur-
thermore, for all these t the function vt(x) = v(x,t) is the uniualent
Schwarz function on B which has its deri.vat.ives for all orders with
respect to the pair of variabl.es (x,t) £ B x [0,00).

The following inequaliti.es hotd

IMAI . > r-t  IN
(KON —  ([i+HW

(2)
IMfillll - < e-t
@IveDIDa - (-IND2

forallx £ B and t > 0.

Proof. The existence and unigueness of the solution of the problem

(1) follow from Lemma 5 in the paper [3]. From that paper we have as
Weil that the function vt(x) = v(x,t) is the univalent Schwarz function

on B for every fixed t > 0. By applying Theorem IX 5 from [7] to the

function v the existence of its derivatives of all orders with respect to

ix,t) £ B x [0,00) can easily be proved. Hence we have to prove only

the inegualities (2). Lemma 5 in [3] implies that for almost every t > 0

We have

Using the inegality (24) from [3] and Dh.(0) = / we obtain for all x £ B
and almost all t £ [0,00)

re (h(v(x,1)),v(x,1)) > j+ [} 7~ " 9)H2

Hence
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for x G B and a.e. on [0, 00).
Since |JJumf]] is an absolutely continuous function with respect to
the parameter t, then by integrating each side of the ineguality

1+ jviari) dfjuCiil <
(- NuxdIDuoll  dt

on the interval [0, we obtain

KM At N

<

@- JJuxHlp2 (1 —1IN2
for x GB and t > 0.
The proof of the second ineguality of (2) is analogous.

Lemma 2 Ifh GM then

for x G B.

Proof. Let x GB and 2/ 0. Considering the construction of semi-
inner product we notice that if h G M then the function

x) %r 0< |A|<1
p(A) =

is holomorphic for | < I, andre p(A)> 0 for Al <1. Thus

Ip(0) < 2.

It can also be shown that

(t<d2H 0)(x,x),x)
Py = i

Then
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(4) | (iDIMO)(*,x),*>]|<2

which ends the proof.

Theorem 1 Leth £ M andfor x £ B andt > 0,v(x,t) be the solution
of the problem (1) and be an invertible linear operator. Then v
satisfies the differential eguation

) D thog = Yy
for x £ B andt > 0.

Proof. The proof of Theorem 1 from [4] can be strictly repeated in
our case.

Theorem 2 If afunction v = v(x,t) for x 6 B and t > O satisfies the
eeuation (1) with any fixed h £ M, then for all x £ B there exists the
limit

(6) Jlim edv(x, t) = f(x)

and the function f is holomorphic on B.

Proof. We denote u(x,t) = eiv(x,t) for x £ B and t > 0. Thus u
fulfils the equation

(7) — (x,t) = u(x,t) —eth(e~iu(x,t)), u(x, 0) —x.
For x £ B we will denote G(x) = li(X) —X.G is holomorphic on B,

G(O) = 0 and DG(O) = 0. Using the new notation we can rewrite (7)
m the form

(7 Nx,t) = -etG(e~tu(x,t)), u(x,0) =x
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for x £ B and t > 0.
Now after we integrated the equation (7 ) on the interval ["1 ,"2], where
0 < t\ < t2 we obtain

(8) u(z, f2) —u(z, t\) ——/ eTG(e Tu(z,T))dr.

Jtl
For G is holomorphic on B so it is also locally bounded on B. Hence
there exists such a bali 5(0,r) C B that for all x £ 5(0, r) we have
IHHGMII < 1( where I\ is a positive constant from Cauchy integral

formuta (see [2] p.101 ) there exists another bali 5(0, 5) C 5(0, |) such
that for all a, 2 € 5(0,5) the following eguality holds

9) 21!D2G(a)(x,x) —-—t/ f(a + tx)t 3dt

Since a,x € 5(0,5) then a+ tx £ 5(0, r) when |i] = L. Combining
this fact with (9) we will get

for a,x £ 5(0,5). The second derivative of G at the point a £ 5 is a
bilinear operator, then

(10)

when a £ 5(0, 5) and y £ X.
Now we use the Taylor formuta and ineguality (10) to obtain

(V)

for 3 £ 5(0, 5).
On account of (2), for each r £ (0,1) there exists some Tr > 0 such
that, for « > Tr and ||l < r
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Using (8) and (11) we establish

(12) \N\u(x,t2) - u(t)\\ < K [ T2e~Tdr.

Jti

for |l < r and t\,t2 > Tr.

The function g(r) = r2e_T is integrable on the interval (0, 00). This
implies that for every £ > 0 there exists tt > 0 such that for t\,t2 > tt
sup JIn(x ti) —u(x, 2) I < £

lixll<r
Hence, the Weierstrass theorem (see [2], proposition 6.5 ) and com-

pleteness of X yield that there exists lim”~oo u(x, t) for all x £ B and

it forms the holomorphic function on 13 It ends the proof.
\
Corollary 1 Ifv = v(x,t) for x € B and t > 0 fulfils the initial value

problem (1) xoith some h £ M, then

(13) Iim(—e~I: (x,t))= t\121(%’(1)et\/(x,t)

t—00

for all x £ B.

Proof. We will use the notations as in Theorem 2. It remains to show
that for all x £ B

Considering (7 ) we can remark that for t > tt and || < r
11 MG I<A-IV.

It implies that lim”~oo fy(®, < = 0 for x £ B what completes the proof.
Lemma ! lets us to prove, similarly as in [4], the following theorem.

Theorem 3 Let h £ M and v —v(x,t) for x £ B andt > 0 be the
solution of (1). Then the limit

tﬂgo etv(x, t) = f(x)

5 a starlike function on B such that /(O) = 0, Df(0) = / and
f{v(x,t)) = e~If(x) forx £ B and t> 0.
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Theorem 4 Let h £ M and v — v(x,t) for x £ B andt > 0 be a
solution of equation (1). If a map f defined by the equality

f(x) —tlu_'&:etv(x,t) for x £ B
is locally biholomorphic, then it satisfies the equation
Df(x)h(x) = f(x), for x £ B.

Furthermore, f is a unique locally biholomorphic solution of this equa-
tion such that /(O) = 0, D f{0) = I.

Proof. Let v and / satisfy the assumption our theorem. From
Theorem 3 we infer that

f(v(x,t)) = e~tf(x), for x £ B and t> 0.

This eguality implies that
dv
Df(v(x,t))— (x,t) = e~IDf(x), for x £ B and t> 0.

Since / is a locally biholomorphic map then, in virtue of the above
eguality, we obtain that t) is an invertible linear operator for
x £ B and t > 0. A continuation of the proof of this theorem runs
similarly as that of Theorem 4 from [4].

Theorem 5 /// £ Go{B), then
f(x) = tll%el’V(X,t),

where v(x,t), for x £ B and t > 0 is a solution of equation (1) with
function h(x) = (Df(x))~1f(x) forx £ B

Proof. From the assumption it follows that (D/) l o/ £ M. So by
Theorem 2 for all x £ B there exists the limit lim”~oo etv(x, t). Since
h= (Df)~l o/ and v satisfies the ecjuation (1), we have

9f(v(x,t)) _ and y(X)Q) = x
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for x £ B and t > 0. Integrating this eguation we get
f(v(x,t)) = e_tf(x) for x £ B and t> 0.

Hence
v(x,t) = f~1(e~tf(x)) for x EB and f> 0.

It is not difficult to show that lim~oo etv(x,t) —f(x) for x E B.

3. The geometrical properties of starlike maps of the unit
bali in Banach spaces.

Theorem 6 /// £ Go{B), then the following inequalities hotd

"adl C o Ikl
(U) (L+w )2 - WOW- (1- w2

for all x £ B.

Proof. Since / £ Go(B) then from Theorem 7 in [3], there exists such
a function h £ M that / satisfies the eguation

Df(x)h(x) = f(x) for all X £ B.
Theorem 5 shows that
f(x) = tI_|+rr<}oetv(x,t) for x £ B,
where v(x,t) fulfils (with the given function h) the eguation (1). Hence
H/wil = ,ﬂ[g’\IHM)!! for x € Bm
The inegualities (2) take place for the function u, so
lim JJuxb\ = 0
t—»Q0

lor x e B and conseguently

for all x E B.
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Theorem 7 Iff E Go{B), then for all x EB

(is) fiwowonio>

Proof. Let / E Go(B). There exists h E M such that / satisfies the
eguality
Df(x)h(x) —f(x) for x E B.

(see Th. 7 from [3] ). Next we can remark that
(h(x),x) = ((Df(x))~1f(x),x)

for x E B and, considering (24) from [3], that
(16) re(h(x),x) > [I4[2 for x E B.
Using the properties ¢) and d) of the semi-inner product we obtain

(16 1(&)X)1 < THD/x)"'L)1T =Ml for x E B.

The properties of the linear operator’'s norm and the inegualities
(14) give us

L(C/x)-10)1 1 < L1Ew)-1 (1A )2 for
and further, applying (16) and (16’)
f B.
MWU2™E HE s w L (- wil)2 orxE
It gives (15).

Theorem 8 Iff E Ga{B), then

(17) ("W 2/(0)W x),x)] <2 for x E B.
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Proof. The paper [3] shows the existcnce of such a function h G M
that Df(x) h(x) —f(x) for x 6 B. Let us fix x0 € B. We will consider
two functions

Gro(A) = D f(\x0)h\\x0),
HX0(X) = f(Xx0)

for P < L. They are holornorphic on the unit bali in C and map it into
the Banach space X. Naturally Gxo = HXg.
It is easy to show that

Gxo(0) = 2D2f(0)(x0,x0) + D2/i(0)(aro,xo)

and
1xo(0) = D2f(0)(x0,x0)

Hence
D 2f(0)(xo, xo0) + D2li(0)(.x0,x'0) = O.

Taking an arbitrary x G B we can obtain
D2f(0)(x,x) = -D 2h(0)(x,x).
Now one should apply lerama 2 to get (17).

Theorem 9 /// G Qo{B), then for each n GN nad n > 2

(18) I HE>W/()(X)I] < L(n+ 1)2 for nn x e B.
n! 4

Proof. Let x be the fixed functiona.1 from X' such that I<¢1= | and
let xO g B. We define the function FXo in the following way

Fxo(X) = x\f(Xx0)) for JA]< l.

This function is holornorphic on the unit bali in C and with regard to
theorem 0, satisfies the condition
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Applying the Cauchy ineguality to
fw (0) = z/(D<">/(0)(*:))  for
we get
1i='(D«>»/(Ow NI < r, -, (lireay

foreach O<r< land n EN, n > 2. Since

o INJ e
o<rei rn_1(l —lJ.’;||a01|)2 <70 )2 for n>2,
then
(19) [il'(r>W/(0)W )I< j(« + 1)2 for > 2.

Using Theorem 813 from [1] p.139, for any fixed xq E B and n > 0
we conclude that there exists such a functional x0 E X that [pOl= 1
and

4 &>w/(0)(xS)) = I >/(0)(x B)II.
Now, applying (19) we obtain (18).

Remark In the case X — C the results of Theorems 6,7 and 8 as-
sume the form of the well know estimations for starlike functions of one
complex variable. So when X = C the ineguality (14) gives us

(1 + \z\)5- YN _<(7{ Ko for <

from (15) we get

- (T-\2y for <1
and from (17)
I~ 7O < 2.

This fact implies that we cannot improve obtained results generally for
an arbitrary Banach space.
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