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ON ABSOLUTE EXTENSORS
1 . Introduction and preliminaries
A topological space Y is called an absolute extensor for 
metric spaces, briefly AE, if , whenever X is a metric 
space and A is a closed subset of X , then any continuous 
function from A into Y can be extended to a continuous funct­
ion from the whole space X into Y (cf. (l53t[2j, pp.66-70) . 
It is well-known that a convex subset of a locally convex 
linear topological spaoe is an AE (see (3 ] and 18]). In (1 1J , 
pp. 1 8 7 - 1 8 9  J. Dugundji proves that also all real vector 
spaoes with the finite (Vhitehead) topology (which need riot 
be locally convex nor even linear topological spaces) have the 
property of being an AE. In L7 3 , theorem Z,k , this property 
is proved for spaaes with so-called local convex struoture 
(see (l6l, of. also (1 0 ] and [12]). Generalizing the concept 
of local equiconnectedness introduced by Fox in [12} and 
studied in [7 ], flf>3, Cl63,[9], Leoh Pasicki recently developed 
the theory of S- contraotibility and defined two olasses of 
spaces connected with this notion (see [l 83-L"2l3J. The purpose 
of this note is to investigate the possibility of replacing 
the class of locally convex linear topological spaces in 
Dugundji*3 extension formula by a more general class of 
S- contractible spaces. We repeat the notions related to 
S- contraotibility.
A set Y is S—linear if there is a mapping S : Y x[0;lJxY->Y 
such that S(a,0,b)= b and S(a,1,b)= a for all a,bt Y.
Note that the pair (Y,S) is a convex prestructure in the sense
of Cl 3 3 .
For any subset B of S-linear set Y define
4 1) co S(B):= H [ d C Y  : B<iS-#(Bx fO;l]xD)<^D}
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where S*(Bx[0;l]xD):=U(S(a,t,b): a 6. B, b d D, ij.
For B = 0 let oo s(b):= 0 .

It la easily checked, that B<c c o S(b ) so that above 
definition is correct,
A topological space Y is locally S- oontractible if Y is 
S-linear and for every y 6. Y there exists a neighbourhood U 
of y such that for every a t O ,  the value of tm exponential 
mapping G([S(a, * ,*)!)= g^ : fO,l] — ^ C(U, Y) defined by 
formulas
(.2) ga (t):= ft, U 3 b  (--> ft(b) = S 1(a,t,b)6Y ,
S j = S | U xf0;ljx U denoting restriction of , is continuous, 
where the set C(U,Y) of all continuous maps from U to Y 
is equipped with the quasi-compact-open topology. If TJ = Y 
for all y £■ Y, then Y is called S-contractlble.
By using the properties of quasi-compact-open topology 
(contained in many handbooks on homotopy theory, e.g. Sze-Tsen 
Hu) we may formulate an equivalent definition (cf. f193» 
p.596):

An S- linear topological space Y is S- contractible 
if S(a, • , •) :fo,llx Y Y is a homotopy joining the iden­
tity S(a,0,t) = idy with a constant map S(a,l,»)= const^.
A topological space Y is locally of Pasicki type I if it is
locally S-oontractible for sin S satisfying the following 
condition:
( 3 ) For every y 6 Y and any neighbourhood V of y there 

exists a neighbourhood U of y such that coS U c.V.
If Y is S- contractible and the above condition (3 ) bolds,

then Y is called to be of Pasicki type I. In the special
case when S is continuous on UxK),l]x U as a function of
3 variables the above definition agrees with [7 .] , P.103^  ̂ • 
We introduce some more general notion:
DEFINITION: An S-contractible space Y is of type m if, 
for every metric space X and every continuous map f : X -^Y 
the following is truei

) For each x X and each neighbourhood Vc'Y of f(x)

/
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there is a neighbourhood of x «LX and some subset C«^Y
such that

f -* w C- C ̂  60 S C<CV . x
REMARK 1. This class of S-contractible spaces includes all 
Pasicki type I spaces. Indeed, put C = U c coS(U j in (U) in 
order to obtain (3 ) . Notice, that in our definition the set 
C may fails to be open. On the other hand, the class of 
S-contractible spaces of type m includes all Dugundji affine 
spaces of type m (see Tl1j» P.187J, in particular all real 
vector spaces with the finite topology for an S defined as 
follows :
(5) S(a,t,b)= ta + (1 -t )• b .
This also shows that our definition is essentially more gene­
ral, since each vector space Y being S-contractible for an 
S defined by (5) is locally convex, while vector spaces with 
the finite topology, as is shown in the appendix to (11], may 
fail to be linear topological spaces.
2. A generalization of Dugundji extension theorem

We are now in a position to state and prove our main 
theorem:
THEOREM. Let (X,d) be an arbitrary metric space, A = cl A<^X 
a closed subset, and Y an S-contractible space of type m. 
Then each continuous map f : A — > Y  has a continuous extens­
ion E(f): X —>  Y such that
(6> E(f ) * X cfcoS(f * A)]

PROOF: For each x & X-A let B^ be an open ball centered 
at x with radius r(x)<dist^x,A^/2 . The f antily ; x£X-Aj- 
is an open cover of the paracompact X-A, so it has a neigh­
bourhood-finite refinement : t £ T j  . Let B (A, 2r) : =
^x1 ^-X : dist (x^ , A)< 2r } . Observe that a ball B^ centered 
outside B (A ,2 r ) cannot intersect B(A,r). Indeed, pick
x,£ B and observe that 1 x
dist (x1 , A> >, dist^x,A) - d (x1 , x ) > dist (x, A) - dist(x,Aj/2 =
= dist(x,A)/2 > r . Consequently any U that intersects 
B(A,r) is contained in a B centered within B (A, 2r) and so



has disaster diam Ut := sup (dfac^Xg); Cx^,x2)eUt x U t>j<
£ dlaa B ^ ^ 2  r<x) 4. dist (x, A)£2r .
With each (nonempty) U assooiate a point a . e  A as follows:fc t
choose an and find at£ A  with d(xt, at)< 2 dist (xt< a ) . The
fundamental property of "Dugundji system" \ (û , at): t^ T  J is:
(? )  for each a A  and each neighbourhood
*# in X, there is a neighbourhood V ^ c V ^  suoh that

»t 0 V& / )< implies fut<iVa ]and a^t A O  W& .
Indeed, we can as suae V& = B(a,r). Talcing Va = B(a, r/12,),
any Ut intersecting Va has disaster diaa U ^ r / 6  so that it 
is ooapletely within B(a, r/4). For any suoh t we have
d(xt»*)<r/?* , so that dist £xt# A) ̂  r/4 and also

d(at.a)^d(at,*t ) + d(*t,a)f 2d(xt, at) ♦ dist Cxt, A )<Jr/4 ; 
that is at ^-wa « Suppose that -i is a total ordering of the set
T. Let £kt : t e T} be a partition of unity on X-A subordinated
to (ut : t 6 T }  . For each x feX-A define

Tx := (tfcT : k t C*)/ 0 } =: { ^  , t2 , . . . , tn }
where n = n(x) and t ^  t^. Put
(8) ot (x):= kt (x)/ max [kt (x): t £
and define E (f ) : X  Y by foraula (of. C13):

( f (x ) ; x <£ A
(9) ECfJC*) := Sfl>t » ot^cx), S(bt^? c^CxJ) > S (...

(_•••* S Cbi 1 b) , •••) * * ̂  X-A
n n

where bt := f(at ) and b=f(a) for an arbitrary but fixed 
elenent a of A. It is easily seen that there always exists t f T  
such that ct(x)= 1 ; then S(f(at), ct(x), ?(*))= f (at ) for a e
thus our definition of E(f̂ ) is correct. An idea of replaoing 
the convex combination by the iterations of S is due by L. Pa­
sicki in context of fixed points theory ([20] , p. 173J). It is 
necessary to stress that in formula (9) take •
But for each x fc x \  A there is a neighbourhood 0(xo) of xo 
such that the following equivalence holds:

c.(x)= 0 <£=#> t £ T \ T whenever x t O ( x #).
xo

Consequently for all x £ 0 ( x o ) we essentially take in (9) those

14
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b , for whioh t . £ T  . Observe, that the function 
*1 1 xo

0(x ) =>X -+ g (x)s* S £b , o <x),b) ia continuous on 0(*o ).
° 11 n n

For i = 1,2,...,n-l 1st us define recursively
(l o) 0 ( X # ) 3 X  ®n-i C*) :« S(bt , o t C*)| «n.l+1 C*>) 6- Y.n-i n-i
Since b , are oonstant on 0 Cx ) and S Cb , . ,t . O Z . '- n-i n-i
L0,1jx Y Y is jointly continuous as a honotopy, we deduce
that each g_ . is continuous on OC* ) being a superposition n - i  ■ O
of continuous naps. Thus E(f) ( 0 (x q) =g^ is continuous on
0 (x ). Since ( 0 Cx ) : x feX\ A\ foras an open cover of X ^ A ,  we o' o o J
deduce that E(f) is continuous at each point of the open set
X \ A.
The conplete the proof we shall shov the continuity of B('f)at
eaoh point of A. Pick a £ A  and let V Y  be an arbitrary
neighbourhood of f(a)= E(f)faj. Since Y is of type n and
f is continuous, there is a neighbourhood V in X suoha
that f * [v^ A A] O  C C  o o S C 6 V
for soie subset C in Y. Find V ^ C  satisfying the condi­
tion in (7) : we will show E(f) >r V V . Since each U. , t e Tft t X
intersects V , the corresponding a., t e T  all lie inft Z X
AfiV^, so that the Y O t ) are all elenents of C. According to
C O  and (9) we find E(f, (x)£ooS (C), Thus E (f)>̂ c V C  V and
E(f) is continuous at a . Since E(f) is continuous at each
point of X, the map E C O :  X — y Y is continuous.
The formula (9) shows that E(f) is an extension of f.
To show that E(f) w X C. ooS(f* A) choose any subset D belon­
ging to the family under the sign of intersection in formula (1) ,
where B = f < A . If x s X \ A  then, in accordance with (9),
Sn (x'):= SCbt , ot C*) , b)eS*(B x fo, ij x D)<^ D 

n n
because of b=f (a) £ B c D  and b t = f(a ) £ B, o. Cx)<f[b,lJ .

n n n
Observe that for i = 1,2,...,n-1 we have recursively

gn_i (x)tfS*(B x fo,1] x D)CD, for a gn_± defined by (lOj.
This yields g^Cx) = E(f)fx) gooSCB^. Since D was arbitrary,

we obtain E(f)Cx) = coS (B).
If x £ A  then ECf)Cx)= f(x)6BC coS(B). Thus in both cases we 
have E (f) X C  coS (_f * A)
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REMARK O. Observe that the points a^ and funotions are
independent on the funotion f, so that the operator 
Es C (A, Y) — ^ C (X, Y) is universal in some sense.
COROLLARY: If f is a Borel measurable function of the first
Borel class from a Borel subset X of a complete metric space 
to a metrlzable S-contractible type m space Y, then f is 
the polntwise limit of a sequence of continuous functions 
from X to Y .
3. Pathological examples of S-contractibility
Let us recall, that a oonvex prestruoture is a nonempty set Y 
together with a map from Y x Co;l]x Y to Y. We think of S 
as a set of elements that can be blended or mixted, and 
S(a,t,b) denotes a blend of a and b in which the concentration 
(or portion') of a is t and the concentration of b is 1-t . 
A convex structure is a convex prestructure (Y,S) satisfying 
the following five postulates :
P.1. S(a,t,b)= S(b,1-t,a) for all te[b;l] ; a , b t Y  
P.2. S(a,t, S(b,u,c)) = S (S (a, t * ft + (1-t)u] ” 1 ,b^ , 
t + (l-t)«u, c) for all t,ue [Ojl] with t + (1-t}-u jl 0 and 
a,b,c belonging to Y
P.3. S(a,t,a) = a for all t & f0;1) , a Y .
P.**. If S(a,t,b) = S(a,t,c'> for some t / 1 and some ae.Y,

then b = c ;
P.5. S(a,0,b)= b for all a,b <£ Y.
In the early 19*»0*s J. von Neuman and 0. Morgens tein employed 
abstract convex structures in their theory of games and 
economic behavior. Important contributions were made a few 
years later by M. Stone [2*0 • He called such a structure a 
barycentric calculus. Since then, convex structures have been 
applied to studies in color vision, utility theory, quantum 
meohanics and petroleum engineering (see L13 J for more 
informations and further references^).
Note that none of the postulates P.1-P.** is in general not
fulfilled by S-linear (YjS,) , cf. Ex. 2 below, in which P.1-
P.2. and P. U. are violated and [l 33 » 3, p. 986 for the
failure of p. P. 3.
Note, that coS : 2^ is not an hull-operator in any

1



11

reasonable sense. In [1 7 J a nap co : 2Y — ^ 2Y Is said to be 
a convex hull-operator on Y, If, denoting by F(Y) the familly 
of all finite subsets of Y , the following postulates are all 
satisfied :
H. 1. co 0 = 0
H.2. co (£x}) = [x][ for all x C. X
H.3. co (co a ) = co A for A fc.2Y
H.U. co A = U{co F : FCA, F (y )} .
It Is easy to check, that any operator satisfying H . i s  
nonotone, that co A is the smallest convex set containing A,
that the intersection of an arbitrary family of convex sets
is also a convex set (A is called convex if A = co A ) , etc.
For our co S there exist some example showing that in general
coS o coS ^ coS Ccf. Ex. 2 below), and that S-hull of finite 
subset may fails to be compact (see undermentioned Ex. 3). 
Example 1 (privately communicated by Dr Lech Pasicki)
Let Y := ^ z £ C  : re z ^  -1 } be the complex halfplane with
induced topology. Consider a half-moon A a  Y defined by 
A := {z<£ Y I z| 2 and lz+1 | ^  sqrt 5 j • For a,b <*. Y define 
L(a,b) as the symmetry axis of the segment ab , viz.

L(a,b) := ^ z e C  : ref(b-a) '(z - 2~1 (a+b))^j= oj- , 
where z is the complex conjugate of z. Define also 
Lq != : re z = - 2 J , Then oonsider a mapping
S : Yx [0;l]x Y — ^  Y defined by formula

/ ZQ + |a-zQ |.exp fi (t arg a +d-t)*arg b)J
iff L(a,b)r\LQ = |z0) and re a > 0

SCa i*>b ) •- ] t a +  (l-t)b if im a : in b , so that
L(a,b)nLo = 0 

or if -1 ̂  re a ^ 0 .
It is easy to observe that our half-moon A is S-convex, viz. 
coS A = A, and that, denoting by cl the usual closure operator 
on Y, cl coS A = cl A while

00S (ol A)= £z € Y  ; |z|>2 and re z ? o }  
is essentlaly larger than cl (coS A) .
EXAMPLE 2. Let Y denote the real line with usual topology .
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For a,b 6. Y and for t 6-L0;lJ define
S (a, t ,b ) := 2 O - a  ) *2 ♦ 3(a-b).t + b •

Observe that S fulfils only P.3. and P.5. Taking A ={-1 , 1_} 
it is easy to verify, that coS * coS / coS in contrast to H.J. . 
EXAMPLE 3. Lot Y be as in Ex.2 and let

f 3 £a-b) • t + b for 0 £ t £ 2 / 3
S (a, t,b ) := ■)

I -3(a+b) t + a - 3 (a+b ) for 2/3 ̂ t £1 
Observe that coS(£-1,1$) = Y and thus is noncompact.
The reader is reffered to [6], |.22] , 15J , L 73 » fio], Ll6j for 
further interesting and important examples and to tl4J, (47, 
C23],[17], [l 3^ f°r information about others existing kinds of 
generalized convexity.

X wish to express my thanks to the referees,
Prof. M. Kisielewicz and Dr L. Rybiriski- for theirs 
precious remarks allowing to eliminate some incorrectness 
in the firtt draft of this paper.
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ABSTRACT
L. Pasicki has introduced S-contractible spaces of type I as 
a generalization of locally convex linear topological spaces.
In this paper we introduce a larger type of S-contractible 
spaces and we prove an analogue of Dugundji extension formula 
for continuous functions with values in S-contractible space 
of this new type m. Also some connections between 
S-contractible spaces and so-called preconvex structures are 
explained.
0 ABSOLUTNYCH EXTENSORACH

Streszczenie
W pracy uogólnia się znane twierdzenie Dugundjiego o przedłuże- 
niu funkcji ciągłych o wartościach w lokalnie wypukłej 
przestrzeni liniowo-topoloi c znej na przypadek funkcji o 
wartościach we wprowadzonyoh przez Pasickiego przestrzeniach 
S-śoiągalnych z abstrakcyjnie określoną strukturą wypukłą. 
Dyskutuje się też związek tych przestrzeni z różnymi rodzajami 
uogólnionej wypukłości.


