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ON CARATHEODORY®S SELECTORS FOR MULTIFUNCTIONS WITH VALUES
IN S-CONTRACTIBLE SPACES
1. Introduction
Let X and Y be topological spaces. A multifunction
F:X —* Y 1is a function whose value F(X) for x&X 1is a
nonempty subset of Y . We say F 1is lower semicontinuous
if F~U) := X FCOn U / is open in X whenever U
is open in Y (of. ri0],|_*3])- This notion was introduced in
1932 independently by Kuratowski and Bougliand. If F(X)=
= {g(x>} for a singlevalued function g : X >Y , then lower
semicontinuity of F reduces simply to the continuity of g.
Recall that a function f: X — Y s said to be a selector
for F , if F(X)E F(x> for each xt X.
A quadruple (X,M,m,T) is said to be a topological measure
space iff (X,M,m) is a measure spaoe and T is a topology
on X with Tc M
Let (X,T) be a Hausdorff topologioal space and BCX) the
smallest tribe containing T . A positive Radon measure
m on X (cf. [CVI, p-62) is a positive measure m: B(X)-* FOr3
such that:
(A) For each x t X there exists an open neighbourhood of
x of finite measure
(B) For each Borel set AtB(X)

m(A) = sup™m(K): KcA,K-compact J
For a tribe M and a measure m : M — we denote by m*
the outer measure induced by M . Then denotes the
completion {A ™~ N  Ad4M and m"(N)= O}.
In theorem 1 M denotes the intersection of all completions
M where m runs through all positive bounded measures m
on M. The sets belonging to M are called universally
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Measurable (cf. fcv] p-73)
A Multifunction F : X -~Y from a topological space with a
positive Radon Measure m into the noneMpty subsets of a
topological space, will be called Measurable, if F“(u] 1is
M-Measurable for each open set C in Y.
If F :XxY -» Z 1is a tiltiftaction defined ai a product of
a topological Measure space X and a topological space Y,
taking values in a topological space Z, such that all
X-seotiona Y9y F ) =FXy)CZzZ , if X are lover
sesd.continuous and Y-seotlons X€x e Fy(d = F(xX,y)CZ ;
y @a Y are measurable, we may ask, under what conditions F
admits a Caratheodory selector f : X x Y -mZ , i.e. a function
such that

a F &y 6F (x,y) for all (i,y)exx Y

b) £ :Y —+ Z is continuous for all xf X

0) : X —mZ is measurable for all y6 Y(of.[5])
There are many papers devoted to this problem s«e(ASd,£lj ,[K]
[71 .I83 , [C], £11] , [17J) The purpose of the present article is
to generalize Castalng®s result £8] onto the case of multi-
functions taking values in S-comtraotible spaces uniformly of
of type 0 for balls.

2. Scorza-Dragoni property of F

Lemma 0. Let Y be a topological space, Z a separable metric

space and let F: Y — Z be a multifunction. Then the

statements:

(i) F 1is lower semlcontinuous

(ii) y W gzy) = distez,F(y)J is anupper semlcontinuous

single-values function of y for each z belonging to some

oountable dense subset of Z, are equivalent.

Proof. Let K(z,r)= 2 d*z®, X)< rJ denote a open ball

in Z. F is lower semicontinuous iff F~ [k(xtr)] is open in Y

for each 2z belonging to a dense subset of Z and each r »0.

On the other hand g~ is upper semlcontinuous in y iff

£y: dist [z, F(Y)]<r] is open in Y for each O<r”~+o00. But
F'[K@Z.N1=l-y: FOOK (@.r; K0j = ly : d[z,F(y)I<rj

It follows that (@)**(ii).



Lena 1. Let X. be a topologioal Hausdorff measure space

with a positive, finite Radon measure m, and let Y be a
Polish space. Let f : Xx Y — R be a real function suoh
that:

@ f is Mn ® B(Y)- measurable, where denote the ( -
algebra of all m-measurable subsets of X and B ) denote
the G -algebra of all Borel subsets of Y

® ™ :Y R is upper semlcontinuous (as a single-valued
function) on Y for all xt X

Then there exists a decreasing sequence (f ) of real functions
defined on the produot X x Y satisfying the following
conditions :
a t ¢ .y
c2) f &, .)

is m-measurable on X for eaoh fixed yt-Y
is continuous on Y for each fixed Xx£ X

@) inf(fn :nfn] =*Ff .

Moreover, ¥ has the following property: for each £> 0, there
exists some compact subset C X such that m (XSK™M)”M . and
that the restriction TJ X Y is upper semlcontinuous.

The following two theorems are indispensable in the proof of
the lemma 1

Theorem 1(Jovj , lemma 11lI. 39, p.86). Let (x,M) be a measurable
space, Y a Souslin spaoe "i.e. a continuous image of a Polish
one), F : XxY -a R a M® b(y) -measurable function and
G:X “mY a multifunction whose graph Gr G ={(X,y> XxY:yf GX)j
belongs to M® b(y). Then g &= supj F(,Y) : y-GX)j- is

a A-measurable function of x .

Theorem 2.((6j,£V] ) - Let X be a compact topological spaoe
with a positive Random measure m and let Y be a Polish
space. Suppose that all Y-seotlons of some function

h :XxY “m R are m-measurable on X, and all X-seotions of
h are continuous on Y. Then h has the Scorza-Dragoni
property, viz. for eaohf£ > 0 there exists a oompact set K"K
that m(x K4 NE and the restriction h j X Y is conti-
nuous on X Y

For the connection between the Scorza-Dragoni property and
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Caratheodory property (see D
Remark 1. Observe, that in theorem 3* X need only be assumed

Hausdorff topological measure space with a positive finite
Random measure m.

In fact, by virtue of there exists a compact subset CX
such that m(X V KY ~/2. Then applying theorem 3 to
we obtain CK~AC X for whioh m \ Ka)» and

h IKg x Y 1is continuous. Obviously m(xX\KY = raX\KY) +

+ (K, x %) EE.

PROOF OF THE LEMMA 1

Since all notions under considerations are invariant under
homeomorphism u h (W= arc tg(u) - J/2 andunder its

inverse h”1 , hence we may assume withoutany lossof generali-
ty that f(x,y) £ 0 for all ,y)t X x Y For each(x,y)6XxY
and each positive integer n, put

fn(x,y):= sup | f(x,yj)- n dfy.yj (y~Y~".
Obviousl)_[ fn+1£'fn’i 0 for each n.
Further eaoh function f (.,y) is measurable by virtue of
theorem 1 invoked for GQ)iIY
Putting y =y 1in formula defining fn, we have

f OGY)NM(X,y) for each n  and each (x,y)6X x Y

On the other hand, applying the triangle inequality, we obtain
fn(Xsyl) >8Py FH(x'yi) “nd (yy2 " " d (Y2Y)] =

= m(dSZ)— n d (yl%Q) for each n and ny.

Henoe

MEXyil- M(Xy2r>- " d (Yi'y2) )
and ohanging the role of y and y™ by a symmetric argument
we obtain jointly

"Xy - fJ x>y27r< B d (yi*y2)
so that Tn (xt.) is Lipschitzian with the constant n, and
therefore oontlnuous on Y for each fixed X
It remains to prove that f = lim inf fn

—p*
Let (i,yv X xY be Ffixed ang let 0(f X,Y}<- b for some positi-
ve b fR , There exists an r ,> 0 such that d(y,y)".r
implies f(x, yD<-b for ¥Ff(x,.J being upper semlcontinuous.
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For each n>b“l we have
if dfy.y” r

ffrl-ndly*Kffi.y,) -b”-b if d(y,yD>r
Passing to the supremum of both sides of these inequalities we
obtain f (X,y)™ - b . Then taking into account that
fn,(x,,.y)}t gx-y) we deduoe the equality nir)‘fwfn = Inim inf fn = f.
Lat £> 0 be an arbitrary, but fixed number. In compliance
with theorem 2 and remark 1 for eaoh f wo shall find
a compaot subset Kq such that skXN I%lilz £ and the

restriction f_ jK x Y is continuous on X Y. Put
Thus eaoh fn is continuous on L » T . Consequently
fsinf F is upper semlcontinuous on X Y , as required.

Lemma 2. Let (X,m) be a Hausdorff topological space endowed
with a finite, positive Radon measure m,Y a Polish space

%\pd F a multifunction from X x Y into the hyperspace of
nonempty, closed subsets of some Polish space Z, such that:

@ F is ® B(y) -aaaaurable on X x Y

b T, is lower semlcontinuous on Y for eaoh fixed
X M X . Then for eaoh <f>0 there exists a compact subset
KtC X such that m (X - Kj)™£and the restriction XY

is lower semlcontinuous.
PROOF : F Ix in Z a complete and bounded metric d, such that
d (ZxZ)<fl . Let z2<’="} bo a countable, dense subset
of Z. The lower sestloontinulty of F is equivalent to the
upper semicontinuity of single - valued funotions

.y) bn (x,y) = dist /zn, F (X,y)J. By virtue of (@,
function (X,y) dist [z, F(x,y)Jd is » B () -measurable
for each fixed z£Z . 1t follows from fb) , is upper
eemioontinuous for each fixed (Xx,z)® X x Z. By lemma 1 for
eaoh € > 0 we may select a oompaot subset K~C X suoh that
n(x\ and that the restrictions of eaoh hn to K x Y
are all upper eemioontinuous. Thus, applying once again the
lemsm O we oonolude that f|k™ x Y 1is lower semloontinuoua.
Thus the proof of lemma 2 is completed.
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3. Definition* and *o*ie examples of S-oontractible apace*
Following L. Pasicki [j5(see also S8J) a **t X 1i* S-linear
if S: Xx [0;13xX “m X i» a napping such that S(x,0,y)=Yy
and S(x,1,y}= x Tfor all x,yf X. For any subaet AC X we
define

coS A :=H/DCX s ACS(ax[0]d x d) CdJ, where

S (Ax (0;IIxD) =PJjS,t,y): xtAytD ,04 t4 1}.
IT A =coS A, then K- Hlaoalled S-oonvex.

A topological apace X 1is S-oontraotible if X ia S-linear,
and for any x&X ,Es(x,t; & ia a homotopy joing
the identity with a constant nap.

A topological space X laof C-type | if C la a aubset of
X and there exiata an S auch thatX la S-contractible and
for any i1if C and any neighbourhood N of x there exists
a neighbourhood U of x suohthat coS UCN . If C=X then
we aay it is of type 1. Let (Xx,dj be a netrlo spaoe. For the
noneaipty set A (X andr>0 let ua write K(A,r] =
=j xFX : dist (X, A) :=inf d(a,x")crj

af-A J

-
A aetric spaoe (X,d) is uniformly of type O for balls if there
exists an S such that for erery £>0 there exists a 0

such that for every At 2X we havecoS K (i,8)cK(ooS A, £)
and X is of type I for S.

Very reoently Lech Paaiokl was proved the following improvement
of celebrated Michael"s Seleotion Theorem TfIN:

Theorem 3 ~ 5] Let X be a paraoompaot topological spaoe and
(Y,d) a metric space uniformly of type 0 for balls. If the
values of multifunction G : X “» Y arecoaiplete, S-oonvex,
and G 1is lower semloontinuous then G admits a oontinuoua
selector.

The following corollary is nicely harmonizing with a result
of [18j :

Corollary: Let Y be a aMtrio apace uniformly of type O

for balls and let A be a closed subset of a paraoompaot
space X . Then every oontinuous function f : A Y admits

a continuous extension E(F): X -mY with E(fJItXc Cl]|ooS(F* a)J
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Proof; Lot F :- X Y be the S-oonvex oarrier defined

by Ffa) =jf(@j for an at-A; F(xX) =Y for xEX\A. From the
continuity of f it follows that F 1ia lower aemioontinuoua.
Thus a selector for F from the theorem 3ia the desired
extension EM) of f .

Ve give several examples. In Example 1" we argue that Bauer-Bear
selection theorem is somespecial case of Pasicki theorem 3,
collating adequate properties of part metric. Note, that this
important and very natural example ia not mentioned in Pasioki
paper £I5) = In Example J and 2 trfe S-contraotion is defined
on the spaoe without any linear structure. Example 2 drawed
from £15J shows that theorem 3 cannot be deduoed from results
of £l nor {j3J « Also Magerl sunified selection theorem £I2j
is not moregeneral, than theorem 3 since coS may falls to
be an hull-operator in the sense of £I12)

EXAMPLE 1. We consider a real linear space L and a convex

set C in L which contains no whole line. We do not neces-
sarily assume that L has a topology. Define S: Cx fOjlJx

X C —«» C as follows :

S(*,t,y) = tex +0-0)*y =.
Obviously C 1is S linear and coS = conv, the usual convex-
hull operator.
The closed segment from x to y is denoted [x,y]:=[s (X,t,y):
O£4 £ 1k~ If *»y 6. C, we say that fx,yj extends (in C)
by r> 0 if x + r(x-y)tC and y +r(y-x)EC. We write X~y
if fx,y] extends by some r > 0. It is shown,[23, that ~
defines an equivalence relation in C.
The equivalence classes of r> , called the parts of C, are
clearly also convex. There is a metric d on each part of C
defined by

d(x,y) ;= inf {log@ r”1}:[Xx,y} extends by r in c}.
If L*,y] extends by r in C, then x + r*(x-y) and y + r\(y
are in the part ] =[y]l for all r~<r . It follows that
one gets the sam* part metric on [x] if one replaces C by
[*3”~ in the definition of d(x,y) . If(x,y)t,*/ , we write
d(x,y) = +<r>. Then d: CxC —> R satisfies all axioms of a
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metric on C , except that it is not always finite. Ve could
Introduce = arc tgod to obtain a metric on C defining
the same topology aa a generalized metric d . For each part
[xXX] of C and each Xx£[Xj'"] we have

il = {TEC : d<.®y)
Therefore, the parts are open, and hence also closed.
Let x, xlty ,yt£ C and ¢t£[0;1]. If [x, x~ and fy, y»
extend byr, then [S(X,t,y), S(x1,t,y™lalso extends by r.
In fact, we have the identity

S(x»t,y) + r[s(x,t,y) - S, ,t.yp] = S(X + rCx-x~.t.y +

+r (y-yl))e

The term on the right is a convex combination of points which
are in C by hypothesis. The extension beyond S~Ax"t.y”?)
follows by a symmetric argument. Notice that we do not assume
that x~y nor x”7~yl . As an immediate consequences we
obtain the corollaries bellow

) dx,ty) , S, ,tyt) <max [dfx.x", dCy.y"]

(ii) If A is a convex subset of C (not necessarily in one
part) and d(x,A)<r ,d (y,A>"r , then

d(s(x,t,ym® ,A) <r , even if (X,¥) 4r° =

(ill) The generalized d-ball K(A,r) is convex for any
convex subset A of C
It is proved in fl, th. 3, p. 18J that for eaoh part P of C,
the mapping S : Px[0;1j x P —t P 1ia continuous, and that if
C is an open convex set ip a linear topological space, OaC
and C contains no line, then C has one part, moreover the
part metric and the Minkowski norm [P| = map (p(*)i
where p(xX)= InfF£r : x£r .C , r yO }, define the same
topology on C. It is easy to observe, that C in the general
case, endowed with the topology generated by d is an
S-contractible space uniformly of type 0 for balls.
EXAMPLE 2 ([153) Let X = J (ft® be a hedgehog with TTupri’ts,
viz. the quotient space X = M x }0; 13 » where card M = tt,
and

(ml, el Wm2 , 29 iff t.=*2 =0 or (ml,t1)=(m ,2)

The formula
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define a metric on X . lhtting S™"m~"t N, t = N=
f[Wg, o +(-t) tgMlf 0~ t<1” and (msmg or t”~o)

we obtain an S-contractible space uniformly of type 0 for balls,
in whleh K(A,r)= KFooS A, r).
EXAMPLE 3. Let X be acompact Riemannian manifold with
Riemanian metric d . If Xx,y£X have a unique shortest
geodesic joining them, this geodesio is called a segment.
Let L =[(X,y)6,XxX - x and y are joined by a segment”
If Cx*y)fcL , then the segment from x to y 1is given by a
continuous g~ : [O;1j wmX _ Define S~ : Lx[O;I]x L -y
by S1(x,t,y):= &'C*) eEvery point p of X has a spherical
neighbourhood V(p) such that V(p) is an S-oontractible apace
uniformly of type 0 for balls, where S = S1 |V(p)X[0,13 x Vcpj
C«f. 17133, P.569).

Caratheodory a selectors for F with values in Pasicki
spaces
Ve are now in a position to state our main result:
Theorem 4. Let X be a Hausdorff topological space endowed
with a finite, positive Radon measure m, Y a Polish space
and F a multifunction from XxY into the hyperspace of
nonempty closed and S-oonvex subsets of some S-contractible
Polish spaoce Z, uniformly of type 0 for balls, such that:

@ F is 0 B(Y)-measurable on XxY* and
Cb) F(x,«) 1is lower semlcontinuous on Y for each fixed
xfcX

Then there 1s a function f X x Y -% Z such that
(@) ™ is continuous on Y for each xfeX
(ii)fS is m-measurable on X for each y £ Y ,
Ciii) T(x,y)4 F(x,y) fFor each (X,y)€ XxY
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Hots, that the way treated by Rlcceri CI63 la not applicable
minoe C(Y,2) may fails to be an S—contractible apace for
an S defined by a natural formula

S(ft,t,2) () = S(f1(@), t, 2
On the other hand, the way used by Fryszkowski [11] ia also
not adequate to our purpose, since the existence of
continuous Cast&ing-Nowikow type representations for the
(Z,S) - valued lower semlcontinuous multifunctions is possible
only under additional assumptions imposed on S (see [15] )
Proof. Using (B)we shall find a compact K1 C X with

m(x \ m), KjCxvn with m(X \ (KF a(X\KD
and so on . Proceeding inductively we obtain a partition
X = Kn u K where each Kr 1is oompact and m(N)= O .

In accordance with lemma 1 the sets Kn may be ohoosen such
that F|K11 x Y is lower semlcontinuous for each n.

Let fIn be a continuous selector for F|Kan existing in
compliance with Pasickl theorem 3. Put

n (x,y) if xX£Kn
f(x,y) = XFT) if *6-N
where s (x, =) 1is a continuous selector of F(x,.)
Observe that s is ~(Y) measurable since N isa n-null
subset. Consequently f is as required.

5. Caratheodory®s selectors for F with values in Michael"s

convex structures i i i i i
Let P denote the unit simplex in euclidean n-dimensional

spaoe K" , i.e.

P sss |t s Lt teeet ) ~ 0Nt N1 g 1f2] ««« and
n 1

If E 1is any set, then En willT aenots the n-fold Cartesian
product of E, and if i~n, then 3°: EN E1r’ lis defined
by 3 0™ ,Xg,*..,*n) = (N ,..., XE+H17x%* xn A *

A oonvex structure (of. ft3])on a matrlo space E with metric
d assigns to each positive integer n a subset Mn of En
and a funotion kn : Mn X Pn —%m E such that
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(A) If x6.Ml, then k~ x.ljs x *

B If *EMn™* 2 and I<n, then O~xtM~”™ and, fop
any tt?n with ti=0, kn(x,t)= k~» (2)~ ,01 t)

£c) If X6Mn Sn$2) with Xg= Xpip- for some I1~n , and
If t£-Pn , then kn(x,t)= kn-1 X , t&) ,

where t* I=(t", NN, T+ , KJA2FFFEIANA

CD) If xt Mn , then the map tH"k"fx.t) from Pn to E la

continuous

(E) For all”™ > Othere exists a neighbourhood Vg of the

diagonal A inE x E such that, for all n and all

txl , x2)*M x Mn, » Xx*)tvc for | = Impllaa
dkn C* » t) , bn(x2 , ©))<Ffor all ttPn

Note that conditions (A) and CO together imply that, if

xtMn wiiih X, = ... S Xgs then kﬁx,t)= x For all tg Pn ,
A subset A of a space E with oonvex struoture la admissible
if An<t:Mn for all n. If A ia admissible,l then the

convex hull OfoaA’ denoted by co A , la
oo A =11 {knCx,t): X €An , t6Pn3

In [13 , p-5581, the following selection theorem is proved:
Theorem 5. Let Y be a complete metrio spaoe with a convex
structure, let X be paraoompaot and F: X Y lower semi-
continuous Multifunction. Suppose that FCx) is nonempty,
admissible subset of Y for each 1itX, Then there exists a
continuous T:X Y such that fx)6CI [oo F<x>" for all
XtX ,

Note, that the relationship between theorems 3 and 5 are
nuolear. Let E be a metrio spaoe with convex struoture.

The a subset ACE is said to be oonvex, if it is admissible
and co A C A. Repeating the proof of theorem k with theorem
5 invoked instead of th.3 we obtain:

THEOREM 6. Conserving all assumptions and notations of theorem
* assume that Z 1is a Polish spaoe with Michael®s convex
structure, and that F(x,y) is nonempty, closed, oonvex

subset of Z for each Cx,y)EX x Y . Then there is a
Caratbeodory"a seleotor f X xY — Z for F, i.e. a funct-
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satisfying oonditions CI) -dllI") fro* theore* k.

I wish to express ay thanks to the refarses,

Prof. N. Kisielevioz and Dr L. RybiAaki for theirs preoious
re*arks allowing to olininats sob* Incorrectness in the
first draft of this paper.
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ABSTRACT

We obtain two theorems on existence of separately continuous

and separately measurable selectors for certain multifunotions

defined on product spaces and taking values in so-called

S-contractible complete metric spaces of type O uniformly

for balls [th.4] or in spaces endowed with so-called Michael"s

abstract convex structures [th. 6] . Moreover we give an example

showing that Heinz-Bauer selection theorem is some special

case of known Pasicki selection theorem.
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O SELEKTORACH CARATHEODORYEGO DLA MULTIFUNKCJI
0 WAHTOSCIACH W PRZESTRZENIACH S-SCIAGALNYCH

Streszczenie
Praca poswiecona jest dowodowi dwu twierdzen dotyczacych
istnienia selektoréw mierzalnych ze wzgledu na jednga zmienng
i ciggtych ze wzgledu na druga znienng z osobna dla multi-
funkcji przybierajacych warts c i wypukde w przestrzeniach
S-Sciggalnych typu O wprowadzonyoh przez Pasickiego oraz w
abstrakcyjnych strukturach wypukdych wprowadzonych przez
Michaela. Ponadto dyskutujemy zwigzki twierdzenia Bauera z
ogélniejszym twiardzeniem Pasickiego.



