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ON CEDERS CONTINUITY PROPERTY AND BAIRE 1 SELECTORS

It la well-known that If b and t are real-valued functions
defined on a perfectly normal topological apace, with bit ,
then there exists a continuous funotlon Ff auoh that b Ff£t
provided b is upper semi-continuous and t is lower semloonti-
nuous ("see TI] ,[5]-f7ji ALY * More generally, a lower
memi-continuous set-valued funotlon F fro* any perfeotly
normal space into the hyperspaoe of nonempty convex subsets

of the real line R admits a continuous selector f (i.e.
fF(*HF(x) for all x) , flI0j .

The purpose of this paper is to characterize those set-valued
Mappings from a given perfeotly norsal space into the family
of non-empty intervals of R which admit continuous seleotors.
As a consequence we obtain characterizations for the Insertion
of continuous funotlon between two comparable functions, in
oaae b~™ t . Our theorem 1 can be vleved as an improvement of
Coders characterization (3]» th. 1 ;[2], th. 1).

Using this improvement we are able to generalize the main
result of the paper f2] onto the case of suitifunctions defined
on an euolidean space R* . This solves some problem posed by
J. Coder in [if] . Let us recall that a real-valued function F
on X is said to be lower semieontlnuous (briefly lac) (.reap,
upper semicontinuous = uso) provided for all xe,X

lim inf Ff(@)N-TfCx)

* ->X
(resp. lim sup f (2 -ifcx)).
z -*X

Some useful faota about semi-continuous functions are (cf. Jj;
(1) f 1is Isc (resp use) if and only if {x :f(x)>aj
~resp. £x : F(x)< aj 1is open for each a R ;
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(2)a lac (resp. uac) function achieves its minimum
(resp. maximum) on eaoh compact set ;
) the minimum (resp. maximum) of two Isc (resp. use)
functions is again Iso (rasp, use)
(© the set of continuity points of a semicontinuous function
is residual Iin X .
A set-valued mapping F from any topological space X into
the family of nonvoid subsets of a topological space Y is
said to be lower semicontinuous If F- (V)= £x<E€.X: F(X)oV 7/
is open in X for every open V in Y . It.is easily seen
that if fA gon X and f 1is use, and & is lIsc, then F
is lIsc, where F(x>: = ffF(x), g(x)J of. fio], Ex. 1.2. , p.362;.
Ve will always lIdentify a funotlon with ltsgraph. By F |A
we mean the restriotion of f to A . By C(F) is meant the
set of continuity points of f . Ve denote for any fand x

7 (x) = Llim inf f(z) and f*(xX)= 1lim supf(z)

Z -»X z X
THEOREM 1. Suppose F : X —>R 1iIs a set-valued mapping from
a perfectly normal space X with non-empty convex subsets of
the real line R as values. Then, there exists a continuous
selector for F 1if and only if for all xfcX
O] b*(x):= lim sup b(z) < liminf t(2):= t"X) ;
Z —»X z X

an FCeYph*(), t,(x)]0 0
where b(x) and t(x) are the inf and sup of F(X) respectively.
Proof. Suppose f 1is a continuous selector for F. Then clear-
ly b *QQ£EF 00N () From whioh both (i) and 0.1) follow.
Now suppose (1> and (ii) hold. Define G(X):= FQOnIVAX;, t"(X)]j=:
= [k(X), ()™ , and observe that G has nonempty convex
values. It is easy to verify that sup G ()= I(x) is Isc. In
faot, for Xx£X either I(X) = t™"(X) or I1(X)= t(xX) and
tJjOONM (X) - In the first case 1 is semlcontinuous at X
by virtue of fi0 , lemme V.1.1* , p.136. In either case 1
is Isc simply by definition. In a similar manner we can
establish the upper semicontinuity of k = inf G. Therefore,
by Ex 1.2., p.362 of fIQj, G 1is Isc as a convex-valued
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multifunction .

By [to], th. 3 * 1 t P. 308 on can aeleot a continuous
selector f for O. Observe that T&)£ G(X)cF(*> . This
completes the proof of theoresil .

Corollary 1. Suppose fT7~g on a perfectly noraal space X.
Then there exists a continuous function h such that frfh~g
if and only if for all x~X : CI) F*FX)E g*(X)

G [Foe . g(x)I n - ~$

Corollary 2. Suppose T~ g on a perfeotlynoraal space X .
Then there exists a continuous funotlon h such that flh<g
if and only if for all x <X

@® FE*>E£«*(*)

Cii) (F(x> t g@InffF*(x) » «(*>]~ 0

Since it is easy to verify that a Isc F satisfies conditions
CD and (ii) of the theorem 1 ve also have Michael"s result
as a corollary. For further informations about insertion of a
continuous function see CO l[6-73»CI0 *fI3]. It is unknown
whether or not can one generalize the range of F to some nice
family of sets (e.g. the open disks in R2} and obtain some
reasonable characterization for the admission of a continuous
selector .

There are already some theorems in which the condition to
impose upon a multifunction for the admission of a nice
selector is that the multifunction restricted toeach of a
family of small sets has a nice selector. A result of this
kind is the following :

THEOREM 2 (Lindenstrauss Q! > cf. also £8j )

Let M be a metric apace and let B be a Banach space.
Let F - M —mB be a multifunction such that F(m) is closed,
convex and separable subset of B for every m£E£M . Assume

that forevery oountable compact subset K of M the restrict-
ion FIK of F to K admits a continuous selector on K
Then F admits a continuous selector .

Another result of this kind is the following

THEOREM 3 (Cedar (2] , cf.

Let F : R -~ R be a multifunction such that F(x) is closed
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and convex for every X« R . ThenF haa a Baire 1 selector

If and only If f ]| P has a Bairel selector for eaoh perfect,
nowhere dense subset P of R .

Note that paper 123 errorously claims, that in theorem 3» for
insure the existence of Baire 1 selector it suffioes to
assume that F] P has a Baire 1 selector for each perfect,
nowhere dense subset of measure zero only.

Paper DJ posses the problem of generalizing the domain in this
theorem. In order to solving this problem we need the following
generalization of famous Baire theorem :

THEOREM k . A function f : R —+#mR from the N-dImenslonal
euclidean space into the real lineis Baire 1 if and only if
the restriction f jP has a point of continuity for each
perfeot nonwheredense subset P of R

Proof; Assume that f IH is totally discontinuous for some
perfe(:l:b subset H</\—F£\I . ThusH = LJn:H hoC where

Hn = ]Cx: oso f=an’ 5 It is easily verified that eaoh Hn is
closed. By the Baire Category Theorem there exists k such
that oontains an open ball, say J , relative to H. tfe
will contract a countable subset D of J suohthat cl D
is perfect and nowhere densein J andsuch that for all

X cl D oso (f |]Jcl D)™k-1 . _Pick d€J and sequences dj[
and d2n , h=1,2,_._._. in J ~[d} approaching d such that

A%o/ Cdn>= sup r<v>
and lim f £d2)=1lim inff(z) and dj jJid2
n z-td m

for all n and m/ n. Let consist of d and the terms of
those sequences. For z£D. -~d} define r(z)= 3~1 dist@D>fz))

Pick sequences z:L ,22 n=1,2,... in

n n -

Kz, r(-2)):= (z 63 :EBz. - zEI™r <z)I, approaching =z such
1 2

i> *)— *

that anAxm forall n A® !]IA - f(znle_®A , auP fC*)

11* F (™M)= 11* Inf fCv). Define :
n v —*z

D2 po©6 0 6 D1 - $d}}.

Now, continuing by induction in the oct))ovious way we obtain a

sequence of sets D _Putting D := UlD we have ol D is
n n=1 n
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perfect and nowhere dense in J. In fact, eaoh point of cl D
is an aocuanilation point and in eaoh relatively open subset
C.J there is an relatively open ball suoh that
J2fel D = 0 . Moreover, it is easy to verify that for each
x £cl D , osc (F Icl D)™ k”1 . The rest of the proof is
obvious, by usual Baire theorem.
It would be interesting to know wheter this theorem remains
true If P 1is assumed to be e.g. sigma-porous perfect set
or at least nowhere dense null (i.e. m™(P>= 0) perfect set.
THEOREM 5 . Let F : RN —. R be a multifunction with closed,
convex values. Then F admits a Baire 1 selector if and only
if for each perfect nowhere dense subset P of R» , the
restriction flp admits a Baire 1 selector.
Proof: First note, that the implication "only if" is obvious
when F has a Baire 1 selector. So let us assume that FI P
has a Baire 1 selector for each perfeot, nowhere dense subset

Pof RN . Put t(X)= sup F(x) andb(x) = inf F(x). Define
tF &)= Llim inf t(=) and b*(xX):=1im sup b (zj -
Z —>X Z->X

STEP 1: Construction of P and f :

Observe that (i € h“f b y(x; <t (x)}c»s (b* - *,,)"1 @ &5 o3)is
N

open in R .1t follows that there exists a nonempty open
subset G with R - G perfeot such that either
() clICG[x -:b*(® t or

) clclG{x - b)) "t~ (x)} - Put Pg:* RN -G .

In case (1) let D = £xX£G : F(k™i [b*(): tr(QJ=03F.

Then D 1is finite. Indeed, if T) were infinite, there would
exist a sequence x°, 1=1,2,... in G, and apoint x cl G
and a, bE.R u ”~-oa, +CBJ for which b o -*a, t(x->b ,

N —>»x and FO™M) n[b*x) , t (x™ Is empty. Without loss of
generality we may assume that t(") <b (). Then we must
have a”b*(xX) €trX)™b . On the otherhand

t MO < Ilim inf t*(thIim sup t*(x. limb(x 1): a

i.~*o0o0 1 i->-o0, 1 i-»-C
This leads to a contradiction.

Our multifunction F has the continuity property (i.e. Tulfills
©O) and (ii) of th. 1) at each point of G - D. Therefore,
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by theorem 1 there is a continuous selector h for F IG - D ,
Now define (h® iIf x6-G -D

fo midpoint F ) if x6.D
Clearly f 1is a Baire 1 selector for FI(RM-P ).
In case (i) let E :=7xg.ol G : t™"(X) = b*<x) and b ().
It is easy to verify that this set E is countable. In fact,
let IitE so that bc) > {im} sup b (® - There is a basic

— X

open set V(x)Ccl Gcontaining X and a basic open set

V (X)CR containing b & such that b(F)MMICx) for tE_VEX)- J-X}-
Observe that (Utx”, VCx™M)N (U(x2), UX,,")) whenever x1 N *2*
Since the set of all pairs of basic open sets (in separable

cl G and R) is countable, hence the setE is countable as
well. Let H =£x: bbo ™ ™ ()]= £ 0 X)) <b*(X)]>. Then H
is a first category Fg. subset of G. In fact, let

Hn = {x : b*%) - t(X)™.n-1}.

Since u = b”- t is upper semicontinuous function, it is

easily seen that each = u-~"((n_1 ;«»))is closed and

H=n"Hn . If some is dense somewhere, say in DcH~” =
= ol H?, then osc F(xX)"k~~ onV foreach selector f of
our multifunction F . In fact, we have osc f = fr- f°b* - t¥

for b ) UFOCEL(X™ . Thus any seleotor f cannot be of the
first Baire class on U. By virtue ofth.k there is a nowhere
dense perfect subset DCD suoh that ¥ ID 1is totally discon-
tinuous on D. But this is in marked contrast with assumption,
that F |D must have a Baire 1 selector. Hence H 1is an P
of the first category relative to G let ,

Ay =H,-H , for n=23,... , Eaoh A s ambiguous
and we have AHA =0 when n 4m. Moreover H= UH =
(e0) n m n=1n
= Q_ AO e

n=i

By the condition we may choose a Baire 1 selector fn for
F IHn . Now define for XxX£G :

fn ) if x £—Ah

fo(x) = 2 if x G - E -H
2“1 . [t(xX) + b(x)] if x£E .
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Observe that G - E - H c: C(fo), the set of continuity points
of f _ In faotfor x6rG - E - H , fo()=b(xX)=t%) , so
that fo : R’“’C‘) - P — Ris simultaneously lIsc an’(’jc use at x.
Observe that EOC Cfo)z 0 for Ii"il sup b ()ﬁA b@= t.Cx) 'E
P - -
r!'_’%a>'”f t()f(n ) wheneverx ntends to X in E _Also if

X 6 HF then there  existcluster values 1 and m of fO such
that m Mt* &)™ b *cx)EL .

Hence H OC(F )= 0 . Therefore c(I)zG—E—H and

(f IG-E - H)"i(U)z\x<£- RN :XxE£EG - H and f _Cx) £U ~Nis
opgn in RV (and hencein RN - P for eaoh o%en set UaR
Ve have T{U)=(G - E - Hnlb*) " “tWuy_ ff"1 Fu)o A 1o

u(x =271 _[tCx) + bcx)jeu\ 6. F3.CRN - PQ). -~

and thusf 0isa Baire 1 selector for F|G = FI (N - P).
Denote by it the first uncountable ordinal number and let fi<t=£
Using transfinite induction, suppose we have constructed for
each li<€. sets and functions f,~ such that

b pA is a perfect ﬁet

(@12) for has domain R -

([(E)) Pj"C. P~ whenever oc S

QaVv) N ¢ Ffpwhenever o€ < S

(u5) for is a Baire 1 selector for fJrN - Poc

<u6) P~.0 O and or<S imply P~O0 P~
STEP 2 : Construction of fp and Pp in general :

In oase when (@=)F 1 Ffor J<SI we construct a function h

and a perfect set Pp in exactly the same way we construct

fo and P0 were P—g plays the role of the domain R in
that construction. Note that when Pj 0 O , then p~+i a
proper subset of P” in that construotion. Define f~ N as

a function f~ U h . Since F is assumed to be a Baire 1
function on the open set RN - P] and h 1is a Baire 1 function
on the F_ set P*- P, . * i1* follows that fa is a Baire 1
function 6n K)r - p5/\+1 5tlThe remaining conditions of the
inductive hypothesis are clear.

In case when fi is a limit ordinal, observe, that the set

Q p _ is dosed and therefore, by famous Cantor-Bendixon theo-
C<p
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ram, l« the union of a perfect set P and a countable set C
with Pn C=0. Put PJY=P =P® and define f~ on RN - Pj

as follows
midpoint F(x) if xtC

|

7-ix) if X £RN “ for <®B,« °°
men \I; :i&% urf-Ic) and the doma_in of fr.* is the open
set R - Pp , ’) show that tp isBalre 1 we needonlys

that f. |g. has a point of continuityfor each perfeot set
’\CRN - PAs . Sinoe card Q=0 it must intersect some

Dom for . Hence a portion of Q s contained in the
open set Fﬂ\l - P, upon which fp 1is Bair-. 1 -
Thereforef )Q hasa point of continuity in RN - Pa .
The rest of the inductive hypotheses are easily verified.
Therefore, by transfinite induction there exists a descending
chain of perfeot sets [P, ,dF*SI\ and an aseending chain of

functions {f£X*: R» - ~R ; such that for each «C

<a> foe has domain R*- P~ and is a Baire 1 selector
for FIr” - P , and

() Pj / PA. whenever Pac/ 0 and

Since £P” ;ocMijis a decreasing chain of closed setsit is
eventually constant, that is, there is a T such thatpj = py
whenever r . By Cb>we must have P¥.= 0o . Therefore,cy

by na> , f is the desired Baire 1 selector for F on R .
This finishes the proofoftheorem 5 e

As a corollary we obil;ain:

THEOREM 6. Let F: R —"®m R be a multifunction froman
euclidean space RI* into the hyperspace of non-void, closed
convex subsets of the real line. Then F admits a Baire 1
selector if and only if for each nowheredense perfect subset

P of R ,the restriction FIP has the continuity property
at some point of P.

Both theorems 5and 6 apply onlyto those F for which each
F(x) is simultaneously closed and convex :

THEOREM 7 (of. CI2]"There exists a multifunction F R” —>aR
with non-void, convex values, admitting on Baire 1 selectors
but with the property, that the restriction of this muitifunet-
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lon to an arbitrary perfect subset P has the oontinui ty
property at some point of P.
Proof: Let Z be a totally imperfect Berstein set <see (],
th. 1) in R which intersects P and R - P for each
perfect subset PcR* _ Put :

10, 1] if x£Zz

FO> =]1¢1 FoI+f xXE rmn _Z
and observe that t = sup F = j{_ b = inf F = - H'—*N M-
Thus we have t,,=b*= 0 1identically on R . Fix some

perfect set P<iR and note that the Intersection £r - 2)fIP

is nonempty. Let xgq be some element of this intersection.

Since 0 belongs to F(x ®, it follows that FC*O)A*(XQ>r

t,(io)J= JoOr~ 0 and thus F has the continuity property at

selected point x <£P - Z. Observe that if f 1is any selector

for F, then the Inverse image f: £<0,27))= Z 1is not Borel

set despite <0,2) is open . This completes the proof,

Our theorems U nor 5does not carry over to the case of higher

Baire classes. In fact, we have :

THEOREM 8. Assume continuum hypothesis. There is a function

f : R —¢R such that for each perfect, nowheredense subset

D of RN the restriction f jD is of the second Baire class,

while Ff as not even Borel-measurable.

Proofj This follows for instance from G J, th.**

After this paper has been completed, the author learned about

the paper by Vetro Pasquale [VJ where the theorem very similar

to our theorem 1 is also proved. To author wishes to express

his thanks to Prof. J.S. Lipinski for his critical remarks.
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0 CEDERA WEASNOSCI CIAGLOSCI

H.
E

Streszczenie
Ceder w [2] pedat charakteryzacje tych multifunkcji
: R-R o wypuklych wartosciach, ktore posiadaja ciagly

selektor i1 wykorzystat ten wynik do dowodu istnienia selektora



pierwszej klasy Bairea dla multifunkcji F - R —> R o domknip-
tych wypukdych wartosciach, o ktérych wiadomo, ze po obcieciu

do kazdego nigdziegestego zbioru doskonatego posiadajg taki
selektor. W niniejszym artykule uogdlnia sie te wyniki na przy-
padek, gdy dziedzing jest dowolna skohczeniewymiarowa przeatrzenh
euklidesowa, rozwigzujac w ten sposob pewien problem Cedera.
Ostatnie twierdzenie, mowigce o tym, ze w przypadku wyzasych
klas Bairea sytuacja jest calkowicie odmienna podano bez

dowodu, gdyz wynika ono z pracy zamieszczonej w tymze zeszycie,
opracowanej przez Kolo Naukove studentéw. Dla kompletnosci
przytoczono informacje o istnieniu ciggtych selektoréw dla
multifunkcji o ktérych wiadomo ze posiadajag ciggly selektor po
obcieciu do kazdego przeliczalnego podzbioru zwartego przestrze-

ni metrycznej .



