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ON CEDERS CONTINUITY PROPERTY AND BAIRE I SELECTORS
It la well-known that If b and t are real-valued functions 
defined on a perfectly normal topological apace, with b i t  , 
then there exists a continuous funotlon f auoh that b f £ t 
provided b is upper semi-continuous and t is lower semloonti- 
nuous ('see Tl] , [5]-f7ji fl 1j * More generally, a lower
■•mi-continuous set-valued funotlon F fro* any perfeotly 
normal space into the hyperspaoe of nonempty convex subsets 
of the real line R admits a continuous selector f (i.e. 
f(*HF(x) for all x) , flOj .
The purpose of this paper is to characterize those set-valued
Mappings from a given perfeotly norsal space into the family 
of non-empty intervals of R which admit continuous seleotors. 
As a consequence we obtain characterizations for the Insertion 
of continuous funotlon between two comparable functions, in 
oaae b^ t . Our theorem 1 can be vleved as an improvement of 
Coders characterization (["3]» th. 1 ; [2], th. 1).
Using this improvement we are able to generalize the main
result of the paper f2] onto the case of suitifunctions defined 
on an euolidean space R* . This solves some problem posed by 
J. Coder in [it] . Let us recall that a real-valued function f 
on X is said to be lower semieontlnuous (briefly lac) (.reap,
upper semi continuous = uso) provided for all xe,X

lim inf f(z)^-fCx)
* ->x

(resp. lim sup f (z) -ifcx)). 
z -*x

Some useful faota about semi-continuous functions are (cf. Jj;
(1) f is lsc (resp use) if and only if {x : f (x)>aj
^resp. £x : f(x)< aj is open for each a R ;
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(2)a lac (resp. uac) function achieves its minimum 
(resp. maximum) on eaoh compact set ;
(3) the minimum (resp. maximum) of two lsc (resp. use) 
functions is again Iso (rasp, use)
(k~) the set of continuity points of a semi continuous function 
is residual in X .
A set-valued mapping F from any topological space X into 
the family of nonvoid subsets of a topological space Y is 
said to be lower semi continuous if F- (V):= £x<£.X: F(x)oV / <*) 
is open in X for every open V in Y . It.is easily seen
that if f^ g on X and f is use, and & is lsc, then F
is lsc, where F(x>: = ff(x), g(x) J of. fio], Ex. 1.2. , p.362;.
Ve will always Identify a funotlon with Its graph. By f | A
we mean the restriotion of f to A . By C(f) is meant the 
set of continuity points of f . Ve denote for any f and x

f^(x) = lim inf f (z) and f*(x)= lim sup f (z)
z -»x z -*-x

THEOREM 1. Suppose F : X —>> R is a set-valued mapping from 
a perfectly normal space X with non-empty convex subsets of 
the real line R as values. Then, there exists a continuous 
selector for F if and only if for all xfcX
(i) b*(x): = lim sup b(z) < lim inf t(z):= t^(x) ;

Z —►X z X
(ii) F(x) r> fb *(x) , t,(x)]0 0
where b(x) and t(x) are the inf and sup of F(x) respectively. 
Proof. Suppose f is a continuous selector for F. Then clear
ly b *(x)£f OO^t^ (x) from whioh both (i) and 0.1) follow.
Now suppose (i> and (ii) hold. Define G(x): = F (x ) n JV^x ;, t^(x)j=: 
=: [k(x), l(x)^ , and observe that G has nonempty convex 
values. It is easy to verify that sup G (x)= l(x) is lsc. In 
faot, for x £ X  either l(x) = t^(x) or l(x)= t(x) and 
tj(x)^t (x) . In the first case 1 is semlcontinuous at x 
by virtue of fi^O , lemme V. 1.1*. , p. 136. In either case 1 
is lsc simply by definition. In a similar manner we can 
establish the upper semicontinuity of k = inf G. Therefore, 
by Ex 1.2., p.362 of flOj, G is lsc as a convex-valued
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multifunction .
By [to], th. 3 * 1 t P. 308 on can aeleot a continuous 
selector f for O . Observe that f (x) £ G(x)cF(*> . This
completes the proof of theoresi 1 .
Corollary 1. Suppose f ̂  g on a perfectly noraal space X.
Then there exists a continuous function h such that frfh^g 
if and only if for all x ^ X  : Cl) f *fx)£ g*(x)
(ii) [f (x> , g(x)J n . ^ $
Corollary 2. Suppose f^ g on a perfeotly noraal space X .
Then there exists a continuous funotlon h such that flh <: g
if and only if for all x <= X
(i) f £*>£«*(*)
Cii) (f(x> t g(x))nff*(x) » «(*>]^ 0
Since it is easy to verify that a lsc F satisfies conditions
CD and (ii) of the theorem 1 ve also have Michael's result 
as a corollary. For further informations about insertion of a 
continuous function see CO 1 [5-7J » Cl 0  * fl3]. It is unknown
whether or not can one generalize the range of F to some nice

2family of sets (e.g. the open disks in R } and obtain some 
reasonable characterization for the admission of a continuous 
selector .
There are already some theorems in which the condition to 
impose upon a multifunction for the admission of a nice
selector is that the multifunction restricted to each of a
family of small sets has a nice selector. A result of this 
kind is the following :
THEOREM 2 (Lindenstrauss (9! > cf. also £8j )
Let M be a metric apace and let B be a Banach space.
Let F : M —*■ B be a multifunction such that F(m) is closed,
convex and separable subset of B for every m £ M  . Assume 
that for every oountable compact subset K of M the restrict
ion F I K of F to K admits a continuous selector on K .
•Then F admits a continuous selector .
Another result of this kind is the following 
THEOREM 3 (Cedar (2] , cf.
Let F : R —^ R be a multifunction such that F(x) is closed
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and convex for every x « R . Then F haa a Baire 1 selector
If and only If f | P has a Baire 1 selector for eaoh perfect,
nowhere dense subset P of R .
Note that paper f23 errorously claims, that in theorem 3» for 
insure the existence of Baire 1 selector it suffioes to 
assume that F] P has a Baire 1 selector for each perfect, 
nowhere dense subset of measure zero only.
Paper DJ posses the problem of generalizing the domain in this 
theorem. In order to solving this problem we need the following 
generalization of famous Baire theorem :
THEOREM k . A function f : R —+■ R from the N-dlmenslonal 
euclidean space into the real line is Baire 1 if and only if
the restriction f j P has a point of continuity for eachUperfeot nonwheredense subset P of R
Proof; Assume that f I H is totally discontinuous for some

Nperfect subset H<^-R . Thus H = LJ H , where<• -I , n=1 nH := 1 x: oso f >■ n r. It is easily verified that eaoh H is n c J n
closed. By the Baire Category Theorem there exists k such
that oontains an open ball, say J , relative to H. tfe
will contract a countable subset D of J suoh that cl D
is perfect and nowhere dense in J and such that for all
x cl D oso ( f | cl D)^k-1 . Pick d €. J and sequences dj[

2 ' and dn , n=1,2,... in J ~[d} approaching d such that
A % o /  Cdn>= sup r<-v>
and lim f £d2) = lim inf f(z) and dj ji d2n z —t* d m
for all n and m / n. Let consist of d and the terms of
those sequences. For z £ D. -^d} define r(z) = 3~1 dist(z D̂ -fzj)

1 2Pick sequences z , z  , n = 1,2,... in n n
K (z, r(.z)):= (z 6 J  : I! z. - z II ̂  r <z)l, approaching z such 

1 2that x A x  for all n A ® li> f (z*)= H ®  auP fC*)n2 m n  ̂  co n v - ^ z
11* f (z^)= 11* Inf fCv). Define :
n v —*z

D2 D O 6 0 6 D1 - $d}}.k=1 n=1
Now, continuing by induction in the obvious way we obtain a

Oosequence of sets D . Putting D := U  D we have ol D isn n=1 n
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perfect and nowhere dense in J. In fact, eaoh point of cl D 
is an aocuanilation point and in eaoh relatively open subset 

C. J there is an relatively open ball suoh that
J2 f> el D = 0 . Moreover, it is easy to verify that for each
x £cl D , osc (f I cl D)^ k”1 . The rest of the proof is 
obvious, by usual Baire theorem.
It would be interesting to know wheter this theorem remains 
true if P is assumed to be e.g. sigma-porous perfect set 
or at least nowhere dense null (i.e. m^(P>= 0 ) perfect set. 
THEOREM 5 . Let F : RN —. R be a multifunction with closed, 
convex values. Then F admits a Baire 1 selector if and only 
if for each perfect nowhere dense subset P of R^ , the 
restriction fIp admits a Baire 1 selector.
Proof: First note, that the implication "only if" is obvious 
when F has a Baire 1 selector. So let us assume that Fl P 
has a Baire 1 selector for each perfeot, nowhere dense subset 
P of RN . Put t(x) = sup F(x) and b(x) = inf F(x). Define
tf (x'): = lim inf t (.z ) and b*(x): = lim sup b (zj .

Z  —i>  X  Z  —> X
STEP 1: Construction of P and f :

Ttf °  °  1Observe that ( i € h  : b y(x> < t^ (x)} s (b* - *„)" ((” <5°; o;)isNopen in R . I t  follows that there exists a nonempty open 
subset G with R - G perfeot such that either
(i) c l C G  [x : b* (x) t or
(it') clclG {x : b'(x) ̂  t^ (x)} . Put Pq :* RN - G .
In case (i) let D = £ x £ G  : F(k^i [b‘(x): t r (x)J = 0 }• .
Then D is finite. Indeed, if T) were infinite, there would
exist a sequence x^, 1=1,2,... in G, and a point x cl G
and a, b£.R u ^ - oa, + CB J for which b (x̂ ) -*a , t (x̂ ) ->b ,
x^ — >> x and F(x^) n [b *(x^) , t ( x ^  is empty. Without loss of
generality we may assume that t^(x^) <. b (x^). Then we must
have a ̂  b * (x) -C t r(x )^b . On the other hand
t M O  < lim inf t (xOtlim sup t (x. lim b(x ) = a

*  i . ~ * o o  * 1 i->-o, * 1 i-»-c 1
This leads to a contradiction.
Our multifunction F has the continuity property (i.e. fulfills
(i) and (ii) of th. 1) at each point of G - D. Therefore,
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by theorem 1 there is a continuous selector h for F IG - D , 
Now define ( h (x) if x 6- G - D

fo midpoint F (x) if x 6. D
Clearly f is a Baire 1 selector for F I (R^ - P ") .
In case (ii) let E := ^xg.ol G : t^(x) = b*<x) and b(x)^F(x)^.
It is easy to verify that this set E is countable. In fact,
let i t E  so that b cx) > lim sup b (t) . There is a basict —► x
open set V(x)Ccl G containing x and a basic open set
V (x)CR containing b (x̂  such that b(f)^tJCx) for t£.Vtx)- j.x}. 
Observe that (Utx^, VCx^)^ (U(x2), VCx,,')) whenever x1 ^ *2 * 
Since the set of all pairs of basic open sets (in separable 
cl G and R) is countable, hence the set E is countable as
well. Let H = £x: b’bo ^ t̂  (x)|= £x : t^ (x) <b*(X)]>. Then H
is a first category Fg. subset of G. In fact, let
Hn = {x : b*(x) - t»(x)^.n-1}.

)£■Since u = b - t^ is upper semicontinuous function, it is 
easily seen that each = u-^((n_1 ;«»))is closed and
H = n^ H n . If some is dense somewhere, say in D c H ^  =
= ol H^, then osc f(x)^k~^ on V for each selector f of
our multifunction F . In fact, we have osc f = f r- f ^b* - t¥ 
for b (x) irf Cx>£ t (x^ . Thus any seleotor f cannot be of the 
first Baire class on U. By virtue of th. k there is a nowhere
dense perfect subset D C D  suoh that f I D is totally discon
tinuous on D. But this is in marked contrast with assumption, 
that F | D must have a Baire 1 selector. Hence H is an F̂ - 
of the first category relative to G let ,
A := H - H , for n = 2,3,... , Eaoh A is ambiguous n n n— 1 n
and we have A H A  = 0 when n 4 m. Moreover H = U  H =oo n m n= 1 n
= U  Ao • n=i
By the condition we may choose a Baire 1 selector fn for
F I H . Now define for x £ G : n

f (x) if x £-A n n
fo(x) := ■‘j t?(x) if x G - E - H

2“1.[t(x) + b(x)] if x £E .
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Observe that G - E - H c: C(fo), the set of continuity points
of f . In faot for x6r G - E - H , fo (x) = b(x) = t^x) , so
that f : R** - P — R is simultaneously lsc and use at x.

0 0  *Observe that E O C  Cf )= 0 for lim sup b (x^ <,b (Jc) = t Cx) "feo i1 n '
^ lim inf t(x ) whenever x tends to x in E . Also ifn -?a> K n n
x 6 H, then there exist cluster values 1 and m of f suchF o
that m ̂  t * (x ) ̂  b *cx.)£l .
Hence H 0 C (f ) = 0 . Therefore c ( f ) = G - E - H  and1 N °(f | G - E - H)"1 (U)=\x<£. R : x £ G - H and f Cx) fc. U ̂  is o v N ®open in R (and hence in R - P ) for eaoh open set U a R .

1 V 09 1Ve have f ( U ) = ( G  - E - H)nCb*) " tU)u U  [f"1 fu)0 A 1 o o n = i n  n
u(x : 2” 1 . [t Cx) + bcx)jeu\ 6. F3.CRN - PQ ). '
and thus f is a Baire 1 selector for F|G = FI (_RN - P ).o ODenote by it the first uncountable ordinal number and let fi<t->«£
Using transfinite induction, suppose we have constructed for
each li<£. sets and functions f,̂  such that
(ul) P ^  is a perfect set

JJ(,u2) f or has domain R -
(u3) Pj" C. P ^  whenever oc S
QaV) f^ c f j- whenever cC < <S
(u5) f or is a Baire 1 selector for f|rN - Poc
<u6) P^.0 0 and or< S  imply P ^ 0  P^ ,
STEP 2 : Construction of fp and Pp in general :
In oase when (i = )f+ 1 for J<Sl we construct a function h 
and a perfect set Pp in exactly the same way we construct
f and P were P-e plays the role of the domain R in o o 5
that construction. Note that when Pj 0 0 , then p^+i a
proper subset of P^ in that construotion. Define f^ ^  as 
a function f^ U h . Since f is assumed to be a Baire 1 
function on the open set RN - P| and h is a Baire 1 function 
on the F_ set P * - P„ . * i* follows that f a is a Baire 1

p xr 5 5+1function on K - p^ + 1 • The remaining conditions of the
inductive hypothesis are clear.
In case when fi is a limit ordinal, observe, that the set
Q  p _ is dosed and therefore, by famous Cantor-Bendixon theo-
oC <p
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ram, 1« the union of a perfect set P and a countable set C 
with P n C = 0. Put P̂ J = P = P ®  and define f^ on RN - Pj 
as follows

;
 midpoint F(x) if x t C
f̂ -ix) if x £RN “ f'or •OB,« °° 

m e n  r , = i u  u^f-lc) and the domain of f' is the openV of ̂/> r*set R - Pp , To show that t p is Balre 1 we need only show
that f. | q. has a point of continuity for each perfeot set

N^ C R  - P^s . Sinoe card Q. = 0  it must intersect some
Dorn for . Hence a portion of Q. s contained in the

Nopen set R - P̂ , upon which f p is Bair*. 1 .
Therefore f ) Q has a point of continuity in R^ - Pa .
The rest of the inductive hypotheses are easily verified. 
Therefore, by transfinite induction there exists a descending 
chain of perfeot sets [P̂ , , of * Sl\ and an aseending chain of 
functions {f,* : R^ - ^ R ; such that for each «C
<a> foe has domain R** - P^ and is a Baire 1 selector

for F I r” - P , and
(b) Pj / P̂ . whenever P ac/ 0 and
Since £ P^ ; oĉ fijis a decreasing chain of closed sets it is
eventually constant, that is, there is a f such that pj = py-
whenever r . By Cb > we must have P y. = 0 . Therefore,0 ay
by ^a> , f is the desired Baire 1 selector for F on R . 
This finishes the proof of theorem 5 •
As a corollary we obtain :VTHEOREM 6. Let F: R — *■ R be a multifunction from an
euclidean space R1̂ into the hyperspace of non-void, closed
convex subsets of the real line. Then F admits a Baire 1 
selector if and only if for each nowheredense perfect subset 
P of R ,the restriction FlP has the continuity property 
at some point of P.
Both theorems 5 and 6 apply only to those F for which each
F(x) is simultaneously closed and convex :
THEOREM 7 (of. Cl2]^There exists a multifunction F R^ —>■ R 
with non-void, convex values, admitting on Baire 1 selectors 
but with the property, that the restriction of this muitifunet-



Ion to an arbitrary perfect subset P has the oontinui ty
property at some point of P.
Proof: Let Z be a totally imperfect Berstein set <see (b ], 
th. 1) in R which intersects P and R - P for each 
perfect subset P c R* . Put :

|(0, 1] if x £ Z  
F(x> := | (-_1 f ô J ±f x £ rn  _ Z

and observe that t := sup F = I_, b := inf F = - I_N .Jut H  ** mj
Thus we have t „ = b * = 0 identically on R . Fix some 
perfect set P<iR and note that the Intersection £r - Z)flP 
is nonempty. Let xq be some element of this intersection. 
Since 0 belongs to F(x ■) , it follows that FC*0)fl[b *(XQ'> r 
t,(io)]= J[0̂  ^ 0 and thus F has the continuity property at
selected point x <£. P - Z. Observe that if f is any selector® • 1for F, then the inverse image f” £<0,2'))= Z is not Borel
set despite <0,2) is open . This completes the proof,
Our theorems U nor 5 does not carry over to the case of higher
Baire classes. In fact, we have :
THEOREM 8. Assume continuum hypothesis. There is a function 
f : R — ♦ R such that for each perfect, nowheredense subset 
D of RN the restriction f j D is of the second Baire class, 
while f as not even Borel-measurable.
Proofj This follows for instance from Cd J, th.**.
After this paper has been completed, the author learned about 
the paper by Vetro Pasquale [VJ where the theorem very similar 
to our theorem 1 is also proved. To author wishes to express 
his thanks to Prof. J.S. Lipinski for his critical remarks. 
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0 CEDERA WŁASNOŚCI CIĄGŁOŚCI
Streszczenie

H. Ceder w [2] pedał charakteryzację tych multifunkcji 
F : R - R o wypuklych wartościach, które posiadają ciągly 
selektor i wykorzystał ten wynik do dowodu istnienia selektora
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pierwszej klasy Bairea dla multifunkcji F : R —> R o domknip- 
tych wypukłych wartościach, o których wiadomo, że po obcięciu 
do każdego nigdziegęstego zbioru doskonałego posiadają taki 
selektor. W niniejszym artykule uogó1nia się te wyniki na przy- 
padek, gdy dziedziną jest dowolna skończeniewymiarowa przeatrzeń 
euklidesowa, rozwiązując w ten sposób pewien problem Cedera. 
Ostatnie twierdzenie, mówiące o tym, że w przypadku wyżaszych 
klas Bairea sytuacja jest calkowicie odmienna podano bez 
dowodu, gdyż wynika ono z pracy zamieszczonej w tymże zeszycie, 
opracowanej przez Kolo Naukove studentów. Dla kompletności 
przytoczono informację o istnieniu ciągłych selektorów dla 
multifunkcji o których wiadomo że posiadają ciągły selektor po 
obcięciu do każdego przeliczalnego podzbioru zwartego przestrze- 
ni metrycznej .


