ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ w BYDGOSZCZY Problemy Matematyczne 1985 z. 7

WŁODZIMIERZ ŚLĘZAK

WSP w Bydgoszczy

ON CEDERS CONTINUITY PROPERTY AND BAIRE I SELECTORS

It is well-known that if b and t are real-valued functions defined on a perfectly normal topological space, with $b \le t$, then there exists a continuous function f such that $b \le f \le t$ provided b is upper semi-continuous and t is lower semicontinuous (see [1],[5]-[7],[11],[13]). More generally, a lower semi-continuous set-valued function F from any perfectly normal space into the hyperspace of nonempty convex subsets of the real line R admits a continuous selector f (i.e. $\frac{1}{3}(x) \le F(x)$ for all x), [10].

The purpose of this paper is to characterize those set-valued mappings from a given perfectly normal space into the family of non-empty intervals of R which admit continuous selectors. As a consequence we obtain characterizations for the insertion of continuous function between two comparable functions, in case $b \leq t$. Our theorem 1 can be viewed as an improvement of Ceders characterization([3], th. 1;[2], th. 1).

Using this improvement we are able to generalize the main result of the paper [2] onto the case of multifunctions defined on an euclidean space \mathbb{R}^N . This solves some problem posed by J. Ceder in [4]. Let us recall that a real-valued function f on X is said to be lower semicontinuous (briefly lsc) (resp. upper semicontinuous = usc) provided for all $x \in X$

lim inf $f(z) \ge f(x)$ $z \rightarrow x$

(resp. lim sup $f(z) \leq f(x)$). $z \rightarrow x$

Some useful facts about semi-continuous functions are (cf.[]]; (1) f is lsc (resp usc) if and only if $\{x : f(x) > a\}$ (resp. $\{x : f(x) < a\}$ is open for each $a \in R$; (2) a lsc (resp. usc) function achieves its minimum (resp. maximum) on each compact set ;

(3) the minimum (resp. maximum) of two lsc (resp. usc) functions is again lsc (resp. usc)

(4) the set of continuity points of a semicontinuous function is residual in X.

A set-valued mapping F from any topological space X into the family of nonvoid subsets of a topological space Y is said to be lower semicontinuous if $F^{-}(V) := \{x \in X: F(x) \cap V \neq \emptyset\}$ is open in X for every open V in Y. It is easily seen that if $f \leq g$ on X and f is use, and g is lee, then F is lee, where F(x) := [f(x), g(x)] of. [10], Ex. 1.2., p.362). We will always identify a function with its graph. By $f \mid A$ we mean the restriction of f to A. By C(f) is meant the set of continuity points of f. We denote for any f and x

 $f_x(x) = \lim \inf f(z)$ and $f^*(x) = \lim \sup f(z)$ $z \rightarrow x$ $z \rightarrow x$

THEOREM 1. Suppose $F : X \rightarrow R$ is a set-valued mapping from a perfectly normal space X with non-empty convex subsets of the real line R as values. Then, there exists a continuous selector for F if and only if for all $x \in X$

(i) $b''(x) := \lim_{z \to x} \sup_{z \to x} b(z) \le \lim_{z \to x} \inf_{z \to x} t(z) := t_{\downarrow}(x);$

(11) $F(x) \cap [b^{x}(x), t_{x}(x)] \neq \emptyset$

where b(x) and t(x) are the inf and sup of F(x) respectively. Proof. Suppose f is a continuous selector for F. Then clearly $b^{*}(x) \leq f(x) \leq t_{y}(x)$ from which both (i) and (ii) follow. Now suppose (i) and (ii) hold. Define $G(x) := F(x) \cap [b^{*}(x), t_{y}(x)] = :$ =: [k(x), 1(x)], and observe that G has nonempty convex values. It is easy to verify that sup G(x) = 1(x) is lsc. In fact, for $x \in X$ either $1(x) = t_{y}(x)$ or 1(x) = t(x) and $t_{y}(x) \geq t(x)$. In the first case 1 is semicontinuous at x by virtue of [14], lemme V.1.4., p.136. In either case 1 is lsc simply by definition. In a similar manner we can establish the upper semicontinuity of $k = \inf G$. Therefore, by Ex 1.2., p.362 of [10], G is lsc as a convex-valued multifunction . By [10], th. 3.1", p. 308 on can select a continuous selector f for G. Observe that $f(x) \in G(x) \subset F(x)$. This completes the proof of theorem 1 . Corollary 1. Suppose $f \leq g$ on a perfectly normal space X. Then there exists a continuous function h such that $f \le g$ if and only if for all $x \in X$: (i) $f^*(x) \leq g_*(x)$ (ii) $[f(x), g(x)] \cap [f^*(x), g_*(x)] \neq \emptyset$ Corollary 2. Suppose f 2 g on a perfectly normal space X . Then there exists a continuous function h such that f < h < gif and only if for all x G X (i) $f(x) \leq g_{x}(x)$ (ii) $(f(x), g(x)) \cap [f^*(x), g(x)] \neq \emptyset$ Since it is easy to verify that a lsc F satisfies conditions (i) and (ii) of the theorem 1 we also have Michael's result as a corollary. For further informations about insertion of a continuous function see [1], [5-7], [11], [13]. It is unknown whether or not can one generalize the range of F to some nice family of sets (e.g. the open disks in R²) and obtain some reasonable characterization for the admission of a continuous selector . There are already some theorems in which the condition to impose upon a multifunction for the admission of a nice selector is that the multifunction restricted to each of a family of small sets has a nice selector. A result of this kind is the following : THEOREM 2 (Lindenstrauss [9], cf. also [8]) Let M be a metric space and let B be a Banach space. Let $F : M \rightarrow B$ be a multifunction such that F(m) is closed, convex and separable subset of B for every $m \in M$. Assume that for every countable compact subset K of M the restriction F K of F to K admits a continuous selector on K. Then F admits a continuous selector . Another result of this kind is the following THEOREM 3 (Coder [2], cf. [8], [4]) Let F: R \rightarrow R be a multifunction such that F(x) is closed

and convex for every x CR . Then F has a Baire i selector if and only if F | P has a Baire 1 selector for each perfect, nowhere dense subset P of R. Note that paper [2] errorously claims, that in theorem 3, for insure the existence of Baire 1 selector it suffices to assume that F P has a Baire 1 selector for each perfect, nowhere dense subset of measure zero only. Paper [4] posses the problem of generalizing the domain in this theorem. In order to solving this problem we need the following generalization of famous Baire theorem : THEOREM 4 . A function f : $\mathbb{R}^{\mathbb{N}} \longrightarrow \mathbb{R}$ from the N-dimensional euclidean space into the real line is Baire 1 if and only if the restriction f | P has a point of continuity for each perfect nonwheredense subset P of R^N . Proof: Assume that f | H is totally discontinuous for some perfect subset $H \le R^N$. Thus $H = \bigcup_{n=1}^{N} H_n$, where $H_n := \{x: osc f \ge n^{-1}\}$. It is easily verified that each H_n is closed. By the Baire Category Theorem there exists k such that H, contains an open ball, say J , relative to H. We will contruct a countable subset D of J such that cl D is perfect and nowhere dense in J and such that for all $x \in cl D$ oso $(f | cl D) \ge k^{-1}$. Pick $d \in J$ and sequences d_m^1 and d_n^2 , n=1,2,... in J -{d} approaching d such that $\lim_{n \to \infty} f(d_n^1) = \lim_{x \to d} \sup_{x \to d} f(x)$ and $\lim_{n \to \infty} f(d_n^2) = \lim_{x \to d} \inf_{x \to d} f(z) \text{ and } d_n^1 \neq d_m^2$ for all n and $m \neq n$. Let D, consist of d and the terms of those sequences. For $z \in D_1 - \{d\}$ define $r(z) = 3^{-1} \operatorname{dist}(z, D_1 - \{z\})$ Pick sequences z_n^1 , z_n^2 , $n = 1, 2, \ldots$ in $K(z, r(z)) := \{z \in J : || z, -z || \leq r(z)\}, approaching z such$ that $z_n^1 \neq z_m^2$ for all $n \neq m$ lim $f(z^1) = \lim_{n \to \infty} \sup_{n \in V} f(v)$ $\lim_{n \to \infty} f(z_n^2) = \lim_{n \to \infty} \inf_{v \to z} f(v). \text{ Define }:$ $\mathbf{D}_{2} := \mathbf{D}_{1} \cup \bigcup_{k=1}^{d} \bigcup_{n=1}^{d^{n}} \left\{ \mathbf{z}_{n}^{k} : \mathbf{z} \in \mathbf{D}_{1} - \{\mathbf{d}\} \right\}.$ Now, continuing by induction in the obvious way we obtain a sequence of sets D_n . Putting $D := \bigcup_{n=1}^{\infty} D_n$ we have ol D is

38

perfect and nowhere dense in J. In fact, each point of cl D is an accumulation point and in each relatively open subset $J_1 \subset J$ there is an relatively open ball $J_2 \subset J_1$ such that $J_2 \cap cl D = \emptyset$. Moreover, it is easy to verify that for each $x \in c1$ D, osc (f | c1 D) > k⁻¹. The rest of the proof is obvious, by usual Baire theorem. It would be interesting to know wheter this theorem remains true if P is assumed to be e.g. sigma-porous perfect set or at least nowhere dense null (i.e. $\mathbf{m}_{\mathbf{N}}(\mathbf{P}) = 0$) perfect set. THEOREM 5. Let $F : R^N \rightarrow R$ be a multifunction with closed. convex values. Then F admits a Baire 1 selector if and only if for each perfect nowhere dense subset P of R^N , the restriction FP admits a Baire 1 selector. Proof: First note, that the implication "only if" is obvious when F has a Baire 1 selector. So let us assume that F | P has a Baire 1 selector for each perfect, nowhere dense subset P of \mathbb{R}^{N} . Put $t(\mathbf{x}) = \sup F(\mathbf{x})$ and $b(\mathbf{x}) = \inf F(\mathbf{x})$. Define $t_{x}(x) := \lim \inf t(z)$ and $b^{*}(x) := \lim \sup b(z)$. 2 -> X STEP 1: Construction of P_0 and f_0 : Observe that $\{x \in \mathbb{R}^N : b^*(x) < t_x(x)\} = (b^* - t_x)^{-1} ((-\infty; 0))$ is open in R^N. It follows that there exists a nonempty open subset G with R^N - G perfect such that either (i) clcG $\{x : b^{\sharp}(x) \ge t_{\chi}(x)\}$ or (11) $cl \leq G \{x : b''(x) > t_{p}(x)\}$. Put $P_{o} := R^{N} - G$. In case (i) let $D = \{x \in G : F(x) \cap [b^*(x) : t_x(x)] = \emptyset\}$. Then D is finite. Indeed, if D were infinite, there would exist a sequence x_i , i=1,2,... in G, and a point x cl G and a, $b \in \mathbb{R} \cup \{-\infty, +\infty\}$ for which $b(x_i) \rightarrow a$, $t(x_i) \rightarrow b$, $x_i \rightarrow x$ and $F(x_i) \cap [b^*(x_i), t(x_i)]$ is empty. Without loss of generality we may assume that $t_{\mu}(x_{i}) < b(x_{i})$. Then we must have $a \leq b^{\star}(x) \leq t_{\star}(x) \leq b$. On the other hand $t_{x}(x) \leq \lim_{i \to \infty} \inf t_{x}(x_{i}) \leq \lim_{i \to \infty} \sup t(x_{i}) \leq \lim_{i \to \infty} b(x_{i}) = a$ This leads to a contradiction. Our multifunction F has the continuity property (i.e. fulfills (i) and (ii) of th. 1) at each point of G - D. Therefore,

by theorem 1 there is a continuous selector h for $F \mid G - D$.

Now define $f_{o}(x) := \begin{cases} h(x) \text{ if } x \in G - D \\ \text{midpoint } F(x) \text{ if } x \in D \\ \text{Clearly } f_{o} \text{ is a Baire 1 selector for } F|(R^{N} - P_{o}). \end{cases}$ In case (ii) let E := { $x \in cl G : t_{x}(x) = b^{*}(x)$ and $b(x) \notin F(x)$ }. It is easy to verify that this set E is countable. In fact, let $x \in E$ so that $b(x) > \lim \sup b(t)$. There is a basic $t \rightarrow x$ open set $V(x) \subset cl G$ containing x and a basic open set $U(x) \subset \mathbb{R}$ containing b(x) such that $b(t) \notin U(x)$ for $t \in V(x) - \{x\}$. Observe that $(U(x_1), V(x_1)) \neq (U(x_2), V(x_2))$ whenever $x_1 \neq x_2$. Since the set of all pairs of basic open sets (in separable cl G and R) is countable, hence the set E is countable as well. Let $H = \{x: b'(x) \neq t_{a}(x)\} = \{x: t_{a}(x) < b^{*}(x)\}$. Then H is a first category $F_{S'}$ subset of G. In fact, let $H_n = \{x : b^{\times}(x) - t_x(x) \ge n^{-1}\}.$ Since $u = b^{r} - t_{s}$ is upper semicontinuous function, it is easily seen that each $H_n = u^{-1}([n^{-1};\infty))$ is closed and $H = \bigcup_{n=1}^{U} H_n$. If some H_n is dense somewhere, say in $U \subset H_k =$

= cl H_k, then osc $f(x) \ge k^{-1}$ on U for each selector f of our multifunction F. In fact, we have osc $f = f' - f_{>}b' - t_{-}$ for $b(x) \leq f(x) \leq t(x)$. Thus any selector f cannot be of the first Baire class on U. By virtue of th. 4 there is a nowhere dense perfect subset $D \subset U$ such that $f \mid D$ is totally discontinuous on D. But this is in marked contrast with assumption, that F D must have a Baire 1 selector. Hence H is an F_{σ} of the first category relative to G let $A_1 = H_1$, $A_n := H_n - H_{n-1}$ for $n = 2, 3, \dots$, Each A_n is ambiguous and we have $A_n \cap A_m = \emptyset$ when $n \neq m$. Moreover $H = \bigcup_{n=1}^{\infty} H_n =$

 $= \bigcup_{n=1}^{\infty} A_n$.

By the condition we may choose a Baire 1 selector f, for F|H, Now define for x & G :

$$f_{0}(x) := \begin{cases} f_{n}(x) \text{ if } x \in A_{n} \\ \overset{*}{b}(x) \text{ if } x \quad G = E = H \\ 2^{-1}, [t(x) + b(x)] \text{ if } x \in E \end{cases}$$

Observe that $G - E - H \subset C(f_0)$, the set of continuity points of f . In fact for $x \in G - E - H$, $f_0(x) = b(x) = t(x)$, so that f_{n} : $R^{N} - P_{n} \rightarrow R$ is simultaneously lsc and usc at x. Observe that EAC (f) = Ø for $\lim_{n \to \infty} \sup b(x_n) \leq b^*(x) = t_{x_n}(x) \leq b^*(x) = t_{x_n}(x) \leq b^*(x)$ $\leq \lim_{n \to \infty} \inf t(\mathbf{x}_n)$ whenever \mathbf{x}_n tends to \mathbf{x} in E. Also if x EH, then there exist cluster values 1 and m of f such that $m \leq t_{a}(x) < b^{*}(x) \leq 1$. Hence $H \cap C(f) = \emptyset$. Therefore C(f) = G - E - H and $(f_{o} \mid G - E - H)^{-1}(U) = \{x \in \mathbb{R}^{N} : x \in G - H \text{ and } f_{o}(x) \in U\} \text{ is open in } \mathbb{R}^{N} \text{ (and hence in } \mathbb{R}^{N} - \mathbb{P}_{o}\text{) for each open set } U < \mathbb{R} \text{ .}$ We have $f_{o}^{-1}(U) = (G - E - H) \cap (b^{*})^{-1} (U)^{U} \bigcup_{n=1}^{\infty} [f_{n}^{-1}(U) \cap A_{n}]^{U}$ $u\{x: 2^{-1}, [t(x) + b(x)] \in U\} \in F_{r}(\mathbb{R}^{N} - P_{r}).$ and thus f is a Baire 1 selector for $F(G = F(R^N - P_0))$. Denote by \mathcal{R} the first uncountable ordinal number and let $\beta < \mathcal{R}$ Using transfinite induction, suppose we have constructed for each $\beta < \Omega$ sets P_{∞} and functions f_{∞} such that (u1) P_{oC} is a perfect set (u2) f_{∞} has domain $\mathbb{R}^{\mathbb{N}} - \mathbb{P}_{\infty}$ (u3) $\mathbb{P}_{\mathcal{J}} \subset \mathbb{P}_{\infty}$ whenever $\alpha < \delta$ (u4) $\mathbf{f}_{\alpha} < \mathbf{f}_{\xi}$ whenever $\alpha < \delta$ (u5) for is a Baire 1 selector for $F|R^N - P_{\infty}$ (u6) $P_{\sigma} \neq \emptyset$ and $\sigma < \mathcal{J}$ imply $P_{\mathcal{J}} \neq P_{\sigma}$, STEP 2 : Construction of f_{β} and P_{β} in general : In case when $\beta = \xi + 1$ for $\xi < \Omega$ we construct a function h and a perfect set P_{β} in exactly the same way we construct f and P were $P_{\frac{1}{2}}$ plays the role of the domain R^{N} in that construction. Note that when $P_{F} \neq \emptyset$, then P_{F+1} is a proper subset of P_{ξ} in that construction. Define $f_{\xi+1}$ as a function $f_{\xi} \cup h$. Since f is assumed to be a Baire 1 function on the open set $R^N = P_{\xi}$ and h is a Baire 1 function on the F set $P_5 - P_{F+1}$, it follows that f is a Baire 1 function on $\mathbb{R}^{N} = \mathbb{P}_{E+1}$. The remaining conditions of the inductive hypothesis are clear. In case when β is a limit ordinal, observe, that the set \bigcap P is closed and therefore, by famous Cantor-Bendixon theo- $\alpha < \beta$

41

rem, is the union of a perfect set P and a countable set C with $P \cap C = \emptyset$. Put $P_{\beta} = P = P^{\textcircled{o}}$ and define f_{β} on $R^{N} - P_{\beta}$ as follows:

 $\begin{array}{l} \text{midpoint } F(\mathbf{x}) \text{ if } \mathbf{x} \in C \\ \mathbf{f}_{\rho}(\mathbf{x}) := \begin{cases} \text{midpoint } F(\mathbf{x}) \text{ if } \mathbf{x} \in \mathbb{R}^{N} - \mathbb{P}_{\mathbf{x}} \text{ for some } \infty \end{cases} \\ \text{Then } \mathbf{f}_{\beta} = (\bigcup_{\alpha < \beta} \mathbf{f}_{\alpha}) \cup (\mathbf{f}_{\beta} \mid C) \text{ and the domain of } \mathbf{f}_{\beta} \text{ is the open set } \mathbb{R}^{N} - \mathbb{P}_{\beta} \text{ . To show that } \mathbf{f}_{\beta} \text{ is Baire 1 we need only show that } \mathbf{f}_{\beta} \mid \mathbb{Q} \text{ has a point of continuity for each perfect set } \mathbb{Q} \subset \mathbb{R}^{N} - \mathbb{P}_{\beta} \text{ . Since card } \mathbb{Q} = \zeta \text{ it must intersect some } Dom \mathbf{f}_{\infty} \text{ for } \ll \beta \text{ . Hence a portion of } \mathbb{Q} \text{ is contained in the open set } \mathbb{R}^{N} - \mathbb{P}_{\beta} \text{ upon which } \mathbf{f}_{\beta} \text{ is Baire 1 } \text{.} \end{cases} \\ \text{Therefore } \mathbf{f}_{\beta} \mid \mathbb{Q} \text{ has a point of continuity in } \mathbb{R}^{N} - \mathbb{P}_{\beta} \text{ .} \\ \text{The rest of the inductive hypotheses are easily verified. } \\ \text{Therefore, by transfinite induction there exists a descending chain of perfect sets } \{\mathbb{P}_{\alpha}, \ll < \Omega\} \text{ and an ascending chain of } \\ \text{functions } \{\mathbf{f}_{\alpha} : \mathbb{R}^{N} - \mathbb{P}_{\alpha} \longrightarrow \mathbb{R} ; \alpha < \Omega\} \text{ such that for each } \ll \\ (a) \ \mathbf{f}_{\alpha} \text{ has domain } \mathbb{R}^{N} - \mathbb{P}_{\alpha} \text{ and is a Baire 1 selector } \\ \text{for } \mathbf{F} \mid \mathbb{R}^{N} - \mathbb{P}_{\alpha}, \text{ and } \end{cases} \end{cases}$

(b) $P_{\sigma} \neq P_{\alpha}$ whenever $P_{\infty} \neq \emptyset$ and $\delta > \infty$. Since $\{P_{\infty}; \alpha < \Omega\}$ is a decreasing chain of closed sets it is eventually constant, that is, there is a γ such that $P_{\xi} = P_{\gamma}$. whenever $\gamma < \xi$. By (b) we must have $P_{\delta} = \emptyset$. Therefore, by (a), f_{γ} is the desired Baire 1 selector for F on $\mathbb{R}^{\mathbb{N}}$. This finishes the proof of theorem 5.

As a corollary we obtain :

THEOREM 6. Let $F: \mathbb{R}^N \longrightarrow \mathbb{R}$ be a multifunction from an euclidean space \mathbb{R}^N into the hyperspace of non-void, closed convex subsets of the real line. Then F admits a Baire 1 selector if and only if for each nowheredense perfect subset P of \mathbb{R}^N , the restriction F|P has the continuity property at some point of P.

Both theorems 5 and 6 apply only to those F for which each F(x) is simultaneously closed and convex : THEOREM 7 (cf. [12]) There exists a multifunction $F \mathbb{R}^N \rightarrow \mathbb{R}$ with non-void, convex values, admitting on Baire 1 selectors but with the property, that the restriction of this multifunction to an arbitrary perfect subset $P = R^N$ has the continuity property at some point of P.

Proof: Let Z be a totally imperfect Berstein set (see [D], th. 1) in R^N which intersects P and R^N - P for each perfect subset $P < R^N$. Put :

Z

$$F(x) := \begin{cases} (0, 1] & \text{if } x \in Z \\ (-1, 0] & \text{if } x \in R^{N} \end{cases}$$

and observe that $t := \sup F = I_Z$, $b := \inf F = -I_R N_Z$. Thus we have $t_F = b^* = 0$ identically on R^N . Fix some perfect set $P < R^N$ and note that the intersection $(R^N - Z) \cap P$ is nonempty. Let x be some element of this intersection. Since 0 belongs to $F(x_{0})$, it follows that $F(x_{0}) h^{b}(x_{0})$, $t_{x}(x_{0}) = \{0\} \neq \emptyset$ and thus F has the continuity property at selected point $x \in P - Z$. Observe that if f is any selector for F, then the inverse image $f^{-1}((0,2)) = Z$ is not Borel set despite (0,2) is open . This completes the proof, Our theorems 4 nor 5 does not carry over to the case of higher Baire classes. In fact, we have : THEOREM 8. Assume continuum hypothesis. There is a function $f : R^{N} \rightarrow R$ such that for each perfect, nowheredense subset D of R^N the restriction f | D is of the second Baire class, while f as not even Borel-measurable. Proof: This follows for instance from [D], th.4. After this paper has been completed, the author learned about the paper by Vetro Pasquale [V] where the theorem very similar to our theorem 1 is also proved. To author wishes to express his thanks to Prof. J.S. Lipinski for his critical remarks. REFERENCES

- [1] Blair R.L., Extensions of Lebesgue sets and of real-valued functions, Czechoslovak Math. J. 31 (1981) 63-74
- [2] Ceder J., On Baire 1 selections, Ricerche di Matematica, vo. XXX, fasc. 2 (1981) 305-315
- [3] Ceder J., Characterizations of Darboux selections, Rendiconti del Circolo Matematico di Palermo, Serie II, tomo XXX (1981) 461-470

- [4] Ceder J., Some problems on Baire 1 selections, Real Analysis Exchange, vol.8, no.2 (1982-83) 502-503
- [5] Lane E.P., Insertion of a continuous function, Pacific J. Math. 66 (1976) 181-190
- [6] Lane E.P., Insertion of a continuous function. Topology Proc. 4 (1979) 463-478
- [7] Lane E.P. Lebesgue sets and insertion of a continuous function, Proceedings AMS, vol.87, no 3, (1983) 539-542
- [8] Levi S., A survey of Borel selection theory, Real Analysis Exchange, vol. 9.2 (1983-84) p.436-462
- [9] Lindestrauss J., A selection theorem, Is all J. of Math., vol. 2 (1964) 201-204
- [10] Michael E. Continuous selections I. Annals of Math., vol.63 no. 2 (1956) 361-382
- [11] Powderly H., On insertion of a continuous function. Proc.AMS 81 (1981) 119-120
- [12] Ślęzak W.A., Ceders conjecture on Baire 1 selections is not true. Real Analysis Exch. vol.9.2., (1983-84) 502-507
- [13] Tond H., Some characterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952) 289-292
- [14] Vulikh B.Z., Introduction to the theory of partially ordered spaces, Noordhoft 1967
- [V] Vetro Pasquale, An observation on continuous selections in Italian Rend. Circ. Mat. Palermo II, vol.32 (1983) no 1, 139-144⁻
- [J] Jahkovic Dragan S., Concerning semicontinuous functions, Math. Chronicle 12 (1983) 109-111
- [D] Dogoński A., et all., O idealach borelowskich, Problemy Matematyczne 7
- O CEDERA WŁASNOŚCI CIĄGŁOŚCI

Streszczenie

H. Ceder w [2] podał charakteryzację tych multifunkcji
F : R → R o wypukłych wartościach, które posiadają ciągły
selektor i wykorzystał ten wynik do dowodu istnienia selektora

pierwszej klasy Bairea dla multifunkcji F : R -> R o domkniętych wypukłych wartościach, o których wiadomo, że po obcięciu do każdego nigdziegęstego zbioru doskonałego posiadają taki selektor. W niniejszym artykule uogólnia się te wyniki na przypadek, gdy dziedziną jest dowolna skończeniewymiarowa przestrzeń suklidesowa, rozwiązując w ten sposób pewien problem Cedera. Ostatnie twierdzenie, mówiące o tym, że w przypadku wyższych klas Bairea sytuacja jest całkowicie odmienna podano bez dowodu, gdyż wynika ono z pracy zamieszczonej w tymże zeszycie, opracowanej przez Koło Naukowe studentów. Dla kompletności przytoczono informację o istnieniu ciągłych selektorów dla multifunkcji o których wiadomo że posiadają ciągły selektor po obcięciu do każdego przeliczalnego podzbioru zwartego przestrzeni metrycznej.