ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyczne 1985 z. 7

MAREK BALCERZAK

Uniwersytet Łódzki

A CLASSIFICATION OF 5-IDEALS ON THE REAL LINE

Throughout the paper we shall consider subsets of the real line R equipped with the natural topology. By ω (resp. ω_4) we mean the first infinite (resp. uncountable) ordinal number. Let & denote the family of all Borel sets. We shall also consider families F_{α} , G_{α} , $\alpha < \omega_{\alpha}$, defined as in [2], pp.251--252.

A family of sets will be called a 6-ideal if and only if it fulfils the conditions:

- (i) if $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$; (ii) if $A_n \in \mathcal{I}$ for all $n < \omega$, then $\bigcup_{n < \omega} A_n \in \mathcal{I}$;
- (iii) if A&J, then the interior of A is empty;
- (iv) if $x \in \mathbb{R}$, then $\{x\} \in \mathcal{I}$.

A family 5 will be called movable if and only if it fulfils the condition

(v) if $A \in \mathcal{I}$ and $x \in \mathbb{R}$, then $A + x \in \mathcal{I}$, where $A + x = \{ y \in \mathbb{R} : y = a + x \text{ for some } a \in A \}$.

Remark 1. If I is movable, conditions (i), (ii) hold and R&J, then conditions (iii), (iv) hold, as well.

Let J be a 6-ideal and let C be any of the families \mathcal{B} , \mathbf{F}_{∞} , \mathbf{G}_{∞} , $\infty < \omega_{1}$. Define

I(J, C) = {A : A ≤ B for some B ∈ J ∩ C }.

will be called a Borel (resp. non-Borel) 6-ideal if and only if I(5, 6)=5 (resp. $I(5, 6) \neq 5$.

We define RF(3) (resp. RG(3)) as the first ordinal number $\gamma \leq \omega_1$ such that $I(\Im, \varpi) = I(\Im, F_k)$ (resp. $I(\Im, \varpi) = I(\Im, G)$) Here $F_{\omega_4} = G_{\omega_4} = 6$. We shall say that the G-ideal J is of type $(\infty; \beta)$ if and only if $\alpha = RF(3)$ and $\beta = RG(3)$.

Lemma 1. If J is a G-ideal of type $(\alpha; G)$, then $\alpha = \beta$ or $\beta = \alpha + 1$ or $\alpha = \beta + 1$.

Proof. Suppose that $\alpha \neq \beta$, and let for example $\alpha < \beta$. We have

 $I(\mathfrak{I},\mathfrak{G})=I(\mathfrak{I},F_{\alpha'})\leqslant I(\mathfrak{I},G_{\alpha+1})\subseteq I(\mathfrak{I},\mathfrak{G}) .$ Thus $I(\mathfrak{I},G_{\alpha+1})=I(\mathfrak{I},\mathfrak{G}) \text{ and by the definition of } \beta \text{ , we have } \beta\leqslant\alpha+1\text{, which together with }\alpha<\beta \text{ gives }\beta=\alpha+1\text{.}$ In the case $\beta<\alpha$ the proof is analogous.

Lemma 2. If 5 is a 6-ideal of type (α, β) , then $\alpha > 1$ or $\beta > 1$.

Proof. Suppose that $\alpha \leq 1$ and $\beta \leq 1$. Since $\alpha \leq 1$, we have $I(\Im, \oplus) = I(\Im, F_1)$. Hence, from (iii) and the definition of $I(\Im, F_1)$ it easily follows that all sets from $\Im \Phi$ are of the first category. Since $\beta \leq 1$, we have $I(\Im, \Phi) = I(\Im, G_1)$. In virtue of (iv), (ii), the set W of all rational numbers belongs to $I(\Im, \oplus)$. So, by the definition of $I(\Im, G_1)$, there exists a set $B \in \Im \cap G_1$ such that $W \subseteq B$. The set B belongs to $\Im \cap \bigoplus$, so it is of the first category. But the Baire Category Theorem easily implies that the set of type G_5 and of the first category is nowhere dense. This gives a contradiction since B cannot simultaneously be nowhere dense and contain W.

From Lemmas 1,2 we immediately obtain the following Theorem 1. If β is a β -ideal of type $(\alpha; \beta)$, then

(4)
$$2 \le \alpha = \beta \le \omega_1$$
 or $2 \le \alpha^2 + 1 = \beta \angle \omega_1$ or $2 \le \beta + 1 = \alpha \angle \omega_1$.

Conversely, we shall prove (see Theorem 2 below) that if a pair α , β fulfils condition (*), then there exists a α -ideal β of type (α ; β). Thus, condition (*) characterizes the type of α -ideals.

Denote by $\mathbb X$ and $\mathbb L$ respectively, the $\mathfrak G$ -ideal of all sets of the first category and the $\mathfrak G$ -ideal of all sets of the Lebesgue measure zero. It is easily checked that $\mathbb H$ and $\mathbb L$ are Borel $\mathfrak G$ -ideals of types (1;2) and (2;1), respectively.

Let $\mathcal{L}_1 = \{(\mathcal{L}, \mathcal{F}_1) : \text{Notice that it is a Borel } \sigma\text{-ideal}$ of type (1;2). We obviously have $\mathcal{L}_1 \subseteq \mathcal{K} \cap \mathcal{L}$. Let A be

a closed nowhere dense set of positive measure and let B A be a set of type G such that B belongs to L and contains a countable dense subset of A. Then we easily observe that B E (H ~ L) - L, '.

Proposition 1. Mal is a Borel 6-ideal of type 2:2.

Proof. Let 31° be of type $(\alpha; \beta)$. Since clearly RF (M) L) Smax (RF(M), RF(L)), RG(H ∩ L)≤max(RG(H), RG(L)),

therefore $\alpha \le 2$, $\beta \le 2$. Let N denote the family of all nowhere dense sets. We have

$$\begin{split} &\mathbf{I}\left(\mathcal{H} \cap \mathcal{L}, \mathbf{F}_{1}\right) = \mathbf{I}\left(\mathcal{H}, \mathbf{F}_{1}\right) \cap \mathbf{I}\left(\mathcal{L}, \mathbf{F}_{1}\right) = \mathcal{H} \cap \mathcal{L}_{1} = \mathcal{L}_{1} \neq \mathcal{H} \cap \mathcal{L}_{2}, \\ &\mathbf{I}\left(\mathcal{H} \cap \mathcal{L}, \mathbf{G}_{1}\right) = \mathbf{I}\left(\mathcal{H}, \mathbf{G}_{1}\right) \cap \mathbf{I}\left(\mathcal{L}, \mathbf{G}_{1}\right) = \mathcal{H} \cap \mathcal{L} \neq \mathcal{H} \cap \mathcal{L}_{2}, \end{split}$$

thus $\alpha \ge 2$, $\beta \ge 2$, which ends the proof.

Now, we are going to give a few examples of non-Borel d-ideals.

In the sequel, we shall always assume that a perfect set is nonempty.

Recall that a totally imperfect set means a set which does not contain any perfect set (comp. [2], p.421).

If c^1 , c^2 are families of sets, then denote

- (1) J fulfils conditions (1), (11);
- (2) 5 consists of totally imperfect sets;
- there is a set AeJi. (3)

Let J^2 be a G-ideal included in J and let $J = J^1 \oplus J^2$. Then we have:

- (a) 5 is a non-Borel 6-ideal:
- (b) if J^1 , J^2 are movable, so is J^2 ; (c) if J^2 is a Borel σ -ideal, then $I(J, c) = J^2$ and J.J2 are of the same type.

Proof. (a) Conditions (i), (ii), (iv) of the definition

of a 6-ideal are easy to verify . It remains to prove (iii). Suppose that there is an open interval $U \in J$. Then there exist sets $A_1 \in J^1$, $A_2 \in J^2$ such that $U \subseteq A_1 \cup A_2$. Let $B \in \mathcal{T}$ be a Borel set such that $A_2 \subseteq B$. Then $U \setminus B$ is Borel and uncountable, so, in virtue of the Alexandroff--Hausdorff theorem (see [2], p.355), it contains a perfect set C . Then $C \subseteq A_1$ which contradicts (2) . Thus (111) hold and 3 is a 6-ideal. To prove that 3 is non-Borei, observe that $A \in \mathcal{I}$ and $A \notin I(\mathcal{I}, \mathcal{B})$. The former relation is obvious. To prove the latter, suppose that $A \in I(5, \infty)$. Then there is a set Be bod such that A

B. Let $B = B_1 \cup B_2$ where $B_1 \in J^{\frac{1}{2}}$, $B_2 \in J^2$. We may assume that B_1 , B_2 are disjoint. The set $B_1 = B \setminus B_2$ has the Baire property or is Labesgue measurable since $B \in \mathfrak{H}$ and $B_2 \in \mathfrak{I}^2 \subseteq \mathfrak{I}^2$. Moreover, B, \$ since, in the contrary case, we would have $A \in$, which contradicts (3) . Thus B, contains a Borel uncountable set. So it has a perfect subset and this contradicts (2). Therefore A & I(J, 6).

Statement (b) is self-evident.

(c) The inclusion $\mathfrak{I}^2\subseteq I(\mathfrak{I},\mathfrak{G})$ is obvious. To prove the converse inclusion, assume that $E\in I(\mathfrak{I},\mathfrak{G})$. Then there is a set $B\in \mathfrak{I}\cap \mathfrak{G}$ such that $E\subseteq B$. Let $B=B_1\cup B_2$ where $B_1\in \mathfrak{I}^1$, $B_2\in \mathfrak{I}^2$. Since \mathfrak{I}^2 is Borel, we may assume that $B_2\in \mathfrak{G}$. Then $B\setminus B_2$ is Borel. Observe that it is countable. Indeed, in the contrary case there is a perfect subset C of $B\setminus B_2$ and then $C\subseteq B_1$ which contradicts (2). Thus $B\setminus B_2$ is countable and consequently it belongs to \mathfrak{I}^2 . Hence $B\in \mathfrak{I}^2$. The inclusion $I(\mathfrak{I}_1\mathfrak{G})\subseteq \mathfrak{I}^2$ has been proved. Since \mathfrak{I} , $I(\mathfrak{I},\mathfrak{G})$ are of the same type, therefore \mathfrak{I} , \mathfrak{I}^2 are of the same type. This ends the proof.

Observe that, by the Alexandroff-Hausdorff theorem, such 6-ideal which consists of totally imperfect sets and contains uncountable sets is non-Borel. Several examples of such 6-ideals are described in [4] (comp. also [2], § 36).

Now, we shall give some other examples of non-Borel σ -ideals, using Proposition 2.

Example 1. Let \mathfrak{I}^1 be the σ -ideal of all sets possessing the property (S_0) (see [8]; one of possible definition is: a set E has the property (S_0) if and only if every perfect set contains a perfect set disjoint from E). Then \mathfrak{I}^1 fulfils (2) and, by assuming the Continuum Hypothesis condition (3) is fulfilled, as well (see [8], 5.3). Observe that \mathfrak{I}^1 is movable.

Lemma 3. Every perfect set contains 2 disjoint perfect sets.

Proof. By the Alexandroff-Hausdorff theorem, a perfect set contains a set C homeomorphic with a Cantor set. Let h be a homeomorphism which maps C x C onto C (comp. [2], p.235). The sets h(C x {t}), t \in C, just fulfil the assertion. For any set A denote by P(A) the family of all subsets of A.

Example 2. Let E be a Bernstein set, i.e. a set such that $D \cap E \neq \emptyset$, $D \setminus E \neq \emptyset$ for each perfect set D (see [5], th. 5.3). By Lemma 3, the sets $D \cap E$, $D \setminus E$ are of power $2^{y \circ}$. The set E is totally imperfect, nonmeasurable in the Lebesgue sense and has not the Baire property (see [5], th. 5,4, 5.5). Thus the family $J^1 = P(E)$ fulfils conditions (1),(2),(3) of Proposition 2.

Example 3. Let \mathcal{H} be the family of all subsets of IR. of power less than $2^{\neq 0}$. Clearly, $\mathbb{R} \notin \mathcal{H}$, \mathcal{H} is movable and fulfils condition (i). In virtue of the König theorem ([3], p.198), condition (ii) holds, as well. Thus, by Remark 1, \mathcal{H} is a \mathcal{C} -ideal. Sierpiński constructed in [7] a Bernstein set \mathbb{E} such that the symmetric difference $\mathbb{E} \Delta (\mathbb{E} + \mathbf{x})$ belongs to \mathcal{H} for each $\mathbf{x} \in \mathbb{R}$. Let $\mathcal{H}(\mathbb{E}) = \mathcal{P}(\mathbb{E}) \oplus \mathcal{H}$. Observe that if we put $\mathcal{I}^1 = \mathcal{H}(\mathbb{E})$, then conditions (1),(2),(3) of Proposition 2 will be fulfilled. Indeed, (i), (ii) obviously hold, thus (1) is valid. To verify (2), suppose that there

is a perfect set $D \in \mathcal{H}(E)$. Then we have $D \subseteq E \cup H$ for some $H \in \mathcal{H}$, and $E \cap H = \emptyset$ can be assumed. Consequently, $D \setminus E \subseteq H$, which is impossible since $D \setminus E$ is of power $2^{\frac{1}{2}O}$ and $H \in \mathcal{H}$. Clearly, the set E quarantees the validity of (3). Next, notice that $\mathcal{H}(E)$ forms a movable σ -ideal. It is a non-Borel σ -ideal since $E \in \mathcal{H}(E)$ and $E \notin I(\mathcal{H}(E), \Phi)$.

Now, our aim will be to demonstrate that if (*) holds, then there is a movable σ -ideal J of type $(\alpha : \beta)$.

For any nonempty family C of sets, denote by C_0 (resp. C_5), the family of all countable unions (resp. intersections) of sets from C .

Let

 $C^+ = \{A + x : A \in C, x \in \mathbb{R}\}$.

 $S^{\dagger}(\zeta) = \{A : A : A \leq B \text{ for home } B \in (\zeta^{+})_{\sigma^{-}}\}.$

Proposition 3. Let \mathcal{T} be a family of sets which contains a nonempty set and let $\mathbb{R}^d(\mathcal{T})$. Then $S^+(\mathcal{T})$ is the minimal movable \mathscr{C} -ideal including \mathcal{T} . If $\mathcal{T} \in \mathfrak{G}$, then the \mathscr{C} -ideal $S^+(\mathcal{T})$ is Borel.

<u>Proof.</u> By the definition of $S^+(\mathcal{T})$, it follows that $S^+(\mathcal{T})$ is a movable family and it fulfils conditions (1), (ii). Thus, by Remark 1, $S^+(\mathcal{T})$ forms a σ -ideal. The inclusion $\mathcal{T} \subseteq S^+(\mathcal{T})$ is obvious. If \mathcal{T} is a movable σ -ideal such that $\mathcal{T} \subseteq \mathcal{T}$, then $(C^+)_{\sigma} \subseteq \mathcal{T}$ and consequently $S^+(\mathcal{T}) \subseteq \mathcal{T}$. Thus the first assertion holds. If $\mathcal{T} \subseteq \mathcal{T}$, then $(\mathcal{T}^+)_{\sigma} \subseteq \mathcal{T}$ and so, by the definition of $S^+(\mathcal{T})$, the \mathcal{T} -ideal $S^+(\mathcal{T})$ is Borel. The proof is completed.

In [6] Ruziewicz and Sierpiński constructed a perfect set P such that the set $(P + x) \cap P$ is at most one-point for each $x \neq 0$. Notice that each set

 $(P + x) \cap (P + y)$ where $x, y \in IR$, $x \neq y$, is also at most one-point.

Let C be a set of measure zero which is included in P and homeomorphic to the Cantor set (see [5], lemma 5.1). Choose pairwise disjoint, perfect sets C_{∞} , C_{β}^* ; ∞ , $\beta < \omega_1$,

contained in C (comp. Lemma 3). Since they are included in P; therefore, for all α , $\beta < \omega_1$; x,y \in IR, each of the sets

 $(C_{\beta} + x) \cap (C_{\beta} + y)$, $(C_{\alpha}^{\dagger} + x) \cap (C_{\beta}^{\dagger} + y)$ for all

for $\alpha \neq \beta$ or $x \neq y$, is at most one-point.

Let $D_o = D_i = E_o = E_i = \emptyset$ and, for each ∞ , $2 \le \alpha \le \omega_i$, let D_∞ , E_o be such that $D_\infty \le C_\infty$, $E_\infty \le C_\infty$, $D_\alpha \in F_\infty \setminus G_\infty$, $E_\alpha \in G_\infty \setminus F_\infty$ (see [1]). For each α , $0 < \alpha < \omega_i$, we denote by $T(\infty)$ the family of all double real-valued sequences $\{t_{n_i}\}_{n < \omega}$, $r < \infty$. For any $t \in T(\alpha)$, $t = \{t_{n_i}\}_{n < \omega}$, $r < \infty$ let us denote

$$\begin{array}{lll} D(\omega,t) &=& \bigcup & (D_{y} + t_{ny}), & E(\omega,t) = \bigcup & \bigcup & (E_{y} + t_{ny}) \\ \underline{Loss} & 4. & Let & 2 \leq \alpha < \omega_{y}, & t \in T(\omega). & Then \end{array}$$

 $D(\alpha,t) \in \mathbb{F}_{\alpha-1}$, $E(\alpha,t) \in G_{\alpha-1}$ when $\alpha-1$ exists, and

 $D(\alpha,t)$, $E(\alpha,t) \in F_{\infty} \cap G_{\infty}$ when ∞ is a limit number.

<u>Proof.</u> We shall demonstrate the assertion which deals with $D(\alpha,t)$; the proof concerning $E(\alpha,t)$ is analogous. Notice that $D(2,t)=\emptyset\in F_1$, therefore, in this case, the assertion holds. Now, let $\alpha>2$. Let $t=\{t_n\}$ $n<\omega,\gamma<\alpha$ Denote

$$C_{ny} = C_y + t_{ny}$$
, $D_{ny} = D_y + t_{ny}$, $D'_{ny} = C_{ny} \setminus D_{ny}$, $n < \omega$, $y < \infty$.

From the notations and properties described above it follows that for all k, ξ ; $k < \omega$, $\xi < \alpha$, there is a countable set included in C_k such that

$$C_{k\xi} \setminus D(\alpha',t) = D_{k\xi} \setminus B_{k\xi}$$

We then have

which easily implies that $D(\alpha,t)\in (\bigcup_{B\in\alpha} F_{\beta})_{\delta}$. om the

equality '

$$D(\alpha,t) = \bigcup_{t \in \mathcal{T}} \bigcup_{n \in \mathcal{T}} D_{n \in \mathcal{T}}$$

i' follows that $D(\alpha,t) \in (\bigcup_{p < \alpha} F_p)_{\alpha}$ since $D_{n, \gamma} \in F_{\gamma}$ for all n and for each $\gamma < \alpha$. Thus we have obtained

Assume that or - 1 exists. We have

$$(\bigcup_{\beta \leqslant \alpha} F_{\beta})_{\alpha} = (F_{\alpha-1})_{\beta} = F_{\alpha-1} \quad \text{when } \alpha \text{ is even,}$$

$$(\bigcup_{\beta \leqslant \alpha} F_{\beta})_{\delta} = (F_{\alpha-1})_{\delta} = F_{\alpha-1} \quad \text{when } \alpha \text{ is odd.}$$

Thus $D(c,t) \in \mathbb{F}_{x-1}$, If x is a limit number, then

$$(\bigcup_{\beta \leqslant \alpha} \mathbf{F}_{\beta})_{\delta} = \mathbf{F}_{\alpha}$$
, $(\bigcup_{\beta \leqslant \alpha} \mathbf{F}_{\beta})_{\sigma} = (\bigcup_{\beta \leqslant \alpha} \mathbf{G}_{\beta})_{\sigma} = \mathbf{G}_{\infty}$.

Thus D(&,t) & F OG. The Lemma has been proved.

Lemma 5. If $3 \le \alpha < \omega_1$, $3 \le \beta < \omega_1$, $2 \le \gamma < \alpha$, $2 \le \beta < \beta$, so $\in T(\alpha)$, $t \in T(\beta)$, then

(a) there is no set $A \in G_{\frac{1}{3}}$ such that

$$D_{\beta} \subseteq A \subseteq E(\infty, \bullet) \cup D(\beta, t)$$
;

(b) there is no set A

F

such that

$$E_{ij} \subseteq A \subseteq E(\infty, 0) \cup D(\beta, t)$$
.

<u>Proof.</u> We shall show (a); the proof of (b) is analogous. Suppose that there is a set $A \in G_{\frac{1}{2}}$ such that

$$D_{\Upsilon} \leq A \leq E(\alpha, \epsilon) \cup D(\beta, t)$$
.

Then, obviously,

 $\begin{array}{c} D_{\xi} \subseteq C_{\xi} \cap A. \\ \text{Let } s = \left\{s_{n_{\xi}}\right\}_{n < \omega}, t = \left\{t_{n_{\xi}}\right\}_{n \neq \omega}, t = \left\{t_{n_{$

 $= \bigcup_{j \in \mathcal{F}} \bigcup_{j \in \mathcal{F}} (C_{j} \cap (E_{j} + s_{n_{j}})) \cup \bigcup_{j \in \mathcal{F}} \bigcup_{j \in \mathcal{F}} (C_{j} \cap (D_{j} + t_{n_{j}})) \subseteq D_{j} \vee B$ where B is a countable set. We may assume that D_{j} , B are disjoint. Thus

$$D_{\xi} \subseteq C_{\xi} \cap A \subseteq D_{\xi} \cup B$$
,

and so

 $D_{\xi} = (C_{\xi} \cap A) \setminus B$.

Since $D_{\frac{1}{2}}$ equals the difference of the sets of types $G_{\frac{1}{2}}, F_{\frac{1}{2}}$, therefore it is of type $G_{\frac{1}{2}}$. This contradicts the definition of $D_{\frac{1}{2}}$.

<u>Proposition 4.</u> For an arbitrary pair ∞ , β of ordinal numbers such that

 $3 \le \alpha = \beta \le \omega_1$ or $3 \le \alpha + 1 = \beta < \omega_1$ or $3 \le \beta + 1 = \alpha < \omega_1$, there is a σ -ideal $J(\alpha, \beta)$ which is Borel, movable, of type $(\alpha; \beta)$, included in \mathcal{L}_1 . Moreover, σ -ideals $J(\alpha, \beta)$ can be defined in such a way that if $\alpha \le \alpha$ and $\beta \le \beta$ then $J(\alpha, \beta) \in J(\alpha, \beta)$.

Proof. For the of, s fulfilling the assumption, let us put

Since $D_{\gamma} \in C_{\gamma}$, $E_{\gamma} \in C_{\gamma}^{\gamma}$ and $C_{\gamma}, C_{\gamma}^{\gamma}$ are closed sets belonging to L, therefore $\Im(\alpha, \beta) \in I_{\Lambda}$. From Proposition 3 it follows that $\Im(\alpha, \beta)$ is a movable Borel 6-ideal. It is easy to check that if $d \leq d'$ and $\beta \leq \beta'$, then $\Im(\alpha, \beta) \in \Im(\alpha', \beta')$. We have only to show that the α -ideal $\Im = \Im(\alpha, \beta)$ is of type $(\alpha; \beta)$. At first, assume that $\alpha \leq \omega_{\gamma}$, $\Im(\alpha, \beta)$ by the definition of \Im , for each $\Lambda \in \Im$, there are sequences $S \in \Upsilon(\alpha)$, $C \in \Upsilon(\beta)$ such that

(o)
$$A \subseteq E(\alpha,s) \cup D(\beta,t)$$

Of course, the set $B=E(\alpha,s)\cup D(\beta,t)$ belongs to \Im . Moreover, by Lemma 4, we have

$$B \in F \cap G$$
 when $3 \neq \infty = \beta$;

B \in F_{∞} when $3 \neq \alpha + 1 = \beta$; B \in G_{β} when $3 \neq \beta + 1 = \alpha$.

Hence $RF(3) \leq \alpha$, $RG(3) \leq \beta$. In order to prove the inequalities $RF(3) \geqslant \alpha$, $RG(3) \geqslant \beta$, observe that if $2 \leq n < \alpha$, $2 \le \xi < \beta$, then $E_{\beta} \in \mathfrak{I} \setminus \Pi(F_{\gamma})$, $D_{\xi} \in \mathfrak{I} \setminus I(\mathfrak{I}, G_{\xi})$. For example, we shall show that $E_{a} \in \mathcal{I} \setminus I(\mathcal{I}_{a}, F_{\eta})$. By the definition of \mathcal{I}_{a} we have $E_{\eta} \in \mathcal{I}$. Suppose that $E_{\eta} \in \mathcal{I}(\mathcal{I}, F_{\eta})$. Then there are a set $A \in F_n$ and sequences $s \in T(\alpha)$, $t \in T(\beta)$, such that En & A and condition (o) holds. This contradicts Lemma 5 (b). Now, assume that $\alpha = \beta = \omega$. The inequalities $RF(3) \le \omega_4$, $RG(3) \le \omega_4$ are evident. The converse inequalities follows from the relations $E_0 \in J \setminus I(J, F_0)$, $D_0 \in J \setminus I(J, G_0)$ $\eta < \omega$. For instance, we shall prove the first of these relations. By the definition of 5 , we have ${}^{E}{}_{\eta}\,{}^{e}\,{}^{5}$. Suppose that $E_{\eta} \in I(\mathfrak{I}, F_{\eta})$. Then there is a set $A \in \mathfrak{I} \cap F_{\eta}$ such that $E_{\eta} \subseteq A$. By the definition of \Im , there are a number $3, 7 < 3 < \omega_1$, and sequences $s, t \in T(3)$ such that $A \subseteq E(3,s) \lor D(3,t)$. This contradicts Lemma 5 (b).

Theorem 2. Let ∞ , β be an arbitrary pair of ordinal numbers such that (α) holds. Then there are movable σ -ideals $\Im(\alpha,\beta)$, $\Im(\alpha,\beta)$ of type $(\alpha;\beta)$ souh that (α,β) is Borel and included in \mathcal{L} , and $\Im(\alpha,\beta)$ is non-Borel.

Proof. Put $\Im(1,2)=\mathcal{I}_1$, $\Im(2,1)=\mathcal{I}_1$, $\Im(2,2)=\Im(\cap\mathcal{L}_1)$ (comp. Proposition 1). Let the remaining σ -ideals be the same as in Proposition 4. Let

$$\Im(\alpha,\beta) = \Re(E) \oplus \Im(\alpha,\beta)$$

where $\Re(E)$ is the σ -ideal described in Example 3. By Proposition 2, $\Im(\alpha, \beta)$ is a non-Borel movable σ -ideal of type $(\alpha; \beta)$.

REFERENCES

[1] Freiwald R.C. Mc Dowell R., Mc Hugh E.F., Borel sets of exact class, Colloq. Math., 41 (1979), 187-191
[2] Kuratowski K, Topologie I PWN, Warszawa 1958.

- [3] Kuratowski K,, Mostowski A., Set theory with an introduction to descriptive set theory PWN, Warszawa; North Holland, Amsterdam 1976
- [4] Miller A., Special subsets of the real line to appear for Handbook of Set Theoretic Topology
- [5] Oxtoby J.C., Measure and Category Springer-Verlag, New York-Heidelberg-Berlin 1980
- [6] Ruziewicz S., Sierpiński W., Sur une enseble parfait qui a avec toute sa translation au plus un point commun, Fund. Math. 19 (1932) 17-21
- [7] Sierpiński W., Sur les translations des ensebles linéaires Fund. Math. 19 (1932) 22-28
- [8] Szpilrajn E., Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935) 17-34

ABSTRACT

In the paper, for any 6-ideal \Im of subsets of the real line, a type of \Im is defined as a pair $(\alpha; \beta)$ of ordinal numbers such that each Berel set from \Im has supersets from \Im of classes F_{α} , G_{β} and α , β are minimal. Some examples are given and a condition necessary and sufficient for a pair $(\alpha; \beta)$ to be a type of a \Im -ideal is formulated.

KLASYFIKACJA 6- IDEAŁÓW NA PROSTEJ

Streszczenie

Wprowadza się pewien sposób klasyfikacji 5-ideałów podzbiorów prostej. Jednocześnie autor dokonuje według tego kryterium klasyfikacji kilku znanych przykładów 5-ideałów.