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1• Let us suppose, that it is given an operator equation'
Ax = 7 0)

Where X é. X and y £. Y, and where (X,Y) are Banach spaces. 
This operator equation is of the first kind.
For this kind of operator equation, in general the problem of 
solution is not well posed in Hadamard sense. Saying more 
exactly the problem of solution for equation as (1) is not 
Well posed in Pietrowski's Sobolev's sense.
That means, in Pietrowski's and Sobolev's sense, we need the 
solution of (.1) which «rust have the property of stability.
Ve shall omit the well known definition of well posed solution 
Problem in Sobolev's sense, but we shall only remind the 
oondition of stability for the solution of equation as (1).

We say, that operator equation (1) has the property of 
stability on the spaces (x, Y) for given element y, if for
every £. > О there exists such number сГ=<Г(€,)>0 , that the
Implication holds :

IIУ - ŷ il implies Их -  Xj.||<& , С2)
Where y g é. Y and х^ é X.

But as we have said above, this stability condition in general 
d o esn't hold for the operator equations of the first kind as 
this one.
However, many important physical and astrophysical problems 
Laed to operator equation (1) .

can see easily that the Schwarzschild Integral equation

D(r)Y[m + 5 - 5  1°E r - A(r)] r2 dr = a(m) ,
0
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where D(r) is stars density and the function is luminosity 
function, and where function A(m) is a derivative of the 
function N(m) obtained by stars calculating process, is an 
operator integral equation of the form £1) . Therefore all 
given above remarks hold for this equation.
In this paper we shall investigate the solution of the 
Schwarzschild integral equation (k) in the modified sense. It 
means, we shall show, that there exists such a subspace S£X, 
for elements of which the stability condition holds.
For this purpose we shall first transform the given Schwarzs- 
child integral equation (k) to the new form.
Taking the Schwarzschild equation £U) we achieve a substitu
tion ÿ - 5 log r. From^this substitution we obtain that

5 log e SJ o pr = e 0 or r = e J
where

1с = ---
5 log e

Therefore we may write that

M = m + 5 -(f + A (eC ?)) .
Using for function A (e° ?) the approximative value a, we 
may write that

M = m + 5 - (f + a) •
On the contrary dr = с ec  ̂dj> , and the new boundary of 
integration will be :

= 5 log 0 = - oo , = 5 log О  со) = + со

The Schwarzsohild integralequation {4) will take the fol
lowing form

+ 0O
^  D (eC ') if (_m + 5 -( g + a )) °2C ̂  * с eC ̂ d<£ = A(m^

- ooor +0o
j D (e°^ ce^c^ ( m  + 5 - (If + a)^dy = A(m)
- Oo

Taking once more the substitutions of the form:
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m + 5 = y» Ç ♦ a = R*» the boundary of integration will
be the same, and d f = dR*
The new form of the investigated Schwarzschild equation will 
be of the form :

/ d  (e°^R “ a) } о e“3aC, e3cR {yi - R') dR’ = А(уд - 5),- OO
f D(e“aC. e°R ) ce"a° < e3cR (yi - R ’)dR* = A(y - 5),

-  OO

S  D (f ecR ) £ 2e3cR,tf - R') dR'= A(p - 5) .
Taking : D ^ e * 11 )C = Д ,  ( О
and A(yi - 5) = oT1 (p) we obtain the convolution forttjof the
Scharzschild integralequation as following

■y°°
j lf(H - r ' ; a 1 (R') dR'=oT1 (?) (5)

In the convolution form of the Schwarzschlld equation, the
is an unknown function, the if -function as a kernel 

of the equation is given and the function ( ji) is also
given.
Ve can see that the new form (5) of the operator equation 
is also an operator equation of the first kind.

Therefore for this equation doesn’t hold the well posed 
solution problem in Sobolev sense.
But we may investigate this equation as an operator equation 
for which the well posed problem of solution is given in 
Laurent Schwartz sense. We introduce the following

Definition 2. Ve say that the problem of solution of 
the convolution form of the equation (5) is well posed in 
Laurent Schwartz sense if the solution exists in the subspace 
S C L 1(r ), it is unique in the spaoe S and if it is stable 

the bounded subset Sq of the space ( S ; ||. ||  ̂R ^)in sense
°f the Definition 1. given over.

Here S denotes the space of fast decreasing functions 
°n R which was introduced by Laurent Schwartz in pi oj.

We shall show that there exists a bounded set S
for which elements we shall obtain the well posed problem of 
solution of the Schwarzschlld’s integral equation in Laurent

i
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Schwartz sense.
2. For this purpose we shall take an Integral equation

J К (t, T) X ( f) d?= y(t) , (6)
A twhere function у 6 Y Is given and the solving solution xfcX, 

and where X, Y are Banach spaces such that, by given Kernel
К (t,“£) the operator

к  = j  к  C t .T)  c . )  d r  (7)A _naps the elements x ć. X in the elements y £ Y ,51 is a given
domain of integration variable.
For our purpose the domain SŁ will be the rei1 space IR , it
mean the improper interval (- Oo , + oo) .

Suppose, that the kernel K(t,t ) will be positive and 
that the Banach real space X = Y = LP , yi ) , where p=1 .
But in the space LP (IR ,yi) there exists a oone К of 
positive elements belonging to LP ( H , p). In this case the 
operator К ; LP (IR ,ji) ■— > LP (3R ,.y) maps the oone К in
the form ; К (К)с К .
Def. 3. Ve also say that the positive operator К has a mono-
tonioal property if the implication :

u ä  V implies Ku i Kv .
holds.

Now we shall investigate two integral equation

К (t,T ) i Ct) df = ij(t) (8)
К (t,-t) x (?) dtr = iĵ t) (9)

where the kernel K_(t,T) approximates the kernel K(t,?)
Pin the space L ,y) » where = 1.

Suppose further, that element of space LP (IR, y) 
approximates the element of the spaoe LP (3R , f where
p e l .

Ve suppose that the kernel of this equation fulfils the 
following conditions: it is measurable in RxR; it is integra- 
ble in X for every t £ R and it is lntegrable in t for 
every t 6 R . Ve assume further, that the integral
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Я  (t) = -f K(t,t) dt ̂  X, >  o
K R °

and that the kernel K(t,T,)ć.S, where S C l ' (H) is the sub- 
8pace of fast decreasing functions on R. Further assumptions 
about the kernel К we shall give below.
Under this assumptions we can write the equality :

Ç  K(t,r')x cr)dt - /  K^Ct.t) x^(t) dt = (t) - ^  ct)

Now let's modify this equality as follows
Ç K/t,t) x (t)dt - Ç K(t,t ) x».(T) dt + / к  Qt,l) xx (tr) dr _
»  В  0 В  °

Jp K ^(t,t) x (t)dt= j(t) - y f (t)
Ve obtain that

/к(Л,<С) (x (!) - *s a t№* = i^(t)- ^<t) + J^'K^t,!)- K(t,t)).

• xj(t) d'C
Integrating the last equality over the domain ГО , where 
t ć. Ш  we obtain the equality

sign(x (t) - x^(t)) I x (t) - x ç (Г) I d С dt =

= /(^<*0 - ^  00) dt + jyCK^lt.T) - K(t,!>) x^t)d'C dt

Supposing that the Fubini theorem holds we obtain the equality

/(("к(t,t) dt) (dign(x(T)- х г С г Л  x(t)- xA (x)\dt = 
ft ft

= _f (4  00 -  dt + J ( |  Л ( * Л > -  K (t Д ) )  d t ) Xg(X)dt

From this equality we easily obtain the inequality

I ^sign (x (T) - Xf (!) ) I x (t) - x j-ftr) J łCK (T) eCt Ś 
- i” dT * £  k (t) jx^CD jd lT , (10)

vhere we have designed :
ftK (t)= /  K(t,t) dt for r £  3R and
k(t)= K(t,t)|dt for ! é. те .

In addition, if we are able to approximate the kernel K(t,V)
by К (t,f) as well, that the integral k (%) will be(J
independent of ïé ft , and the value of k(t) = kQ = constant,

!
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will be sufficiently small that is if for t is к (T) ■*. »? ,
we obtain instead of the inequality (1O) the inequality,
I -Г Sign ( x ft) - x ç (t)) I x (t) - x^ (t) I dp ^

< ̂ ly(t) - y$(*> Idt + j 2 l*j-(«)|dt (11)
Where dy d'C , &iat means, that the measure yi has a
density ytjjftr) » t ćIR and £ is a sufficiently small positive 
number.

Suppose, that also the integral is independent ofIV
f on domain It . It means that the measure p is of constant 
density yf-K = J60 > 0 » we obtain instead of inequality (11) 
the inequality

jfsign (X(tr) - X j-(t»|x (г)~ х 5 (Г)|К0 d C  l é
^  /|y(t>- y^-Ct:)|df + ^ | х ^ ( г ) |dc

°r R )£slgn Crr)" x<5 I ~
*  i J r - УИ l1 ♦ 4-J'vllb1(ft) <12)

Now, if the approximation of у by у^ in the space L ( Ж}
is as well, that || y - И jJ ( R ̂  £ о * where Ç 0 >  0 is a
small number, and if we assume that the solution x is

1bounded in the space L (30 that means, that the solution
xs belongs to the ball В = { : Ц .  || L1 (RA ? o ł  in
the space L ( ß) then we obtain that the following inequality 
holds

I X  sign(x (t) - x^ (C)) 1 X (t)- + bo >2

*  К  + bo ÏÏ ?1 = to + *\ <13>о
The above investigation may be without sense, if there does
not exist such a kernel for which conditions required by us
may be not satisfying.
But the class of such kernels K(t,T) is not empty.
The kernel , -

K(t,t) = E e ~ ‘,>Ct-t) t , X e d  о**)
as we easy show fulfil our required conditions.

The kernel (l4) is positively defined on the space Ж  if 
E 0, The integral



83

it Ct) = J E e_OŁt ~ V > 2 dt = E  ̂e“° Ct ~Z) dt =
ß r • 2 /ft '= E ) e~ du = E J — • , it means, thjat for theО « ^

kernel Clk) the integral independent of 'C belonging
to the interval (- со , + ß̂ ).
If we give two such kernels 2

K(t,t) = E é“ WCt - Г ) 2 ^
K^t.t) = E e“°J 05)

then we can see, that ^t)m

KU-Oldt. y LJ e-“^ ' -"(•-î)2 ! d~ f

Л I ly.'vl -U*| , I E . - 4 u t r  ()„?_ î -o4.t)=

* 1 e.-4 - D 2 -r - . . / 5RE. V--/ + t ^ f c  ST

^ max(E -EdJ (ma* ( ^  ; \[^)/~ Eo jJh. “ Eo
But we can see that two positive numbers Ej and may be
always chosen so that the produot E V*XT will be suf-О » (О ̂
Violently small.
Indeed, we have 2 2 2 2

/ - COrCt-l) -co(.t-r) , - u u  - 00u i
I = J I Е/ e й - Е е  Idt a ) |E e c -Ее I du

= i Ee j -£ в ff - 1 I du .

But, taking ^  ■> О and R >  0 such that
2 °

ME i e~ u>U d u < |  and 1 + -1—  ,E ~ T 8 R 
)u|>Ro

v® obtain farther that 2
i 2 C«. . 2 — Z(J-cj } u/ - (Pu Z4 ' . . >If J Ее Mdu + J e | C 1 + ?)e - 1 | du é.

lu I >R - Rc
° R  *  2-• n /-° ^ “(üJ. - CO) u

"  7 + /  I О  + ÏÏR-)e -
-Ro °

last inequality will be true since we have for sufficiently 
8,Bali >  О the Implication: cJj — 0 if cT — > 0 and we 

see  easy that: 2

V “ ’= I °  - ' 1 = »  •
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if S  — +■ O for u £ <■ -Ro, Ro > .
For we have the following inequality 2  «

й к . v " > -  “ ( * ^  ' К ’  * c”' ü ) ”
Sinoe 2

-(tJj-<j)u
f^'(u)=(l + g^-) ̂  2 ue ‘ = O, given u = 0.

Then, for ° g
fćCu)=(l + g— )« - 1
° о

we obtain that 2

1 - Т Г  + i° B r  du * J ° l ( l + 5R - ) e ° — 1 f du —
-R ° -R °

о ° 2s 0} -h i -^O^-Oł) R
ÏÏ" + T  + 2Ro + “5r )® - l U ^  + 7r+ 2 = ? ‘о

It means, for kernel as (1**) and (15̂  it is slways possible 
to obtain the inequality

kC?>= /Ikj(t,<t) - K(t, r > | d t ^  ^  .
3R

Therefore we may formulate the following
Lemma 1. For the integral equation (6 ) with the kernel ClU)
and fi 5̂  in the space X = Y = L1 (ГО) the Inequality (l3) i*
true if the solution x j- belongs to a ball in the space 
L1 (»).

From this Lemma 1 we have the Corollary 1, If for the 
solution xj- of integral equation (9̂ .) the Lemma 1 is true, 
than the solution xj- is stable in eense:

I /  aien (x (T) - *,5-^)) I x(T0 - I d С \̂ - £  .
But in a special case, if for solutions Xj equation C9^)
is always fulfilled, the inequality

x 5  ̂x
which is equivalent with the inequality Il X̂ ll -éllx II , we
obtain simple form of stability in the norm sense in the space 
L1 (R) , that is

/((.X (t) - X r (T))|d£ ̂  £. .
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But in thia special c u t ,  we may write the inequality (lü)in 
the form

h * -  *J I 1 ^  -4 - Il y -  r, *' • • —V l V r?
This result we may express in the
1ла«а 2. The solution x ^ of C9) belonging to the set 
s0 = В Г» S is stable in sense of the Definition 1, that is

l|y - 7S |.) * у implies || x - xf || <Г £
holds, if x , x ^ £  So and 7 t7j £  S •
In conclusion we have the

Theorem 1. Let us suppose that the kernel K(.t ,X) of 
the equation (6) fulfils the following conditions:
1° It is measurable in R x R 
о< It is intenable in Z for every t £. R and it is 

tbtegrable in t for every t ć  R.
3 The integral

№ vo») s f Ktt.tr; dt ̂  /с > oК R О
4 1

The kernel KĆt,T)fc S, where S C. L1 ĆR) is the subspace 
of fast decreasing functions on R and it is positive and 
has a monotonioal property.
3° It is given the ball

■>=Ц, ■ A ', . , * * '  b» i
uhere the constant jji is defined by the Integral in condi
tion 3° and where the constant b is a real number. ThenО
the problem of the solution of the SchwarzschiId's integral 
•quation is well posed in Laurent Schwartz sense in the set 
s0 = B A S .
5. Vow we return to the SohwarzschiId's integral equation in 
the convolution form (5) •
By application of equation (5) to the stars calculating 
Process the kernel If stay be approximated by the exponential 
function
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Cf(M) = E e"a CM " Ио> (ц)
Ve м у  alao approximate the funotion oć ̂ (m) on the right side

2

of equation (5) by an exponential function

^ (H> y * - bCf - ^  . C.ej
Now the Soharzaohlld'a integral equation in the oonvolutlon«fora will be as following 2

/  E , - |l( H - ) 1o ' ^ t (R)4 R s E (r e'1>('“ 'lo) *

-bt2
Putting y - yo = t, where y = t + yo we may write

/ E e"a ^ “R+^o> Д  , (R) dR с E j- e‘
Л 1 5

and putting R - yo = С ; dR m. dT

S e .-<.*-»* ь  , (t, ^  „t = E<r .-b ‘2 .

Désignét Д 1C.tT + yQ) by Д о(т} we obtain a simple fora
of the Schwarzsohild integral equation

2 2 
/ E e " a<:t" X) Д  0 (X) dt = E g e'bt 09)

where the funotion Д  Q(T) la unknown.
Obviously,, the kernel and given over funotion on the right 
aide of the equation (19) both belong to the apace $ C- L £R ). 
It la useful to solve the integral equation (19) with help of 
the Fourier tranaformation F(f} = •£ e fltf)dt on S.
Uaing the Fourier transformation F to both aide of equation 
£19) we obtain

F(£ E «-a(t- t^2A o(T)= F (E e"bt ) .
The Fourier transformed equation £19) givea.an equation, ,2 cu*

from whence
E f f e~ * *  F ^ o ) =  ^  C20^
с о

г (л о-> - ¥ i T  • .
LÙ 2asy modificationand after easy modification

F(
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Being to the Fourier image of A  the Inverse Fourier trane-o

vhere

formation F-1 we obtain for the researched solution the
function a - t*

A c   - e .22)
E /ТГ Ca - b)

Of course, the researched solution A Q(t) given by fomiula£22) 
ie bounded in the space S C l '(R) and belongs to the ball

' K  l[\ Xj('r>|d T i B o]:s[ XJ S 11 M  L1(R)- Bo] CZ3)

-
Before we pass to an ilustrative example of application the 
Sohwarzsohild"в integral equation to founding the density 
function D (r), we present shortly the used method in the stars 
countings problem with help of which we will estimate the 
Parameter of the kernel and the on the right side of
Sehwarzschlld’» equation.
h. The classical method of determination of the distribution 
°f stars and interstellar dust from the magnitudes, colour 
indices and speotral types of stars was described by R.J. 
Ti-umpler and H. F. Veaver in their monograph. This method 
enables to determine the interstellar extinction and the densi
ty of stars Dfr) of different spectral class and luminosity 
***oups.

In our method, the function (>*)- equation (5)
vere obtained from stellar counts in the Sagitta field Csee
C. Xwaniszewska, S. Grudzińska).
*e have for dm = Om5

d 1 > 1 f \А(и )— dm— « ■ < ■ ♦ £ ) - * ( ■ - £ ;  - (25)
khere N(m) is the number of stars of apparent magnitude 
*pg (photographio magnitude).
The results of stellar counts for seven regions of Sagitta 
field k°xk° only for 1 67 stars of spectral type AO are 
fellowing :

\



88

A ( 9 ) = 6 A (11 , 5 ) = kz

A(5>,5) = 19 A ( 12 ) = 22
A (10) =11 A (12,5 ) = 15
A (10,5) =29 A ( 13 ) = 2
A (11) =30 A (13,5)= 1

The run of the A(m) with m in the solid angle of one square

3 9 10 11 12 13 14 m
F1g. 1 Stellar counts for stars of the sneotral type AO

:n the Sagitta field
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The obtained Л(ш) curve may be calculated in the form
A(m') = 2,6 e”0’6 Cm " 11’5)2 Ci6 )

The luminosity function (f CM) for the sane speotral type 
stars AO was calculated. We assume the absolute magnitude 
values for AO stars from Aliena's Sables. The standard
dispersion was taken from the McCuakey'e paper and R. Ampel.
We obtained 2

(Дм) = 0,5 e“° ’78(M - °*k> (27)
5. For the kernel given by formula (27) we have E a 0,5,
a a 0,78, a 0,4 and for the function <oć g on the right 
side given by formula ^26^ we have E a 2 , 6 ,  b = 0,6 , 
p0 a 11,5 • The Schwarzschild'a integral equation

/  0,5 e"7'8 С*” г)2Д 0 (^ d* = 2,6 e“0'6 **
has a solution given by formula Ć22)

0,78 0,60 .2 
Д  (t)= 2»6° 0.78 e " 0,4-6 - 0,6o
° 0,50 (0,78 - 0,60)'

After performing the rule of calculation we obtain the
function 2

- 0 , 2 6  t
Д  0( t) a 5,204 e

Now we must come back to the density function D£r). We have 
Д о (T)dt = Д 1 (Î+ |Xo ) d t  a A ^ R j d R a
^D(C1 ecR ) C2 e3cR dR a D ( e ° ^ ‘a )̂ ce3® <‘R-a ̂ dR a

■z. D (е°У ) с e3°^d/ = D Ce°y)c *C -̂ e2°-f d f a
a D(e°?)(ecf) 2c eCf dj a D(r) r2dr 2

Л о С Т ) = 5»20i* e”0,26u d T =  5, 204 e-0'26 R dR a

a 5,204 e“0*26 R dR a Der) r2dr
-0 26 R2 dR -0,26(V+a)2D(r) = 5,20** e ’ -jS = 5,204 e ' r dr

r dr
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5 ,20k B~°>z6(5 lo« r ♦ a>2 d^5 log г ♦ а)
г2 dr

5,20*1 e"0’26^  lo* r + a)2 V  . 5_ log e =Г г
5 ,20*t e- 0 ' 2 6 ^5 loe r + a )2 . 5 log e

2
D(r)= 26,02 i£S2- в"0 ’26 <5 log r + a>

r
In our ilustratlve exaaple of application the Sohwarzschild'a 
equation to finding the density D(r) we have found for star« 
of AO spectral type

DA0Cr)= lit! в'0’26 C5 log r + a)2 
r

Remarks. Further investigation of the density DAQ and 
examples of application the Schwarzschild"a integral equation 
to finding the density D(r) in other stellar fields will be 
published in the next papers . The stability of t̂ ie used 
approximation method will be considered also.
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0 POPRAWNYM ROZWIĄZANIU RÓWNANIA CAŁKOWEGO SCHWARZSCHILDA I 
JEGO ZASTOSOWANIACH W ASTRONOMII STATYSTYCZNEJ

Streszczenie
W tym artykule formułuje się w oparciu o pojęcie poprawnego 
rozwiązania w sensie L. Schwartza warunki poprawnego rozwiąza
nia równania całkowego Schwarzschilda. Ustala się klasę jąder. 
Pokazuje się, że klasa ta nie jest pusta przy jądrze typu 
krzywej gaussowskiej.
Otrzymane rezultaty stosuje się do aproksymacji zliczeń gwiazd. 
Dalsze badania i rozwinięcia tej tematyki będą kontynuowane 
w następnych artykułach.

/


