ZESZYTY NAUKONE WYZSZEJ SZKOLY PEDAGOGICZNEJ w BYDGOSZCZY Problemy Matematyczne 1985 z. 7

TADEUSZ MARTAN JZDRYKA
Walter negner
WSP * Bydsonzczy
WELL POSED SOLUTION OF SCHWARZSCHILD INTEGRAL EQUATION AND ITS APPLICATION IN STATISTICAL ASTRONOMY

1. Let us suppose, that it is given an operator equation*

$$
\begin{equation*}
A x=y \tag{1}
\end{equation*}
$$

Where $x \in X$ and $y \in Y$, and where (X, Y) are Banaoh spaces. This operator equation is of the first kind. For this kind of operator equation, in general the problem of solution is not well posed in Hadamard sense. Saying more exatily the problem of solution for equation as (1) is not Well posed in Pletrowski's Sobolev's eense.
That Eeans, in Pletrowski' and Sobolev' sonse, we need the -olution of (1) whioh eust have the property of stability. V. shall onit the well known definition of well posed solution proble= in Sobolev's sense, but we shall only remind the oondition of tability for the solution of equation as (1). Def.1. We eay, that operator equation (1) has the property of atability on the spaces (X, Y) for given element y, if for every $\varepsilon>0$ there exists such number $\delta=\delta(\varepsilon)>0$, that the taplioation holds :

$$
\begin{equation*}
\left\|y-y_{\gamma}\right\|_{Y}<\delta \quad \text { implies }\left\|x-x_{\delta}\right\|^{\prime}<\varepsilon, \tag{2}
\end{equation*}
$$

where $y_{\delta} \in Y$ and $x_{\delta} \in X$.
But as we have said above, this stability condition in general doeen thold for the operator equations of the firet kind as this ono.
Kowever, many important physical and astrophysical probleme lead to operator equation (1) .
Vo can see easily that the Schwarzschild intecral equation

$$
\int_{0}^{+\infty} D(r) \varphi[m+5-5 \log r-A(r)] r^{2} d r=a(m) \text {, }
$$

where $D(r)$ is stars density and the funotion φ is luminosity function, and where function $A(m)$ is a derivative of the function $N(m)$ obtained by stars calculating process, is an operator integral equation of the form (1). Therefore all given above remarks hold for this equation.

In this paper we shall investigate the solution of the Schwarzschild integral equation (4) in the modified sense. It means, we shall show, that there exists such a subspace SCX, for elements of which the stability condition holds.
For this purpose we shall first transform the given Schwarzschild integral equation (4) to the new form.
Taking the Schwarzschild equation (4) we achieve a substitution $\rho=5 \log r$. Fromithis substitution we obtain that

$$
r=e^{5108 \theta} \rho \text { or } r=e^{0 \rho}
$$

where

$$
c=\frac{1}{5 \log \theta}
$$

Therefore we may write that

$$
M=m+5-\left(\rho+A\left(e^{c \rho}\right)\right) .
$$

Using for function $A\left(e^{c \varphi}\right)$ the approximative value a, we may write that

$$
M=m+5-(\rho+a) .
$$

On the contrary $d r=c e^{c \rho} d \rho$, and the new boundary of integration will be :

$$
S_{1}=5 \log 0=-\infty, \quad S_{\mathrm{a}}=5 \log (+\infty)=+\infty
$$

The Schwarzschild integralequation (4) vill take the following form
or

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} D\left(e^{c \rho}\right) \varphi(m+5-(\rho+a)) e^{2 c \rho} \cdot d e^{c \rho} d \rho=A(m) \\
& \int_{-\infty}^{+\infty} D\left(e^{c \rho}\right) c e^{3 c \varphi} \varphi(m+5-(\varphi+a)) d \rho=A(m)
\end{aligned}
$$

Taking once more the abstitutions of the form:
m $+5=\mu$ and $S+a=R^{\circ}$, the boundary of integration will be the same, and $d \rho=d R^{\prime}$
The new fory of the investigated Schwarzschild equation will be of the form:
$\int_{-\infty}^{+\infty} D\left(e^{0\left(R^{\prime}-a\right)}\right) o e^{-3 a c} \cdot e^{30 R^{\prime}}\left(\mu-R^{\prime}\right) d R^{\prime}=A\left(\mu^{-\infty}-5\right)$
$\int_{-\infty}^{+\infty} D\left(e^{-a c} \cdot e^{o R^{\prime}}\right) c e^{-a c} \cdot e^{3 c R^{\prime}}\left(\mu-R^{\prime}\right) d R^{\prime}=A(\mu-5)$
or $\quad \int_{-\infty}^{+\infty} D\left(C_{1} e^{c R^{*}}\right) C_{2} e^{30 R^{\prime}} \varphi\left(\mu-R^{\prime}\right) d R^{\prime}=A(\mu-5)$.
Taking $: D^{-\infty}\left(C_{1} e^{c R^{\prime}}\right) C_{2}^{2} e^{30 R^{\prime}}=\Delta_{1}\left(R^{\prime}\right)$
and $A(\mu-5)=\alpha_{1}(\mu)$ we obtain the convolution formof the Scharzschild integralequation as followine

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \varphi\left(\mu-R^{\prime}\right) \Delta_{1}\left(R^{\prime}\right) d R^{\prime}=\alpha_{1}(\mu) \tag{5}
\end{equation*}
$$

In the convolution form of the Schwarzachild equation, the $\Delta_{1}\left(R^{\prime}\right)$ is an unknown function, the φ-function as a kernel of the equation is given and the function $\alpha_{1}(\mu)$ is also given.
We can see that the new form (5) of the operator equation is also an operator equation of the first kind. Therefore for this equation doesn t hold the well posed solution problem in Sobolev sense.
But we may investigate this equation as an operator equation for which the well posed problem of solution is given in Laurent Schwartz sense. We introduce the following

Definition 2. We say that the problem of solution of the convolution form of the equation (5) is wall posed in Laurent Schwartz sense if the solution exists in the subspace $S C L^{1}(R)$, it is unique in the space S and if it is stable in the bounded subset S_{o} of the space $\left(S ;\|\cdot\|_{L^{1}}(R)\right.$ in sense of the Definition 1. Given over.

Here S denotes the space of fast decreasing functions on R which was introduced by Laurent Schwartz in [10]. We shall show that there exists a bounded set $S_{0} C S$ for which elements we shall obtain the well posed problem of solution of the Schwarzschild integral equation in Laurent

Schwartz acne.
2. For this purpose we shall take an integral equation

$$
\begin{equation*}
\int_{\alpha} K(t, \tau) \times(\tau) d \tilde{L}=y(t) \tag{6}
\end{equation*}
$$

where function $y \in Y$ le given and the solving solution $x \in X$, and where X, Y are Banach spaces such that, by given Kernel $K(t, \tau)$ the operator

$$
\begin{equation*}
\tilde{K}=\int_{\Omega} K(t, \tau)(\cdot) d \tilde{\tau} \tag{7}
\end{equation*}
$$

maps the elements $x \in X$ in the elements $y \in Y, \Omega$ is a given domain of integration variable.
For our purpose the domain Ω will be the roil space IR, it
mean the improper interval ($-\infty,+\infty$) .
Suppose, that the kernel $K(t, \tau)$ will be positive and
that the Banach real space $X=Y=L^{p}(\mathbb{R}, Y)$, where $p=1$. But in the apace $L^{p}(I R, \mu)$ there exists a one \bar{K} of positive elements belonging to $L^{p}(\mathbb{R}, \mu)$. In this case the operator $\tilde{K}: L^{p}(I R, \mu) \rightarrow L^{p}(I R, \mu)$ maps the one \bar{K} in the form: $\tilde{K}(\bar{K}) \subset \bar{K}$.
Def. 3. We also say that the positive operator \tilde{K} has a monotonioal property if the implication :

$$
u \leq v \quad \text { implies } \quad \tilde{K} u \leq \tilde{K} v
$$

holds.
Now we shall investigate two integral equation

$$
\begin{align*}
& K(t, \tau) \times(\tau) d \tau=y^{(t)} \tag{8}\\
& K(t, \tau) \times(\tau) d \tau=y_{d}^{(t)} \tag{9}
\end{align*}
$$

where the kemel $K_{\delta}(t, \tau)$ approximates the kernel $K(t, \tau)$ In the space $\left.L^{p}, \mu\right)$, where $p=1$.

Suppose further, that element of space $L^{p}(I R, \mu) y \delta$ approximate a the element y of the space $L^{p}(\mathbb{R}, \mu)$, where $p=1$.

We suppose that the kernel of this equation fulfils the following conditions: it is measurable in Rx; it is integralbile in τ for every $t \in R$ and it is integrable in t for every $\mathbb{C} \in R$. We assume further, that the integral

$$
\varkappa_{K}(\tau)=\int_{\mathbf{R}} K(t, \tau) d t \geqslant x_{0}>0
$$

and that the kernel $K(t, \tau) \in S$, where $S \subset L^{1}(R)$ is the subspace of fast decreasing functions on R. Further assumptions about the kernel K we shall give below.
Under this assumptions we can write the equality :

$$
\int_{\mathbb{R}} K(t, \tau) x(\tau) d \tau-\int_{\mathbb{R}} K_{\delta}(t, \tau) x_{\delta}(\tau) d \tau=y(t)-y_{\delta}(t)
$$

Now lets modify this equality as follows

$$
\int_{\mathbb{R}} K(t, \tau) x(\tau) d \tau-\int_{\mathbb{R}} K(t, \tau) x_{\gamma}(\tau) d \tau+\int_{\mathbb{R}} K(t, \tau) x_{\delta}(\tau) d \tau-
$$

We obtain that

$$
\int_{R} K_{\mathcal{L}}(t, \tau) x(\tau) d \tilde{\tau}_{=} y(t)-y_{\delta}(t)
$$

$$
\int_{\mathbb{R}} K(t, \tau)\left(x(\tau)-x_{\delta}(\tau)\right) d \tau=y(t)-y_{\delta}(t)+\int_{K}\left(K_{\delta}(t, \tau)-K(t, \tau)\right)
$$

$$
\cdot x \delta(\tau) d \tau
$$

Integrating the last equality over the domain $I R$, where $t \in \mathbb{I R}$ we obtain the equality

$$
\begin{aligned}
& \int_{\mathbb{R}} \int_{\mathbb{R}} K(t, \tau) \operatorname{sign}\left(x(\tau)-x_{\delta}(\tau)\right)\left|x(\tau)-x_{\delta}(\tau)\right| d \tau d t= \\
& =\int_{\mathbb{R}}\left(y(t)-y_{\delta}(t)\right) d t+\int_{\mathbb{R}} \int_{\mathbb{R}}\left(K_{\delta}(t, \tau)-K(t, \tau)\right) x \delta^{(\tau) d \tau d t}
\end{aligned}
$$

Supposing that the Fubini theorem holds we obtain the equality

From this equality we easily obtain the inequality

$$
\begin{align*}
& \left|\int_{R} \operatorname{tgn}\left(x(\tau)-x_{\delta}(\tau)\right)\right| x(\tau)-x_{\delta}(\tau) \mid x_{k}(\tau) d \tau \leq \\
\leqslant & \int_{R}\left|y(\tau)-y_{\delta}(\tau)\right| d \tau+\int_{R} k(\tau)\left|x_{\delta}(\tau)\right| d \tau \tag{10}
\end{align*}
$$

where we have designed :

$$
\mathcal{K}_{\mathbf{K}}(\tau)=\int_{\mathbf{K}(\tau)} K(t, \tau) \quad d t \quad \text { for } \tau \in \mathbb{R} \quad \text { and } \quad \text { for } \tau \in \mathbb{R}
$$

In addition, if ${ }^{R}$ we are able to approximate the kernel $K(t, \tau)$
by $K_{g}(t, \tau)$ as well, that the integral $k(\varepsilon)$ will be independent of $\tau \in R$, and the value of $k(\tau)=k_{0}=$ constant,

Will be sufficiently small that is if for $\tau \in T$ is $k(\tau)<p$, we obtain instead of the inequality (10) the inequality,
$\left|\int_{R^{\prime}} 1 g^{n}\left(x(\tau)-x_{\delta}(\tau)\right)\right| x(\tau)-x_{\delta}(\tau) \mid d \mu \leqslant$
$\leqslant \int_{R}|y(\tau)=y \delta(\tau)| d \tau+\int_{R} \eta\left|x_{\delta}(\tau)\right| d \tau$
Where $d \mu=\mathcal{C}_{K}(\tau) d \tau$, that means, that the measure μ has a density $\mathcal{K}_{K}(\tau), \tau \in I R$ and η is a sufficiently small positive number.

Suppose, that also the integral $火_{K}(\tau)$ is independent of τ on domain R. It means that the measure μ is of constant density $\varkappa_{K}=\varkappa_{0}>0$, we obtain instead of inequality (11) the inequality
$\left|\int_{R} x \pm \operatorname{gn}(x(\tau)-x \delta(\tau))\right| x(\tau)-x \delta(\tau)\left|K_{0} d \tau\right| \leqslant$
$\leqslant \int_{R}\left|y(\tau)-y_{\delta}(\tau)\right| d \tau+\eta \int_{R}\left|x_{\delta}(\tau)\right| d \tau$
or ${ }^{R}\left|\int_{R} \operatorname{sign}\left(x(\tau)-x_{\delta}(\tau)\right)\right| x(\tau)-x_{\delta}(\tau)|d \tau| \leq$

$$
\begin{equation*}
\leq \frac{1}{K_{0}}\left\|y-y_{\delta}\right\| L^{1}(R)+\frac{2}{x_{0}}\left\|x_{\delta}\right\| L^{1}(R) \tag{12}
\end{equation*}
$$

Now, if the approximation of y by y_{δ} in the space L^{1} (R) is as well, that $\left\|y-y_{S}\right\|_{L^{1}(R)}{ }^{<} x_{0} \eta_{0}$, where $\eta_{0}>0$ is a small number, and if we assume that the solution $x_{\mathcal{S}}$ is bounded in the space L^{1} (IR) that means, that the solution x_{f} belongs to the ball $B=\left\{x_{f}:\left\|x_{y}\right\| L_{1}{ }^{1}(R) \leqslant x_{0} q_{0}\right\}$ in the space $L^{1}(R)$ then we obtain that the following inequality holds

$$
\begin{array}{r}
\left|\int_{R} \operatorname{sign}\left(x(\tau)-x_{\delta}(\tau)\right)\right| x(\tau)-x_{\delta}(\tau) \mid \tau \leq \eta_{0}+b_{0} \eta \leq \\
\leq \eta_{0}+b_{0} \frac{1}{b_{0}} \eta_{1}=\eta_{0}+\eta_{1} \leq \varepsilon \tag{13}
\end{array}
$$

The above investigation may be without sense, if there does not exist such a kernel for which conditions required by us may be not satisfying.
But the class of such kernels $K(t, \tau)$ is not empty. The kernel

$$
\begin{equation*}
K(t, \tau)=E e^{-\omega(t-\tau)^{2}} \quad t, \tau \in R \tag{14}
\end{equation*}
$$

as we easy show fulfil our required conditions.
The kernel (14) is positively defined on the space R if $E>0$. The integral

$$
\begin{aligned}
& \mathscr{H}_{K}(\tau)=\int_{R} E e^{-\omega(t-\tau)^{2} d t=E} \int_{\mathbb{R}} e^{-\omega(t-\tau)^{2}} d t= \\
&=E e^{-\omega u^{2}} d u=E \sqrt{\frac{X}{\omega}} \mathbb{R} \text {, it means, that for the } \\
& \text { kernel (14) the integral } X_{K}(\tau) \text { is independent of } \tau \text { belonging }
\end{aligned}
$$ to the interval $(-\infty,+\infty)$.

If we give two such kernels

$$
\begin{aligned}
& \text { give two such kernels } \\
& \mathrm{K}(\mathrm{t}, \tau)=E e^{-\omega(t-\tau)^{2}} \\
& \mathrm{~K}_{\delta}(\mathrm{t}, \tau)=F \quad e^{-\omega_{\delta}(\mathrm{t}-\tau)^{2}}
\end{aligned}
$$

and
then we can see, that $k(C)$

$$
-\iint_{R}\left|K_{\delta}(t, \tau)-K(t, \tau)\right| d \tau=\int_{R} E_{\delta} e^{-\omega_{\delta}(t-\tau)^{2}}-E_{e^{-\omega}(t-\tau)^{2} \mid d \tau \leq ~}^{d}
$$

$$
\leqslant \int_{R}\left(\left|E_{\delta} \delta e^{\left.-\omega_{\delta}(t-\tau)^{2}|+| E_{e}^{-\omega(}-\tau\right)^{2}}\right|\right) d \tau-\int_{R} E_{\delta}-\omega_{\delta}(t-\tau)^{2} d \tau+
$$

$$
\begin{aligned}
& +\int_{R} E_{e^{-\omega}(t-\tau)^{2}} d \tau=E d \sqrt{\frac{\pi}{\omega}}+E \sqrt{\frac{\sqrt{3}}{\frac{\pi}{\omega}}} \leqslant \\
& \leqslant \max \left(E_{,} E_{j}\right)\left(\max \left(\sqrt{\frac{\pi}{\omega \delta}}: \sqrt{\frac{\pi}{\omega}}\right)\right)=E_{0} \sqrt{\frac{\pi}{\omega 0}}-k_{0}
\end{aligned}
$$

But we can see that two positive numbers E_{J} and ω_{j} may be always chosen so that the product $E_{0} \frac{\pi}{\frac{\pi}{\omega}} \quad$ will be surficiently small.

But, taking $\gamma>0$ and $R_{0}>0$ such that

$$
M E \int_{|u|>R_{0}} e^{-\omega u^{2}} d u<\frac{\eta}{4} \text { and } \frac{E}{E} \delta<1+\frac{\eta}{8 R_{0}} \text {. }
$$

$$
\begin{aligned}
& \text { we obtain farther that } \\
& I \leq S_{E e^{-\omega}}^{-\omega u^{2}} M d u+\int_{-R_{c}}^{F_{0}} e^{-\omega u^{2}}\left|(1+\eta) e^{-\left(\omega_{\delta}-\omega\right) u^{2}}-1\right| d u \leq \\
& |u|>R_{0} \\
& \leqslant \frac{n}{4}+\int_{-R_{0}}^{0}\left|\left(1+\frac{\eta}{8 R_{0}}\right) e^{-\left(\omega_{j}-\omega\right) u^{2}}-1\right| d u \leq \eta
\end{aligned}
$$

The last inequality will be true since we have for sufficiently anal $\delta>0$ the implication: $\omega_{\delta} \rightarrow 0$ if $\delta \rightarrow 0$ and we Bun see easy that:

$$
r_{\delta}(u)=\left|\left(1+\frac{\eta}{8 R_{n}}\right) e^{-\left(\omega_{\delta}-\omega\right) u^{2}}-1\right| \Rightarrow \frac{\eta}{8 R_{-}},
$$

$$
\begin{aligned}
& \text { Indeed, we have } \\
& I=\int_{\varepsilon}\left|E_{\delta} e_{-\omega u^{2}}^{-\omega_{\delta}(t-\tau)^{2}-E e^{-\omega(t-\tau)^{2}}\left|d \tilde{\tau}=\int_{R}\right| E_{\delta} e^{-\omega u^{2}}-E e^{-\omega u^{2}} \mid d u=u^{2}}\right| d u \\
& =\int_{R}^{C} E e^{-\omega u^{2}}\left|\frac{E}{E^{-}} e^{-(\omega \in)}-1\right| d u \text {. }
\end{aligned}
$$

if $\delta \rightarrow 0$ for $u \in\left\langle-R_{0}, R_{0}\right\rangle$.
For we have the following inequality

$$
\begin{aligned}
& \text { we have the following inequality } \\
& \sup _{|n| \leqslant R_{0}} f_{\delta}(u)=\max \left(\frac{\eta}{8 R_{0}},\left|\left(1+\frac{n}{8 R_{0}}\right) e^{-\left(\omega_{5}-\omega\right) u^{2}}-1\right|\right) \leqslant \frac{R}{8 R_{0}}+\cdots
\end{aligned}
$$

Sine

$$
f_{\delta}^{\prime}(u)=\left(1+\frac{n}{8 R_{0}}\right)\left(-2\left(\omega_{\delta}-\omega\right) u e^{-\left(\omega_{\delta}-\omega\right) u^{2}}=0, \text { gives } u=0\right.
$$

Then, for

$$
f_{d}(u)=\left(1+\frac{h}{8 R_{0}}\right) e^{-\left(\omega_{5}-\omega\right) R_{0}^{2}}=1
$$

wo obtain that

$$
\begin{aligned}
& \text { obtain that } \\
& I \leqslant \frac{\eta}{4}+\int_{-R_{0}}^{R_{0}} \frac{\eta}{8 R_{0}} d u+\int_{-R_{0}}^{R}\left|\left(1+\frac{\eta}{8 R_{0}}\right) e^{-\left(\omega_{\delta}-\omega\right) R_{0}^{2}}-1\right| d u \leq \\
& \leq \frac{\eta}{4}+\frac{\eta}{4}+2 R_{0}\left|\left(1+\frac{\eta}{8 R_{0}}\right) e^{-(\omega \delta-\omega) R_{0}^{2}}-1\right| \leq \frac{z}{4}+\frac{\eta}{4}+\frac{\eta}{2}=\eta .
\end{aligned}
$$

It means, for kernel as (14) and (15) it is always possible to obtain the inequality

$$
k(\tau)=\int_{\mathbb{R}}\left|K_{\delta}(t, \tau)-K(t, \tau)\right| d \tau<\eta .
$$

Therefore we may formulate the following
Leman 1. For the integral equation (6) with the kernel (14) and (15) in the space $X=Y=L^{1}$ (R) the inequality (13) is true if the solution $x \delta$ belongs to a ball in the space $L^{1}(R)$.

Frow this Lome 1 we have the Corollary 1. If for the solution x_{δ} of integral equation (98) the Leman 1 is true n then the solution $x \delta$ is stable in sense:

$$
\left|\int_{R} \operatorname{sig}\left(x(\tau)-x_{\delta}(\tau)\right)\right| x(\tau)-x_{\delta}(\tau)|d \tau|<\varepsilon .
$$

But in a special case, if for solutions x_{δ} equation $\left(9_{\delta}\right)$ is always fulfilled, the inequality

$$
x_{\delta}<x
$$

which is equivalent with the inequality $\left\|x_{\delta}\right\| \leqslant\|x\|$, we obtain simple form of stability in the norm sense in the apace $L^{\prime}(R)$, that is

$$
\int_{\mathbb{R}}\left|\left(x(\tau)-x_{\delta}(\tau)\right)\right| d \varepsilon<\varepsilon .
$$

But in this special case, we may write the inequality (ia) in the form

$$
\left\|x-x_{\delta}\right\|_{L^{\prime}(R)} \leqslant \frac{1}{\mu_{0}}\left\|y-y_{\delta}\right\|_{L^{\prime}(R)}+\frac{\eta}{\psi_{0}}\left\|x_{\gamma}\right\|_{L^{\prime}(R)}<\varepsilon(16)
$$

This result wo may express in the
Lome 2. The solution $x \delta$ of (9) belonging to the sot $S_{0}=B \cap S$ is stable in sense of the Definition 1 , that is
$\left\|y-y_{\delta}\right\|<\eta$ implies $\left\|x-x_{\delta}\right\|<\varepsilon$
holds, if $x, x y \in S_{0}$ and $y_{j} y_{\gamma} \in S$.
In conclusion we have the
Theorem 1. Let us appose that the kernel $K(t, \tau)$ of the equation (6) fulfils the following conditions:
1° It is measurable in $R \times R$
z° It is integrable in τ for every $t \in R$ and it is integrable in t for every $\tau \in R$.
3° The integral

$$
X_{K}(\tau)=\int_{R} K(t, \tau) d t \geqslant{x_{0}}_{0}>0
$$

4° The kernel $K(t, \tau) \in S$, where $S C L^{1}(R)$ is the subspace or fast decreasing functions on R and it is positive and ham a motonionl property.
5° It is given the ball

$$
B=\left\{x_{\delta} \quad \text { : }\left\|x_{\delta}\right\|_{L^{1}(R)}^{\leqslant x_{0}} b_{0}\right\}
$$

where the constant ψ_{0} is defined by the integral in condiion 3° and where the constant b is a real number. Then the problem of the solution of the Sohwarzechild' integral equation is well posed in Laurent Schwartz sense in the get $S_{0}=B \cap S$.
5. Now wo return to the Sohwarzechild's integral equation in the convolution form (5) .
By application of equation (5) to the stars calculating process the kernel φ may be approximated by the exponential function

$$
\begin{equation*}
\varphi(M)=E e^{-a\left(M-M_{0}\right)^{2}} \tag{17}
\end{equation*}
$$

We may also approximate the function $\alpha_{1}(m)$ on the right aide of equation (5) by an exponential function

$$
\begin{equation*}
\alpha_{\gamma}(\mu) \mathrm{E}_{\delta} 0^{-\mathrm{b}\left(\mu-\mu_{0}\right)^{2}} \tag{18}
\end{equation*}
$$

Now the Scharzechild's integral equation in the convolution form will be as following

$$
\int_{R} E e^{-R\left(\mu-R-\mu_{0}\right)^{2} \Delta_{1}(R) d R=E_{\gamma} e^{-b}\left(\mu-\mu_{0}\right)^{2} ~ . ~ . ~ . ~}
$$

Putting $\mu-\mu_{0}=t$, where $\mu=t+\mu_{0}$ wo may write

$$
\int_{R} E e^{-a\left(t-R+\mu_{0}\right)^{2}} \Delta_{1}(R) d R=E_{\delta} 0^{-b t^{2}}
$$

and patting $R-\mu_{0}=\tau ; \quad d R=d \tau$, we have

$$
\int_{R} E e^{-a(t-\tau)^{2}} \Delta_{1}\left(\tau+\mu_{0}\right) d \tau=E_{\delta} 0^{-b t^{2}}
$$

Desimet $\Delta_{1}\left(\tau+\mu_{0}\right)$ by $\Delta_{0}(\tau)$ we obtain a simple form of the Schwarzsohild integral equation

$$
\begin{equation*}
\int_{R} E e^{-a(t-\tau)^{2}} \Delta_{0}(\tau) d \tau=E_{\delta} 0^{-b t^{2}} \tag{19}
\end{equation*}
$$

where the function $\Delta_{0}(\tau)$ is unknown,
Obviously, the kernel φ and given over function on the right aide of the equation (19) both belong to the apace $S \subset L^{1}(R)$ It is useful to solve the integral equation (19) with help of the Fourier transformation $F(f)=\int_{R} e^{-i \omega \tau} f(\tau) d t$ on S. Using the Fourier transformation F to both side of equation (19) wo obtain

The Fourier transformed equation (19) gives an equation

$$
\begin{equation*}
E \sqrt{\frac{\pi}{a}}-\frac{u^{2}}{4 a} F\left(\Delta_{0}\right)=E_{\gamma} \sqrt{\frac{\pi}{b}} \tag{20}
\end{equation*}
$$

from whence

$$
F\left(\Delta_{0}\right)=\frac{E}{E} \delta \sqrt{\frac{a}{\sigma}}-\frac{1}{4}\left(\frac{1}{b}-\frac{1}{a}\right) \omega^{2}
$$

and after easy modification

$$
\begin{equation*}
F\left(\Delta_{0}\right)=\frac{E}{E} \delta \sqrt{\frac{a}{b}} \sqrt{\frac{a b}{\frac{a}{\pi}}} \sqrt{\frac{\pi}{\frac{a b}{a-b}}} \cdot \frac{\omega^{2}}{4 \frac{a b}{a-b}} \tag{21}
\end{equation*}
$$

Thing to the Fourier image of Δ o the inverse Fourier transformation F^{-1} we obtain for the researched solution the function

$$
\begin{equation*}
\Delta_{0}(t)=\frac{E_{J}}{E} \frac{a}{\sqrt{\pi(a-b)}} \tag{22}
\end{equation*}
$$

$$
-\frac{a b}{a-b} t^{2}
$$

Of course, the researched solution $\Delta_{0}(t)$ given by formula (22) is bounded in the pace $S \subset L^{1}(R)$ and belongs to the ball

$$
S_{0}=\left\{x_{\delta}: \int_{R}\left|x_{\delta}(\tau)\right| d \tau \leq B_{0}\right\}=\left\{x_{\delta}:\left\|x_{\delta}\right\| L^{1}(R) \leq B_{0}\right\} \text { (23) }
$$

where

$$
\begin{equation*}
B_{0}=\frac{E_{\delta}}{E} \frac{a}{\sqrt{\pi(a-b j}} \sqrt{\frac{\pi}{\frac{a b}{a-b}}}=\frac{E \delta}{E} \sqrt{\frac{a}{b}} \tag{24}
\end{equation*}
$$

Before we pass to an ilustrative example of application the Sohwarzeohild' integral equation to founding the density function $D(r)$, wo present shortly the used method in the stars counting problem with help of which wo will estimate the parameter of the kernel φ and the α_{δ} on the right side of Sohvarzoohild's equation.
4. The classical method of determination of the distribution of tars and interstellar dust from the magnitudes, colour indices and speotral types of stars was described by R.J. Trumpler and $H . F$. Weaver in their monograph. This method enables to determine the interstellar extinction and the densety of stars $D(r)$ of different spotral class and luminosity troupe.

In our method, the function $\alpha_{1}(\mu)$ - equation (5)
wore obtained from stellar counts in the Sagitta field (see C. Iwaniezevika, S. Grudzif́oka).
W. have for dm $=0^{m} 5$

$$
\begin{equation*}
A(m) \frac{d N(m)}{d m}=N\left(m+\frac{1}{4}\right)-N\left(m-\frac{1}{4}\right) \tag{25}
\end{equation*}
$$

Whore $N(\square)$ is the number of stars of apparent magnitude PE (photographic magnitude).
The results of stellar counts for sven regions of Sagitta field $4^{\circ} \times 4^{\circ}$ only for 167 stars of spectral type a are following :
A $(9)=6$
$A(11,5)=42$
$A(9,5)=19$
$A(12)=22$
A $(10)=11$
$A(12,5)=15$
$A(10,5)=29$
$A(13)=2$
A (11) $=30$
$A(13,5)=1$

The run of the $A(m)$ with m in the solid angle of one square
degree is presented on Fig. 1.

Fig. 1 Stellar counts for atars of the spotral type AO in the Sagitta field

The obtained $A(m)$ curve may be onloulated in the form

$$
\begin{equation*}
A(m)=2,6 \quad e^{-0,6(m-11,5)^{2}} \tag{26}
\end{equation*}
$$

The luminosity function $\varphi(M)$ for the same apotral type stars $A O$ was calculated. We assume the absolute magnitude values for 10 stars from Aliens s Tables. The standard dispersion was taken from the MoCuskey's paper and R. Angel. We obtained

$$
\begin{equation*}
\varphi(M)=0,50^{-0,78(M-0,4)^{2}} \tag{27}
\end{equation*}
$$

5. For the kernel φ given by formula (27) wo have $E=0,5$, $a=0,78, M_{0}=0,4$ and for the function α_{δ} on tho rich side given by formula (26) wo have $\mathbf{t}=2,6, \mathrm{~b}=0,6$, $\mu_{0}=11,5$. The Schwarzechild integral equation

$$
\int_{R} 0,5 e^{-7,8(t-\tau)^{2}} \Delta_{0}(\tau) d \tau=2,6 \cdot-0,6 t^{2}
$$

has a solution given by formula (22)

$$
\Delta_{0}(t)=\frac{2,60}{0,50} \frac{0,78}{\sqrt{\pi(0,78-0,60)}} \cdot-\frac{0,78-0,60}{0,78-0,60} t^{2}
$$

After performing the mule of calculation we obtain the function

$$
\Delta_{0}(t)=5,204 e^{-0,26 t^{2}}
$$

Now we must come back to the density function $D(r)$. We have

$$
\begin{aligned}
& \Delta_{0}(\tau) d \tau=\Delta_{1}\left(\tau+\mu_{0}\right) d \tau=\Delta_{1}(R) d R= \\
& =D\left(C_{1} e^{c R}\right) C_{2} e^{3 c R} d R=D\left(0^{0(R-a)}\right) \cos ^{3 c(R-a)} d R= \\
& =D\left(\theta^{0 \rho}\right) \subset 0^{30 \rho} d \rho=D\left(\theta^{0 \rho}\right) c \theta^{0 \rho} \theta^{20 \rho} d \rho= \\
& =D\left(0^{c \rho}\right)\left(e^{c \rho}\right)^{2} 00^{c \rho} d \rho=D(r) r^{2} d r \\
& \Delta \circ(\tau)=5,204 \quad e^{-0,26 \tau^{2}} d \tau=5,204 \quad-0,26 R^{2} d R= \\
& \begin{array}{l}
=5,2040^{-0,26 R^{2} d R=D(r) r^{2} d r} \\
D(r)=5,2040^{-0,26 R^{2}} \frac{d R}{r^{2} d r}=5,204 e^{-0,26(\rho+a)^{2} \frac{d(\rho+\pi)}{r^{2} d r}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 5,204 e^{-0,26(5 \log r+a)^{2}} \frac{d(5 \log r+a)}{r^{2} d r} \\
& 5,204 e^{-0,26(5 \log r+a)^{2}} \frac{1}{r^{2}} \cdot \frac{5}{r} \log \theta= \\
& 5,204 e^{-0,26(5 \log r+a)^{2}} \cdot \frac{5 \log e}{r^{3}} \\
& D(r)=26,02 \frac{10 g e}{r^{3}} e^{-0,26}(5 \log r+a)^{2}
\end{aligned}
$$

In our ilustrative example of application the Sohwarzeohild's equation to finding the density $D(r)$ we have found for stars of $A 0$ spectral type

$$
\mathrm{D}_{\mathrm{AO}}(r)=\frac{11,3}{r^{3}} e^{-0,26(5 \log r+a)^{2}}
$$

Romarks. Furthor investigation of the density $D_{A O}$ and examples of application the Schwarzschild's integral equation to finding the density $D(r)$ in other stellar fields wlll be published in the next papers. The stability of the used approximation method will be considered also.

REFERENCES
[1] Allen, C.W., Astrophysioal Quantities, London, 1955
[2] Ampel R., Bull. obs. astr. Toruń, Vol. II, No 3, 1959
[3] Grudzińska S., Bull. obs. astr. Torú́, Vol.I, No 3, 1958
[4] MeCuskey S.W., Ap. J. 123, 460, 1956
[5] Ivaniszewaka C., Bu11. obs. astr. Toruín 1960, Vol. III, No 2
[6] Musielak J., Przestrzonie fukcji calkowalnych, Pol. P-ń, 1974
[7] Pogorzelski W., Integral equation and their applications Warszawa 1966
[8] Schwarzachild K., Uber die Integralgleichung der Stellarstatistik, Astr. Nachr. 185 (1910), 81-88
[9] Sobolev S.L., Uramiejia matiematiczeskoj fizyki, Gostechizdat, Moskwa 1954
[10] Laurent Schwartz, Théorie des distributions, Act. Sc. et industr. Nr 1091 (t.I), 1950 ot Nr 1122 (t.II), 1951, Paris, Hermann et $\mathrm{C}^{\text {ie }}$
[11] Tiehonov A.N., 0 rieszeni niekorrektno postawliennyoh zadacz i metodzie regularizacji, DANSSSR 1963, t. 151, No 3, s. 501-504
[12] Trumpler R.J., Yeaver H. F., Statistical Astronomy, p. 240 , Los Angeles 1953
[13] Przeworska-Rolewicz D. and Rolewicz S., Equations in linear spaces, PWN Warszawa 1968

0 POPRAWNYM ROZWIAZANIU RÓWNANIA CALKOwEGO SCHVARZSCHILDA I JEGO ZASTOSOWANTACH W ASTRONOMII STATYSTYCZNEJ

Streszczenie
W tym artykule formuluje sie w oparciu o pojecie poprawnego rozwiqzania w sensie L. Schwartza warunki poprawnego rozwiqzania równania calkowego Schwarzschilda. Ustala sieqklase jąder. Pokazuje sieq, te klasa ta nie jest pusta przy jądze typu krzywej gaussowskiej.
Otrzymane rezultaty stosuje sie do aproksymacji zliczeń gwiazd. Dalsze badania 1 rozwinipcia tej tematyki beda kontynuowane * nastepnych artykulach.

