ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY

Problemy Matematyozne 1985 z. 7

ZBIGNIEW GRANDE

WSP w Bydgoszczy

ON CLIQUISH FUNCTIONS

Let X,Y be topological spaces and let M be a metric space with metric d .

A function $f: X \rightarrow Y$ is said:

quasicontinous at a point $x_0 \in X$, if for every neighbourhood V of $f(x_0)$ and every neighbourhood U of x there exists a nonempty open set $U_1 \subset U$ such that $f(U_1) \in V$. cliquish at point $x_0 \in X$, if for every E > 0 and every neighbourhood U of x there exists a nonempty open set $U_1 \subset U$ such that $d(f(x_1), f(x'_1)) < E$ for $x', x \in U_1$. Fudali proved:

Theorem 0. Let X be a Baire space, Y be a space that for each point $y \in Y$ there exists an open neighbourhood which satisfies the second countability axiom and let M be a matric space with a metric d. Further let $f:X \ge Y \longrightarrow M$ be a function such that for each $x \in X$ the section f is cliquish and for each $y \in Y$ the section f^Y is quasicontinuous. Then f is cliquish.

I proved the following generalisation of Fudali's theorem: Theorem 1. Let X,Y and M be this some as in theorem 0 and let $f:X \ge Y \longrightarrow M$ be a function such that for each $x \le X$ the section f_x is cliquish. Then f is cliquish if only if (a) for each $\varepsilon > 0$, the set $A_{\varepsilon} = \{(x,y) \in X \ge Y; \\ x \notin Cl (Int t \in X; d(f(t,y), f(x,y)) < \varepsilon\})\}$ is non dense (Int A and Cl A being interior and closure of the set A respectively).

Remark 1. Theorem 0 is contained in theorem 1. Then $A_{\xi} = 0$ for each $\xi > 0$.

Remark 2. There exists a real function $f:\mathbb{R}^2 \longrightarrow \mathbb{R}$ such that for each $x \in X$ and $y \in Y$ the section f and f^y is cliquish and f is not oliquish and the set $B(f) = \{(x, y) \in \mathbb{R}^2; f^Y \text{ is net}$ quasicontinuous at x} is of first category. For example, we give a characteristic function of a denumerable , dense set $A \in \mathbb{R}^2$ such that all sections A_x and X^y are empty or have one point.

I proved another theorems this some type:

Definition 1. Let S be a set of index and $f: X \to M$ (s \in S) be a family of functions. We said that the functions $f_s(s \in S)$ are equicliquish at a point $x \in X$ if for every ≥ 0 and for every neighbourhood $U \leq X$ of x there exists a nonempty open set GCU such that for every $s \in S$ and every $x_1, x_2 \in G$,

$$d(f_{x_1}, f_{x_2}) < \varepsilon$$
.

Theorem 2. If all sections f_x of a function $f:XxY \longrightarrow M$ are equicliquish and all sections f^Y are cliquish, then f is oliquish.

Theorem 3. Let X be such that for every $x \in X$ there exists an open neighbourhood which satisfies the second countability axiom. Let $f:X \ge Y \longrightarrow R$ a function. If all sections f^{Y} are cliquish and all sections f_{x} are increasing, then f is oliquish.

Remark 3. Let T_d be the density topology in R. There exists a function $f:R^2 \longrightarrow R$ such that all sections f^y are approximately continuous, all sections f_x are cliquish in T_d and f is not cliquish in $T_d \propto T_d$.

Remark 4. If all sections f_x of a function $f:\mathbb{R}^2 \longrightarrow \mathbb{R}$ are upper semi equicontinuous (i.e. for every $\xi > 0$ and for every $y \in \mathbb{R}$ there exists $\delta > 0$ such that for every $x \in \mathbb{R}$ and every $t \in (y - \delta, y + \delta)$, $f_x(t) - f_x(y) < \xi$) and if all sections f^y are cliquish, then f is cliquish. Let $X = Y = M = \mathbb{R}$ and T be the topology of all sets of form U - V, where U is open and V is denumerable. There exists a function $f:\mathbb{R}^2 \longrightarrow [0,1]$ such that all sections f_x are upper semi equicontinuous relative T and all sections f^y are cliquish relative T and f is not cliquish relative T x T.

Remark 5. The family of all cliquish functions $f: \mathbb{R} \longrightarrow \mathbb{R}$ relative the Euclidean topology is an algebra of functions. I proved that this is the smallest algebra of functions who include all quasicontinuous functions.

Theorem 4. Every cliquish function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is the sum of four quasicontinuous functions.

Remarque 6. There exists a function cliquish $f:R \longrightarrow R(even of Baire 1 class)$ who is not a finite product of quasicontinuous functions. For example,

 $f(x) = \begin{cases} 1/q & \text{if } x = p/q & \text{and}(p,q) = 1 \\ 0 & \text{if } x \text{ is not rationnel .} \end{cases}$

Remark 7. Every derivative $f: R \longrightarrow R$ is oliquish function. Analogy every partial derivative f'_{x} or f'_{y} of continuous function $f: R^{2} \longrightarrow R$ cliquish function. A partial derivative f'_{x} of discontinuous function perhap not be cliquish function. For example, if a function $g: R \longrightarrow R$ is not cliquish, the partial derivative f'_{x} of the function $f(x,y) = x \cdot g(y)$ is not cliquish. Davies proved that the partial derivative f'_{xy} of function $f: R^{2} \longrightarrow R$ is Baire's class 2 and he proved that there exists a partial derivative $f''_{xy} = f''_{xy}$ of function $f: R^{2} \longrightarrow R$ such that $f''_{xy} = f''_{xy} = f''_{xy}$ function $f: R^{2} \longrightarrow R$ such that $f''_{xy} = f''_{xy} = f''_{xy}$ of function $f: R^{2} \longrightarrow R$ who is not cliquish at any point such that all sections g_{x} and g' are approximately continuous Simultaneous every function $f: R^{2} \longrightarrow R$ such that all sections f_{x} and f'' are approximately continuous and almost everywhere continuous is cliquish.

Finished we give an partially answer to the problem of Petruska.

Problem. Is there a function f such that f'_y and f''_{xy} exists everywhere while f'_{yx} does not exist at any point. Theorem 5. If a function $f:R^2 \longrightarrow R$ is such that the partial derivatives f'_y and f''_{xy} exists everywhere and the partial derivative f''_{xy} is bounded in an closed interval [a,b] x[c,d], then the partial derivative f''_{yx} exist and is equal f''_{xy} almost everywhere in [a,b] x [c,d].

ť