ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ \% BYDGOSZCZY
Problemy Matematyozne 1985 z. 7

ZBIGNIEW GRANDE

USP w Bydgoszozy

ON CLIQUISH FUNCTIONS

Let X, Y be topological spaoes and let M be a metric apace with metric d.
A funotion $f: X \rightarrow Y$ is said:
quasicontinous at a point $x_{0} \in X$, if for every neighbourhood V of $f\left(x_{0}\right)$ and every neighbourhood U of x_{0} there exists a nonempty open sot $U_{1} \subset U$ such that $f\left(U_{1}\right) \subset V$. : cliquish at point $x_{0} \in X$, if for every $\varepsilon>0$ and every neighbourhood U of x_{0} there exists a nonempty open set $U_{1} \subset U$ such that $d\left(f\left(x^{\prime}\right), f\left(x^{\circ} j\right)<\varepsilon\right.$ for $x^{\circ}, x \in U_{1}$. Fudali proved:

Theorem 0. Let X be Baire space, Y be a space that for each point $y \in Y$ there exists an open neighbourhood which satisfies the second countability axiom and let M be a matric space with metric d. Further let $f: X \times Y \rightarrow M$ be a function such that for each $X \in X$ the seotion X_{X} is ollquish and for each $y \in Y$ the section f^{Y} is quasioontinuous. Then f is cliquish.

I proved the following generalisation of Fudali's theorem:
Theorem 1. Let X, Y and M be this some as in theorem O
and let $f: X \times Y \longrightarrow M$ be a function such that for each
$x \in X$ the section f_{X} is cliquish. Then f is cliquish if only if (a) for each $\varepsilon>0$, the set $A_{\varepsilon}=\{(x, y) \in X \times Y$; $x \notin C 1$ (Int $t \in X ; d(f(t, y), f(x, y))<\varepsilon\})\}$ is non dense
(Int A and C1 A being interior and closure of the set A
respectively).
Remark 1. Theorem 0 is contrined in theorem 1. Then $A_{\varepsilon}=0$
for each $\varepsilon>0$.
Remark 2. There exists a real function $f: R^{2} \rightarrow R$ such that for each $x \in X$ and $y \in Y$ the section f_{x} and f^{y} is cliquish
and f is not ollquieh and the eot $B(f)=\left\{(x, y) \in R^{2} ; f^{j}\right.$ is not quasicontinuous at $x\}$ is of first category.
For example, we give a characteristic runction of a donumorable , dense set $A \subset R^{2}$ such that all sections A_{x} and X^{y} are empty or have one point.

I proved another theoreme this some type:
Definition 1. Let S be a set of index and $f_{s}: X \rightarrow M$ (s $\in S$) be family of functions. We said that the functions $f_{s}(s \in S)$ are equicliquish at point $x \in X$ if for every $\varepsilon>0$ and for every neighbourhood $U \subset X$ of X there exists a nonempty open set $G C U$ such that for every $\in S$ and every $x_{1}, x_{2} \in G$,

$$
d\left(f_{s}\left(x_{1}\right), f_{s}\left(x_{2}\right)\right)<\varepsilon .
$$

Theorem 2. If all sections f_{x} of a function $f: X x Y \rightarrow M$ are equicliquish and all sections f are cliquish, then f is oliquish.

Theorem 3. Let X be such that for every $x \in X$ there exists an open neighbourhood which satisfies the second countability axiom. Let $f: X \times Y \longrightarrow R$ a function. If all sections f^{y} are cliquish and all sections f_{x} are increasing, then f is oliquish.

Remark 3. Let T_{d} be the density topology in R. There exists a function $f: R^{2} \longrightarrow R$ such that all sections f^{y} are approximately continuous, all sections f_{x} are cliquish in T_{d} and f is not cliquish in $T_{d} \times T_{d}$.

Remark 4. If all sections f_{x} of a function $f: R^{2} \rightarrow R$ are upper semi equicontinuous (1.e. for every $\varepsilon>0$ and for every $y \in R$ there exists $\delta>0$ such that for every $x \in R$ and every $\left.t \in(y-\delta, y+\delta), f_{x}(t)-f_{x}(y)<\varepsilon\right)$ and if all sections f^{y} are cliquish, then f is cliquish. Let $X=Y=M=R$ and T be the topology of all sets of form $U-V$, where U is open and V is denumerable. There exists a function $f: R^{2} \rightarrow[0,1]$ such that all sections f_{x} are upper semi equicontinuous relative T and all sections f^{y} are cliquish relative T and f is not cliquish relative
$T \times T$.
Remarks 5. The fatly of all cliquish functions $x: R \rightarrow R$ relative the Euclidean topology is an algebra of functions. I proved that this is the smallest algebra of functions who include all quasiountinuous functions.

Theorem 4. Every cliquish function $f: R \rightarrow R$ is the sum of four quasioontinuous functions.

Remarque 6. There exists a function cliquish $f: R \rightarrow R$ (even of Baire 1 class) who is not a finite product of quasicontimuous functions. For example,

$$
f(x)= \begin{cases}1 / q & \text { if } x=p / q \text { and }(p, q)=1 \\ 0 & \text { if } x \text { is not rationnel } .\end{cases}
$$

Remark 7. Every derivative $f: R \rightarrow R$ is oliquish
function. Analogy every partial derivative f_{x}^{\prime} or f_{y}^{\prime} of continuous function $f: R^{2} \rightarrow R$ cliquish function. A partial derivative f_{x}^{\prime} of discontinuous function perhap not be cliquish function. For example, if function $E: R \rightarrow R$ is not cliquish, the partial derivative f_{x}^{\prime} of the function $f(x, y)=x \cdot E(y)$ is not cliquish. Davies proved that the partial derivative $f_{\text {II }}$ of function $f: R^{2} \rightarrow R$ is Baize s class 2 and he proved that there exists a partial derivative $f_{x y}^{\prime \prime}=f_{x y}$ or function $f: R^{2} \rightarrow R$ such that $f_{x y}^{\prime \prime}$ is not Bairés 1 class. There exist e a partial derivative $E=f_{x y}^{\prime \prime}=f_{x y}^{\prime \prime}$ of function $f: R^{2} \rightarrow R$ who is not cliquish at any point such that all sections E_{x} and f^{y} are approximately continuous Simultaneous every function $f: R^{2} \longrightarrow R$ such that all seotions f_{x} and f^{y} are approximately continuous and almost everywhere continuous is cliquish.

Finished we give an partially answer to the problem of Potruska.
problem. Is there a function f such that f_{y}^{\prime} and $f_{x y}^{\prime \prime}$ exists everywhere while $f_{y}^{\prime \prime}$ does not exist at any point.

Theorem 5. If a function $f: R^{2} \rightarrow R$ is such that the partial derivatives f_{y}^{\prime} and $f_{x y}^{\prime \prime}$ exists everywhere and the

[^0]
[^0]: partial derivative $f_{x y}^{\prime \prime}$
 is bounded in an closed interval $[a, b] \times[0, d]$, then the partial derivative $f_{y x}^{\prime \prime}$ exist and is equal f ". al mon everywhere in $[a, b] x[c, d]$.

