ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ w BYDGOSZCZY Problemy Matematyczne 1985 z. 7

TOMASZ NATKANIEC

WSP w Bydgoszczy

ON POINTS OF THE APPROXIMATE SEMICONTINUITY

We use the following notation. The sign \mathcal{I} denotes the \mathcal{C} -ideal of the measure zero subsets of R. If $X \subseteq R$ is measurable then $\mathcal{V}(X)$ denotes the set of all density points of X.

For the function f:R → R the signs ap-lim inf f(t) and t→ x

ap-lim sup f(t) denote the approximately lower and upper t→x

limit of f at x, respectively. Notice that

ap-lim inf f(t) = sup
$$\{y : D_{\mathbf{x}}^{\ell}(x,\{t: f(t) < y\}) = 0\}$$
 and $t \to x$

ap-lim sup
$$f(t) = \inf \{ y : D_{x}^{x}(x, \{t: f(t) > y\}) = 0 \}$$
, where $t \rightarrow x$

$$D_s^{\mu}(x,A) = \lim_{n \to \infty} \sup \left\{ \frac{m(A \cap I)}{m(I)} : m(I) \left\langle \frac{1}{n} \right\rangle \right.$$

The signs A(f), $S_a(f)$, $S_a^1(f)$ denote the sets of all points at which f is approximate continuous, upper and lower semi-continuous, respectively:

$$A(f) = \left\{ x \in \mathbb{R} : f(x) = \text{ap-lim inf } f(t) = \text{ap-lim sup } f(t) \right\},$$

$$S_{a}(f) = \begin{cases} x \in \mathbb{R}: f(x) \geqslant ap-\lim \sup_{t \to x} f(t) \end{cases}$$

$$T_{\mathbf{x}}(\mathbf{f}) = \left\{ \mathbf{x} \in \mathbb{R} : \mathbf{f}(\mathbf{x}) > \mathbf{ap-lim} \sup_{\mathbf{t} \to \mathbf{x}} \mathbf{f}(\mathbf{t}) \right\},$$

$$S_{\mathbf{a}}^{1}(\mathbf{f}) = \left\{ \mathbf{x} \in \mathbf{R} : \mathbf{f}(\mathbf{x}) \leq \mathbf{a}\mathbf{p} - \lim_{\mathbf{t} \to \mathbf{x}} \inf \mathbf{f}(\mathbf{t}) \right\},$$

$$T_a^1(f) = \{x \in R: f(x) < ap-lim inf f(t)\}.$$

Z. Grande showed in [1] the following facts.

FACT 0. For every function $f:R \rightarrow R$ the set A(f) is measurable.

FACT I. For every $f: R \rightarrow R$ we have $T_{a}(f) \cup T_{a}^{1}(f) \in J$.

FACT 2. The sets $S_a(f) - A(f)$ and $S_a^1(f) - A(f)$ do not contain measurable sets of the positive measure.

FACT 3. Let A,B,C are subsets of R such that

- CEJ.
- $B \subseteq A$ and $C \subseteq A-B$,
- there exists a G_{κ} set D such that B = D-C,
- the set A-B do not contain a measurable sets of positive measure,
- R-D is the sum MUN, M and N are a F_{δ} sets, NeJ and MS γ (M).

Then there exists a function $f:R \longrightarrow R$ such that A(f) = B, $S_a(f) = A$, and $T_a(f) = C$.

My results are following (see [2]).

FACT 4. (MA) Let A, C, A' and C' are subsets of R such that

- (1) CUC'EJ,
- (ii) $B = A \cap A'$,
- (iii) $C \subseteq A-B$ and $C' \subseteq A'-B$,
- (iv) there exists a G_{∂} set D such that $B = D-(C \cup C)$,
- (v) the sets A-B and A'-B do not contain a measurable sets of the positive measure.
- (vi) there exists a sequence $(G_n)_{n \in \mathbb{N}}$ of open sets such that $G_{n+1} \in G_n$, $D = \bigcap_{n \in \mathbb{N}} G_n$ and $\bigcap_{n \in \mathbb{N}} \varphi(G_n) B$ is a F_n set.

Then

(x) there exists a function $f:R \longrightarrow R$ such that A(f) = B, $S_a(f) = A$, $T_a(f) = C$, $S_a^1(f) = A'$ and $T_a^1(f) = C'$.

FACT 5.(MA) Let A, B, C, A' and C' are subsets of R and the conditions (i)-(v) and

(vii) R-D is the sum MUN, M and N are a F₅ sets, NeJ and M $\subseteq \mathcal{C}(M)$

hold. Then the statement (x) holds too .

REMARK 0. None of the implications (vi) \Rightarrow (vii) and (vii) \Rightarrow (vi) holds.

We consider the following examples.

EXAMPLE 0. Let $C \le \langle 0, 1 \rangle$ be the Cantor's set such that $C \in \mathcal{J}$ and P be the set of all birateral limit points of

C. Since the set C-P is dense in C and P is of the second category in C, P is not $F_{\overline{G}}$ set.

Let us assume that B = R-P. Then the condition (vi) does not hold. If D is a $G_{\mathcal{S}}$ set and $B \subseteq D$ then $R-D \subseteq P$ and $R-D \in J$. Thus for $M = \emptyset$ and N = R-D we have $R-D = M \cup N$. So the condition (vii) holds.

EXAMPLE 1. Let C be the Cantor's set such that C $\not\in$ J and C \in $\langle 2,3 \rangle$, C' be the set of all birateral limit points of C and C" = C-C'. It is clear that $\varphi(C) \subseteq C'$.

If $M \subseteq C'$ is a $F_{G'}$ set then N = C-M is a $G_{G'}$ set and N is dense in C. Hence N is residual in C.

Suppose that N is a F_0 set. Then $N = \bigcup_{n \in N} F_n$ and are closed and pairwise disjoint sets [3]. Since N is of the second category in C, there exists F_n which is of the second category in C. Since F_n is closed, there exists an open interval I such that $\emptyset \neq C \cap I \subseteq F_n$. Hence $F_n \notin \mathcal{I}$. Assume that B = D = R-C. Then the condition (vii) does not hold. Let $G_n = D$ for $n = 1, 2, \ldots$. Notice that $\bigcap_{N} \psi(G_n) = B = \emptyset$. Hence the condition (vi) holds.

REMARK 1. There exists a set B and there exists a function $f:R \longrightarrow R$ such that A(f)=B and the conditions (vi) and (vii) do not hold.

We consider the following example.

EXAMPLE 2. Let P be the set defined in Example 0,C be the Cantor's set from Example 1 and $B = R_{-}(C \cup P)$.

Let $g: R \rightarrow R$ be a function such that A(g) = R-P and $h: R \rightarrow R$ be a function such that A(h) = R-C.

Let us define a function $f:R \longrightarrow R$ as follows f(x) = g(x) + h(x). It is easy to show that A(f) = B and the conditions (vi) and (vii) do not hold.

PROBLEMS

- (1) Let us assume that for A, A', B, C, C' \subseteq R the conditions (i)-(v) hold. Does then the statement (π) hold?
- (2) Is there for every function $f:R \longrightarrow R$ a G_{c} set D such that $A(f) = D (T_{a}(f) \cup T_{a}^{1}(f))$?

REFERENCES

- [1] Grande Z., Quelques remarques sur la semicontinuité superieure, Fund. Math. CXXV/1/1985/
- [2] Nathaniec T., Zbiory punktów ciągłości i półciągłości funkcji rzeczywistych, doctor's thesis
- [3] Sierpiński W., Sur une propriété des ensembles Folinéaires, Fund. Math. 14 (1929)