ZESZYII NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY Problem Matematyczne 1985 mr. 7

BIAGIO RICCERI
 ALFONSO VILLANI

Univeraity in Catania ${ }^{x}$
ON CONTINUOUS AND LOCALLY NON-CONSTANT FUNCTIONS

1. Introduotion

Here and in the sequel, (X, d) is a metric space, $(Y, H \cdot \|)$ 1. a normed space, $C(X, Y)$ is the space of all continuous functions from X into Y endowed with the metric $\rho(f, E)=$ $=\min \{\sup \|f(x)-E(x)\|, 1\}$. $R(X, Y)$ is the set of all $r \in C(X, Y)$ auch that $\left(1 n t r^{-1}(y)\right)=\phi$ for every $y \in Y$. Any fraction $I \in R(X, Y)$ is aadd to be loosliy non-constant. If $\mathbf{Y}=\mathrm{IR}$, wo put $C(X)=C(X, Y)$ and $R(X)=R(X, Y)$.

The ain of thi paper is to give a contribution to the etudy of the clase $R(X, Y)$. In particular, we prove that $R(X, Y)$ is donse in $C(X, Y)$ provided that either X is locally connected and $R(X) \neq \phi$ or X is separable and perfect and Y is complete. Also, wo obtain some chareoterizations of the connectedness and of the sepaparability of X in terms of the olass $\Omega(X)$. Several further propertios of the functinns bolonging to $R(X)$ can be found in $[1]$ and $[2]$. 2. Two density theorens

We becin this section by proving the following result:
THEOREM 2.1. Suppose that X is locally connected and that $R(X) \neq \phi$. Then, for every $f \in C(X, Y)$ and every $\mathcal{E}>0$, there exists $f_{\mathcal{E}} \in \mathbb{R}(X, Y)$ such that $\rho\left(f_{\mathcal{E}}, f\right) \leq \mathcal{E}$. Moreover, $f_{\varepsilon}(X) \leq \operatorname{conv}(f(X))$ provided that f is not constant. PROOF. As it is not restrictive, wo assume $\varepsilon<1$. Choose $\lambda \in R(X)$ and put $\psi(x)=\frac{\pi+2 \operatorname{arct} g(\lambda(x))}{2 \pi}$ for every $x \in x$. obviously, $\psi \in R(x)$ and $\psi(x) \leq] 0,1[$.

At first, we prove our theorem in the case where X is also connected and f is not constant. Without loss of
generality, wo can suppose dian $(X) \leqslant 1$. Let
$\tilde{Y}=\left\{y \in \mathrm{f}(\mathrm{X}): \operatorname{int}\left(\mathrm{I}^{-1}(y)\right) \neq \phi\right\}$. If $\tilde{Y}=\phi$, the thesis is obvious. Therefore, suppose that $\tilde{Y} \neq \phi$ and, for every $y \in \tilde{Y}$, put $A=\operatorname{int}\left(f^{-1}(y)\right)$. Consider now the function $B: X \rightarrow I R$ defined as follows:

$$
G(x)= \begin{cases}d\left(x, \partial A_{y}\right) & \text { if } x \in A_{y}, y \in \tilde{Y} \\ 0 & \text { if } x \in X \underset{y \in \tilde{Y} \mathcal{Y}^{\prime}}{ } .\end{cases}
$$

where, as usual, $d\left(x, A_{y}\right)=\operatorname{lnf}\{d(x, \nu): \nu \in \partial A\}$ observe that, by the actual assumptions, ∂A_{y} is non-ompty for every $y \in \tilde{Y}$). Let us shove that f is continuous. Tho this and, let $x^{x} \in X$ and $\sigma>0$. If $x^{*} \in X \backslash \partial \cup_{Y} A_{y}$, then the continuity of 6 at x^{*} is obvious. Therefore, suppose that $x^{*} \in \partial \bigcup_{y \in Y^{\prime}} y^{*}$ Then $G\left(x^{*}\right)=0$. Let Ω be a connected, open neighbourhood of x^{*} such that diam $(\Omega)<\sigma$. Let x be any point of Ω. If $x \neq U_{y} A_{y}$, we have $E(x)=0$. On the other hand, if $x \in A_{y}, y \in Y$, by the connectedness of Ω, wo have $\partial A_{y} \cap \Omega \neq \phi$. Hence, if we choose $\bar{x} \in \partial A_{y} \cap \Omega$, we have $\sigma(\bar{x})=d\left(\bar{x}, \partial A_{y}\right) \leq d(\bar{x}, \bar{x}) \leq \operatorname{diam}(\Omega)<\sigma$. Therefore, \mathcal{E} Ls continuous at x^{*}.

Now, denote by φ the Lebesgue singular function on
$[0,1]$. Pat $h(x)=\varphi(6(x))$ for every $x \in X$. Let us show that for every nonempty, open set $\Omega \leq \bigcup \underset{y \in X}{ } A_{y}$, there exists another non-empty, open set $\Omega^{*} \leqslant \Omega$ such that $h \mid \Omega, i s$ constant and positive. Indeed, let $\bar{y} \in \tilde{Y}$ be such that $\Omega \cap A_{y} \neq \varnothing$ and let Ω^{\prime} be a nonempty, open, connected subset of $\Omega \cap A_{y}$ obviously, we have $\epsilon(x)>0$ for every $x \in \Omega^{\prime}$. If c| Ω^{\prime}, ie constant, then wo can take $\Omega^{\prime}=\Omega^{\prime}$. In the opposite ouse, $6\left(\Omega^{\prime}\right)$ is a (non-degenerate) interval contained in Jo, 1] . Taking into account the definition of φ, we get the existence of an open interval $J \subseteq G\left(\Omega^{\prime}\right)$ such that if is is constant. At this point, it surfices to take $\Omega^{*}=E^{-1}(\mathrm{~J}) \cap \Omega$. For every fixed $\bar{y} \in f(X)$, consider now the function
$\mathbf{r}_{\varepsilon, \vec{Y}}: \mathbf{X} \rightarrow \mathbf{Y}$ defined as follows:
$f_{\varepsilon, y}(x)=f(x)+\varepsilon \frac{\psi(x) h(x)}{1+\|y-f(x)\|}(\bar{y}-f(x)) \quad$ for ovary $x \in X$.
Obviously $f_{\varepsilon, \bar{y}}$ is continuous, $\rho\left(\mathcal{f}_{\varepsilon, \bar{J}^{\prime}}, f\right) \leqslant \varepsilon$ and $\mathcal{r}_{\varepsilon, y}(X) \leq$
\subseteq oonv ($f(x)$) Observe also that $f f_{,}(x)=f(x)$ for every $x \in X \backslash \bigcup_{y \in \tilde{Y}^{1}}^{\mathbf{y}}$.

Let us show that if Ω is an open subset of X such that $\Omega_{1}=\Omega \backslash \bar{A}_{\bar{Y}} \neq \varnothing$, then $f_{i} y \mid \Omega_{1}$ is not constant. Indeed, assume first $\Omega_{1}, \bigcup_{y \in \tilde{Y}} A_{y} \neq \phi$. Then we have $f_{\varepsilon, y}(x)=f(x)$ for every $x \in \Omega_{2}=\Omega_{1} \mid \bigcup_{y} A_{y}$ and so $r \mid \Omega_{2}$ is not constant, since, otherwise, we would have $\Omega_{2} \leq A y$ for some
 some $y^{*} \in \tilde{Y}, y^{*} \neq \bar{y}$. Let $\Omega_{3}=\Omega_{1} \cap A_{y *}$. Then $r, \bar{y}(x)=y^{*}+\varepsilon \frac{\psi(x) h(x)}{1+\left\|\bar{y}-y^{*}\right\|^{\prime}}\left(\bar{y}-y^{*}\right)$ for every $x \in \Omega_{3^{\circ}}$ As wo have seen above, there exist a nonempty open set $\Omega_{3}^{*} \leq \Omega_{3}$ and a positive number 0 such that $h(x)=c$ for every $x \in \Omega_{3}$. On the other hand, since $\psi \in R(x)$, there exist two points $x^{\prime}, x^{\prime \prime} \in \Omega_{3}^{*}$ such that $\psi\left(x^{\prime}\right) \neq \psi\left(x^{\prime \prime}\right)$. Ye have $f_{\varepsilon, y}\left(x^{\prime}\right)-f_{\varepsilon, y}\left(x^{\prime}\right)=\frac{\varepsilon_{c}\left(\psi\left(x^{\prime}\right)+\psi\left(x^{\prime \prime}\right)\right.}{1+\left\|\bar{y}-y^{*}\right\|}\left(\bar{y}-y^{\prime \prime}\right) \neq 0$ and so $\left.f_{\varepsilon, \bar{y}}\right|_{\dot{\prime})_{1}}$ is not constant.

Now observe that if $f(X) \backslash \tilde{Y} \neq \varnothing$, then, if wo choose $\bar{y} \in f(X) \backslash \tilde{Y}$ and put $f_{E}=f_{E, Y}$, the function f_{E} satisfies the required properties.

Nevertheless, it may happen that $\dddot{Y}=f(X)$ see Example 3.1. In this case, choose $y^{\prime}, y^{\prime \prime} \in P(x), y^{\prime} \neq y^{\prime \prime}$, and put:

$$
f_{\varepsilon}(x)= \begin{cases}f_{\varepsilon, y}(x) & \text { if } x \in X \backslash A_{y}, \\ f_{\varepsilon} y^{(x)} & \text { if } x \in A_{y}\end{cases}
$$

It is obvious that $\rho\left(f_{\varepsilon}, f\right)^{y_{4}^{(x)}} \leqslant \varepsilon$ if $x \in A^{\prime} y{ }_{f}{ }_{\varepsilon}^{\circ}(x) \leq \operatorname{conv}(f(x))$.

Moreover, the oontimulty of If follews immaliately from the fact that $f_{\varepsilon, y^{\prime}}(x)=f(x)=f_{\varepsilon, y^{\prime \prime}}(x)$ for overy $x \in O_{A_{y}}$. Mnally, let ue show that int $\left(f^{-1}(y)\right) \neq \phi$ for every $y \in f(X)$. To this alm, let Ω bo any non-ompty, open arbset of X. If $\Omega^{k}=\Omega \cap A^{\prime} \neq \phi$, thon $y^{\prime} \in\left|\Omega^{\mu}=I_{\varepsilon, y^{\prime}}\right| \Omega^{\prime \prime}$ and we have proved that $E, y^{\prime} \mid \Omega^{\prime \prime}$ is not oonstant. On the oontrary, if $\Omega \leq \overline{A^{\prime}}$, thon, by oontimuity of $f, f(\Omega)=\left\{j^{\prime}\right\}$ and $10 \Omega \leq A^{\prime} y^{\prime}$.
 U $\cap A_{y_{n}}=\Omega \neq \varnothing$. Therefore, under the additional amuaption that X 1e oompeted and that I is not o onetant, cur theorer is proved.

Finally, let us consider the cenoral case.
If I is oonstant, then we take $f_{\mathcal{E}}$ definod as followis: $f_{\varepsilon}(x)=f(x)+\varepsilon \Psi(x) \bar{y} \quad$ for every $I \in X$, being $\bar{Y} \in Y$ ewoh that $H \bar{y} \|=1$ 。

So, let f be non-conetant. Denote by f the family of all connected compononts of X. Sinoe X ia looally conneoted, every mober of F is open and hence localiy conneoted. Let $\mathcal{F}^{\prime}=\{K \in \mathcal{F}: f \mid K$ is oonstant $\}$ and for overy $K \in \mathcal{F}$, ohoose $y_{K} \in f(X)$ auch that $f(K) \notin\left\{\boldsymbol{J}_{K}\right\}$. Moreover, for every $K \in \mathcal{I} \backslash \mathcal{F}$, let $f_{\mathcal{E}, K}$ be a oontimous and looaliy mon-constant function from K into Y suoh that $\sup _{E \in K}\left\|r_{\varepsilon_{, K}}(x)-f(x)\right\| \leqslant \varepsilon$ and $f_{i, K}(K) \subseteq \operatorname{conv}(I(K))$. Sueh a runotion there exiete by the first part of the proof. Now let $\bar{y} \in Y,\|\bar{y}\|=1$, and conaider the function $f_{\mathcal{E}}: X \rightarrow Y$ derined as followa:

$$
f_{\varepsilon}(x)= \begin{cases}f(x)+\frac{\varepsilon \psi(x)}{1+\left\|y_{K}-f(x)\right\|_{K}}\left(y_{K}-f(x)\right) & \text { if } x \in K, K \in \mathcal{F}^{*} \\ f_{\varepsilon_{0} K^{(x)}} & \text { if } x \in K, K \in \mathcal{F} \backslash \mathcal{F}^{*}\end{cases}
$$

The function f_{ε} has the dealred propprties and so our thoorem Is completely proved.

The other density result we want to present here is the Tollowing:

THEOREM 2.2. Suppose that X 1s soparable and perfoct and that Y is complote. Then $R\left(X, n\right.$ is a dense $\mathscr{C}_{\delta}-s o t$ in $C(X, Y)$.

PROOF. Let $\left\{\Omega_{n}\right\}$ the a sequence of non-empty open subsets of X, which is base for X. For every $n \in \mathbb{N}$, put $D_{n}=\left\{r \in C(X, Y): Y_{\mid \Omega,}\right.$ is not constant $\}$. Obviously the set D_{n} is open in $C(X, Y)$. ${ }^{\pi}$ We olaim that it ia dense here. Indeed, lot $f \in C(X, Y) \backslash D_{n}$ and $\varepsilon>0$. Choose $x^{*} \in \Omega_{n}, y \in Y$, $\|y\|=1$, and put $f_{e}(x)=f(x)+\frac{\varepsilon d\left(x, x^{n}\right)}{i+d\left(x, x^{v}\right)} y$ for every $x \in X$. As $\left.f\right|_{n_{n}}$ is constant and Ω_{n} is infinite owing to the perfectness of X, we have $f_{\varepsilon} \in D_{n}$. Moreover $\rho\left(f_{\varepsilon}, r\right) \leqslant \varepsilon$ and so the claim is proved.

Since $C(X, Y)$ is a complete metrio space, the set $\bigcap_{n=1}^{\infty} D_{n}$ 15 dense in $C(X, Y)$. On the other hand, we have $R(X, Y)=\bigcap_{n=1}^{\infty} \theta_{n}$. This completes the proof.
3. Further results and applications

In this section wo present some consequences of Theorems 2.1 and 2.2 and establish some characterizations of the comectedness and of the separability of the space X in terms of continuous and locally non-constant real functions on X. But before, we want to display Example 3.1 below which has been quoted in the proof of Theorem 2.1.

EXAMPLE 3.1. Suppose that X is (connected, locally connected, with $R(X) \neq \varnothing)$ metric space which contains a set $X{ }^{*}$, having the continuum power, such that inf $\left\{d(x, \nu): x, j \in X^{2}\right.$; $x \neq \nu\}>0$ for instance: $\left.\left.\left.X=L_{(0,1\}),}^{(x *}=\{1[0, t]: t \in] 0,1\right]\right\}\right)$. Then, there existe $f \in C(X)$ such that int $\left(f^{-1}(y)\right) \neq \varnothing$ for every $y \in I R$.

Indeed, let $\varphi: X^{*} \rightarrow \mathbb{R}$ be onto. Put $\propto=\inf \left\{d\left(x, \nu: x, f \in X^{*}\right.\right.$ $x \neq \nu\}$ and $A=\bigcup_{x \in X^{*}} \bar{B}\left(x, \frac{\alpha}{3}\right)$, where $\bar{B}\left(x, \frac{\alpha}{3}\right)=\left\{\nu \in X: d(x, \nu) \leq \frac{\alpha}{3}\right\}$ Plainly, the at A is closed.

Conaider now the function $E: A \rightarrow \mathbb{R}$ defined as follows:

$$
g(x)=\varphi(\nu) \text { if } x \in \bar{B}(\nu, \stackrel{\infty}{-}), \nu \in X^{*} \text {. }
$$

Obviously, G is continuous and $E(A)=I R$.
By the Tetze extension theorem, there exists $I \in C(X)$ auch that $\left.\right|_{A}=6$. Clearly, int $\left(f^{-1}(y)\right) \neq \phi$ for every $y \in \mathbb{R}$. This proves the above clain.

Now, we recall that a $f \in C(X)$ is said to be inductively--open (in the Arhancel ski sense) if there exists $X^{\prime} \leq X$ much that $f\left(X^{\prime}\right)=f(X)$ and that $f: X^{\prime} \rightarrow f(X)$ is an open function.

By applying jointly Theorem 2.1 and Thecnow 2.4 of [1], we obtain the following reault:

THEOREM 3.1. Suppose that X is connected and locally conneoted and that $R(X) \neq \varnothing$. Then, every continuous real function on X is the uniform limit of a sequence of continuous, inductively open, real functions on X.

It would be interestinc to know whether, under the hypotheses of Theorem 3.1, the following more general thesis holds: for every non-constant $f \in C(X)$ there exist a sequence $\left\{f_{n}\right\}$ in $R(X)$, which converges untformiy to f, and a set $X^{\prime} \leq X$, woh that $f_{n}\left(X^{\prime}\right)=f(X)$ and that $f_{n}: X^{\prime} \rightarrow f(X)$ is an open function for every $n \in I N$.

As an application of Theoren 2.2 we present the following senericity result for implicit differential equations.

THEOREM 3.1. Lat $a, b>0$ and X be closed real interval. Let μ be the set of all $\epsilon \in C(X)$ such that for ever $f \in C([0, a] x[-b, b])$ satisfyinc $f([0, a] x[-b, b]) c \in(X)$ the implicit Canchy proble

$$
\left\{\begin{array}{l}
s(x)=f(t, x) \\
x(0)=0
\end{array}\right.
$$

has at least a Lipochiteian local solution. Then, M is a residual set in $C(X)$.

PROOF. By Theoren 1.2 of $[3]$, wo have $\mathcal{R}(x) \leq \mathcal{H}$. Then our thest followe from Theores 2.2.

Observe that Theorem 3.2 provides a partial answer to Problen 2.4 of [3].

To etate the next result we introduce some notations. For every $f \in C(X)$, we put $E_{f}=\{x \in X: x$ is a relative, non--absolute, extromur point for $f\}$. Also, we put $(X)=\{f \in C(x)$: $\left.f(x)=r\left(X \backslash E_{f}\right)\right\}$.

THEOREM 3.3. Let $\mathcal{R}(x) \neq \varnothing$. Then, the following are equivalont:

1) x is oonnected.
2) $\mathcal{R}(x) \subseteq(x)$.

Proof. The implication 1) \Rightarrow 2) follows directly from Theoren 5.1 of [4].

Let us show that 2$) \Longrightarrow$ i) . Assume that X is not conneoted. Let X_{1}, x_{2} be two non-empty, open subsets of x such that $x_{1} \cup x_{2}=x_{1} x_{1} \cap x_{2} \neq 0$. Let $r \in R(x)$ and $x_{1} \in X_{1}, x_{2} \in X_{2}$. Consider the funotion $E: X \rightarrow \mathbb{R}$ defined อ - followe:

$$
G(x)=\left\{\begin{array}{lll}
\left|f(x)-f\left(x_{1}\right)\right| & \text { if } & x \in X_{1} \\
-\left|f(x)-f\left(x_{2}\right)\right| & \text { if } & x \in x_{2}
\end{array}\right.
$$

It is eaay to chock that $g \in R(X)$. On the other hand, $O \in g(X)$ but, if $x^{*} \in E^{-1}(0)$, then, neceasarily, $x^{*} \in E_{G}$. Hence $\varepsilon \notin \in(x)$. So wo cet a contradiction.

Observe that in the proof of Theorem 3.3 the metrizability of' X has no role.

The last result of this paper is the following:
THEOREM 3.4. Suppose that X is locally connected. Then, the following are equivalont:

1) X 1s separable and perfect.
2) There oxist $f \in R(X)$ and $D \subseteq f(x)$, D dense in $f(x)$, such that $f^{+1}(y)$ is soparable for overy $y \in D$. PROOF. The implication $1 \Rightarrow 2$ followe directly from Theoram 2.2.

Let us show that 2$) \Longrightarrow 1$. The perfectness of x follows
directly from the faot that $X \neq \varnothing$. To prove that X ia separable, we can suppose, without loss of senerality, that D is countable. For every $y \quad D$, choose a countable, dense subset X_{y} of $f^{-1}(y)$. Consider the countable set $X^{x}=V_{y} \in D^{X} y^{\prime}$ We clait that X is dense in X. To show this, let \bar{x} be any point of X and Ω be any open neighbourhood of x. Since X is locally connected and $f \in \Omega(x)$ the set $f(\Omega)$ contains a (non-degenerate) interval. Let $y^{*} \in f(\Omega) \cap D$. By the density of $X_{y} *$ in $f^{-1}\left(y^{*}\right)$, it follows that $\Omega \cap X_{y *} \neq \varnothing$ and so, a fortiori, $\Omega \cap X^{*} \neq \emptyset$.

Observe that in Theorem 3.4 to prove that 2) $\Rightarrow 1$), the metrizability of X is superfluous, as well as, to prove that $1) \Longrightarrow 2$), the local connectedness of X.

To conclude we mention two questions related to the matter treated in this paper. They seem to be open.

PROBLEM 3.1. Does Theorem 2.1 hold without the assumption that X is locally connected ?

PROBLEM 3.2. Does a connected, locally connected, perfect metric space X exist such that $\mathcal{R}(X) \neq \varnothing$?

REFERENCES

[1] Ricceri B., Sur la semi-continuité inférieure de certaines multifonctions, C.R. Acad. Sc. Paris Sér. I 2941982 , 265-267
[2] Ricceri B., Applications de théorèmes de semi-continuité inférieure, C.R. Acad. Sc. Paris Sér. I, to appear
[3] Ricceri B., Solutions lipschitziennes d'équations différentielles en forme implicite, C.R. Acad. Sc. Paris Sér. I, to appear
[4] Ricoeri B., Villani A., Openess properties of continuous real functions on connected spaces. Rend. Mat., to appear

Sunto

Si studiano alcune proprietà delle funzioni continue e localmente non constanti. In particolare, si stabiliscono due teoremi sulla densità dell' insieme di talz funzioni nello
spazio delle funzioni continue, munito della topologia della convergenza uniforme. Si danno inoltre, mediante tali funzioni, aloune carattexizzazioni della connessione della separabilità di uno apario.

Iote。
Levoro eneguito nell ambito del G.I.A.P.A. del C.I.R.

