ZESZYTY NAUKOWE WYZSZEJ SZKOZY PEDAGOGTCZNEJ w BYDGOSZCZY
Problemy Naukowe 1985 z. 7

LUBOMIR SNOHA

Podacogická fakulta, Banska Bystrioa
MINTMAL PERTODIC OREITS OF MAPPINGS OF AN INTERVAL

1. Introduction.

Let I denote compact interval on the real line and 1 et $C^{0}(I, I)$ denote the space of contimaous maps from into itself. Let N denote tho set of positive integera. For any $n \in N$ we define f^{n} inductively by $f^{1}=r$ and $f^{n}=f_{0} f^{n-1}$. Let f^{0} denote the identity map of I. A point $x \in I$ is said to be a periodic point of f if $f^{n}(x)=x$ for somen<N. In this case the smallest element of $\left\{n \in N: f^{n}(x)=x\right\}$ is called the period of x. We define the orbit of x to be $\left\{f^{n}(x) n=0.1,2\right\}$. If x is a periodic point we say the orbit of x is a periodic orbit, and we define the period of the orbit to be the period of x. clearly, if x is a poriodic point of f of period n, then the orbit of x contains n points and each of these points is a periodic point of f of pariod n.

Let a, b be real numbers and let A, B be subsets of the real line. We denote $f(a)=b$ and $f(A)=B$ by $a \xrightarrow{f} b$ and $A \xrightarrow{f} B$, respectively, Similarly, $A \& \quad B$ means $f(B)=A$ and $A \leftrightarrow B \xrightarrow{f} B$ means $f(A)=B$ and $f(B)=A$. Finally, $f \mid M$ denotes the restriction of f to the set $M_{\text {. }}$ THEOREM (A.N. Saricovakit, see [2] or [3]). Let $I \in C^{0}(I, I)$. Let us consider the following ordering of the positive Integers $3,5,7, \ldots, 2 \cdot 3,2 \cdot 5,2 \cdot 7 \ldots, \ldots, 4 \cdot 3,4 \cdot 5, \ldots, 8 \cdot 3,8 \cdot 5, \ldots$, ..., $8,4,2,1$ Let f have a periodic orbit of period n. If m is to the right of n (in the above ordering), then f has a periodic orbit of period m 。

It is know that for every n there exists a function f such that I has a periodic orbit of per is if if and
only if m is not to the left of n. Similarly, there exists a function f such that f has a periodic orbit of period m if and only if m is a power of 2 . DEFINITION. A periodic orbit P of f of period n is a minimal periodic orbit of f, if f has no periodic orbits of periods less (in Šarkovskif sense) than n.
DEFINITION. We say that a periodic orbit P of f is potentially minimal if there exist a compact interval $I \supset P$ and a continuous function 6 from I into itself with the following two properties:
(i) $\quad P|P=6|^{P}$
(ii) P is a minimal periodic orbit of E.

It is possible that for some P, f_{1}, f_{2} the set P is a periodic orbit both of f_{1} and f_{2} and the periodic orbit P of I_{1} is potentially minimal but the periodic orbit p of f_{2} is not potentially minimal.

Similarly, it is possible that P is a periodic orbit both of G_{1} and $g_{2}, E_{1}\left|P=G_{2}\right| P, P$ is a minimal periodic orbit of E_{1} and P is not a minimal periodic orbit of E_{2}.

The main problem connected with minimal periodic orbits is the following.
PROBLEM. Characterize potentially minimal orbits.(Clearly, whout loss of generality we may solve this problem only for periodic orbits of the form $\{1,2, \ldots, n\}$. Hence, let us assume that f has a periodic orbit $\{1,2, \ldots, n\}$ and investigate under which assumptions this orbit is potentially minimal.) RESULTS

1) case $n=2 p+1, p \in N$
P. Stefan [3] has proven that there are exactly two types of potentially minimal orbits of period $2 p+1$. They have "spiral" atructure (see Fig. 1).

$n=5$
(similarly for $n=3,7,9 \ldots$)

Fic. 1
2) $\cos \theta n=2^{m}$, men

From Theorem A in [1] it follows a necesaary condition for a periodic orbit P of f of period $2^{\text {min }}$ to potentially minimal. This necessary condition is the following:

For any subset $\left\{q_{1}, \ldots, q_{k}\right\}$ of p where k divides $2^{\text {im }}$ and $k \geqslant 2$, and any positive integer r which divides 2^{m}, such that $\left\{q_{1}, \ldots, q_{k}\right\}$ is periodic orbit of $\mathbf{r}^{r^{\prime}}$ with $q_{1}<q_{2}<\ldots<q_{k}$, we have

$$
r^{r}\left(\left\{q_{1} \ldots, q_{k / 2}\right\}\right)=\left\{q_{k / 2}+1 \ldots, q_{k}\right\}
$$

3) case $n=2 \cdot(2 p+1), p \in N$ (Ľ, Snoha 1983)

Let $L=\{1, \ldots, 2 p+1\}, R=\{2 p+2, \ldots, 2,(2 p+1)\}$. Let
$P=L \cup R$ be a periodic orbit of f of period 2. ($2 \mathrm{p}+1$). The following conditions play an important role in the characterization.

NC Periodic orbit P of f of period 2. $(2 p+1)$ is such that
(a) $\mathrm{L} \stackrel{\mathrm{F}}{\longleftrightarrow} R$
(b) L and R are minimal (in Stefan sense) periodic orbite of the function f^{2}.
(1) 1 is monotonic on L or on $R_{\text {. }}$
(2) Four numbers $1,2 p+1,2 p+2,2 \cdot(2 p+1)$ are "neishbours" in the periodic orbit P. This means, that there exises such a permutation $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ of the set $\{1,2 p+1$, $2 p+2,2 \cdot(2 p+1)\}$, that

$$
\alpha_{1} \xrightarrow{f} \alpha_{2} \xrightarrow{\mathrm{f}} \alpha_{3} \xrightarrow{\mathrm{I}} \alpha_{4}
$$

(3) $\{1,2 p+1\} \rightarrow\{$ f $\{2 p+2,2(2 p+1)\}$ or $\{1,2 p+1\} \underset{\sim}{f}\{2 p+2,2(2 p+1)\}$

THBOREM.
(1) Periodio orbit $\{1,2,3,4,5,6\}$ or f period 2,3 is potentially minimal if and only if (NC) (a) is true.
(i1) Periodio orbit $\{1 \ldots, 2(2 p+1)\}, p>1$ of f of period $2(2 p+1)$ is potentially minimal if and only if at least one of the following conditions is satisfied:
(NC) and (1), (NC) and (2), (NC) and (3). Consequently, there exist 12 types of potentially minimal orbits of period 2.3 and 8 types of potentially minimal orbits of period $2(2 p+1), p>1$.

REFERENCES

[1] Block L., Simple periodic orbits of mappings of the interval, Trans. Amer. Math. Soc. 254 (1979), 391-398
[2] Sarkoveki A.N., Coexistence of oycles of a contimumas maps of a line into itself, Ukrain. Mat. Ž. 16 (1964), 61-71
[3] Stefan $P_{.}$, A theorem of Sarkovsicil on the existence of periodic orbita of continuous endomorphiama of the real 1ine, Comm. Math. Phys. 54 (1977), 237-248

