ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ w BYDGOSZCZY Problemy Matematyczne 1985 z. 7

WŁODZIMIERZ ŚLĘZAK WSP w Bydgoszczy

SOME REMARKS ABOUT CEDER-LEVI THEOREM

Let X and Y be topological spaces. Recall that a multifunction F: X \rightarrow Y is said to be of lower class ∞ if F (U):= $\{x: F(x) \cap U = \emptyset\}$ is a Borel set in X of additive class ∞ for each open set U in Y. Interrelations between above notion and usual Baire classification were investigated in [3].

In [1] (see also [2]) is inductively proved, that the multifunction of lower class & with convex but not necessarily
closed values in finite dimensional linear space possesse a
Borel & selector. We may ask whether the range space in
Ceder-Levi theorem can be generalized. Some negative results
in this direction were given in [8]. This note is devoted
to positive one. Namely, we exhibite this fact, that the
Michael's [6] methods gives more powerful theorem on Borel
& selectors.

Let Y be a Banach space or, more generally a Frechet space. If K is a close, convex subset of Y, then a supporting set of K is, by definition, a closed, convex proper subset S of K (in particular a singleton), such that if an interior point of a segment in K belongs to S, then the whole segment is contained in S. The set I(K) of all elements of K which are not in any supporting set of K will be called the inside of K. The family $D(Y) = \{B \ CY : B = conv \ B \ and \ B \supset I \ (Cl \ B)\}$ is seemingly the adequate range space for the Ceder-Levi theorem. Emphasize that every convex set which is either closed, or has an interior point, or is finite deimensional, belongs to D(Y) (see [6], p.372). We prove the following improve-

ment of the Ceder-Levi theorem:

THEOREM. Let $F:X \to D(Y)$ where X is a perfectly normal topological space and Y is a separable Frechet space. If F is of lower class < > 0, then F has a Borel selector. Proof. Define $F:X \to Y$ by formula F(x) = Cl F(x); what we must find is a Borel < selector $f:X \to Y$ such that $f(x) \in I(F(x))$ for every $x \in X$. Obviously F is also of lower class $< x \in X$. Thus, in virtue of the theorem 4 of [5], F has the so-called Castaing's representation. Namely, there exist functions $f_1:X \to Y$, $i = 1,2,\ldots$, such that each f_1 is a Borel $< x \in X$ function and we have the equality

$$F(x) = C1 (\{f_{i}(): i=1,2,...\})$$

on the whole X.
Now, let
$$g_{i}(x) = f_{1}(x) + \frac{f_{i}(x) - f_{1}(x)}{\max(1, d(f_{i}(x), f_{1}(x)))}$$

i=1,2,..., where d denote the invariant metric on Y. Put $f(x) = \sum_{i=1}^{\infty} 2^{-i} g_i(x)$.

An inspection of the proof of the lemma 5.1 in [6] shows that $f(x) \in I(F(x)) \subset F(x)$ for every $x \in X$. Since the series defining $f: X \longrightarrow Y$ converges almost uniformly on X, it follows that f is also of Borel class $\mathscr C$, and thus has all the required properties.

REFERENCES

- [1] Ceder J. and Levi S., On the search for Borel 1 selections, (to appear)
- [2] Ceder J, Some problems on Baire i selections, Real Analysis Exchange, vol. 8.2 (1982-83), p.502-503
- [3] Kuratowski K., Some remarks on the relation of classical set-valued mappings to the Baire classification, Colloquium Math. XLII (1979), p.274-277
- [4] Mägerl G., A unified approach to measurable and continuous selections, Transaction AMS, vol. 245 (1978), p.443-452
- [5] Maitra A. and Rao B.V., Generalizations of Castaing's theorem on selectors, Colloquium Math. XLII (1979), p.295-300

- [6] Michael E., Continuous selections I, Annals of Math., vol. 63,2 (1956), p.361-382
- [7] Michael E. and Pixley C., A unified theorem on continuous selections, Pacific J. of Math., vol.87, 1(1980), p.187-188
- [8] Ślęzak W., Some counter examples in Multifunction Theory, Real Analysis Exchange, vol. 8, 2(1982-83), p.494-501