ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ w BYDGOSZCZY Problemy Matematyczne 1985 z. 7

WACLAWA TEMPCZYK WŁADYSŁAW WILCZYŃSKI Universytet Łódzki ON SOME GEOMETRICAL CHARACTERIZATION OF SINGULAR NORMED MEASURES

Let X be a vector space (real or complex) and let K be a subset of X having at least two points. We shall say that two different points p_1 , $p_2 \in K$ are antipodal in K (or simply antipodal) if and only if for every x_1 , $x_2 \in K$ and for every real number t the equality $t(p_1 - p_2) = x_1 - x_2$ implies $|t| \leq 1$.

It is easy to prove that for every pair x_1 , x_2 of different points belonging to the compact set K in Hausdorff topological vector, space X there exists a pair of antipodal points $p_1, p_2 \in K$ and a real number t, $|t| \leq 1$ such that $t(p_1 - p_2) = x_1 - x_2$.

Let (X, \mathcal{A}) be any measurable space and μ, \mathcal{N} nonnegative measures defined on this space and normed by the condition $\mu(X) = \mathcal{N}(X) = 1$. Using the Jordan decomposition theorem we can prove the next

THEOREM 1. Two normed measures μ, ν defined on X are antipodal if and only if $|\mu - \nu|(X) = 2$, when $|\mu - \nu|(X)$ means the total variation of a signed measures $\mu - \nu$ on X.

From this theorem and Hahn decomposition theorem we can obtain a simple geometrical characterization of antipodal measures on X.

THEOREM 2. Two normed measures μ, ν' defined on X are antipodal if and only if they are singular.

Let us consider the class $\{(X_{Y}, A_{Y})\}_{Y \in \Gamma}$ of measurable spaces and the families $\{\mu_{Y}\}_{Y \in \Gamma}$ $\{\gamma_{Y}\}_{Y \in \Gamma}$ of normed measures defined on X. Put $\mu = \bigotimes_{Y \in \Gamma} \mu_{Y}$, $\gamma = \bigotimes_{Y \in \Gamma} \gamma_{Y}$. Using theorem 2 it is easy to prove

and So wha

THEOREM 3. If there exists $y_0 \in [7]$ such that μ_{0} , y_0 are antipodal then the product measures μ_{1} , ν_{1} are antipodal.

If \int^{r} is a finite set then the above theorem can be reversed. Using the Lebesgue-Radon-Nikodym theorem we can prove

THEOREM 4. The measures $\mu = \bigotimes_{k=1}^{\infty} \mu_k$, $\sqrt[4]{k} \bigotimes_k$ defined on $\lim_{k=1}^{n} n$ a product $(\bigvee_{k=1}^{n} X_k, \bigvee_{k=1k}^{n})$ of measurable spaces and normed by the condition $\psi_k(X_k) = \sqrt[4]{k} (X_k) = 1$, $k=1,2,\ldots,n$, are antipodal if and only if there exists a natural number k_0 , $1 \le k_0 \le n$ such that the measures μ_{k_0} , $\sqrt[4]{k_0}$ are antipodal.

We shall construct the example showing that the theorem 3 can not be reversed if μ , ν are the product measures on the product of infinitely many measurable spaces. Suppose that $X_n = \langle 0, 1 \rangle$, A_n are Borel subsets of X_n . Put for all $n \le N$ and for each Borel subset $E \le \langle 0, 1 \rangle$

 $\mathbf{v_n}(\mathbf{E}) = \begin{cases} 1 & \frac{1}{n} \in \mathbf{E} \\ 0 & \frac{1}{n} \notin \mathbf{E} \end{cases}, \quad \mu_n(\mathbf{E}) = \begin{cases} \frac{k}{n^2} & \text{card } \mathbf{E} \cap \{\frac{1}{n^2}, \frac{2}{n^2}, \dots, 1\} = k \\ 0 & \mathbf{E} \cap \{\frac{1}{n^2}, \frac{2}{n^2}, \dots, 1\} = \emptyset \end{cases}$ It easy to see that $\psi_n \ll \mu_n$. Let $\mu = \bigotimes_{n=1}^{\infty} \psi_n$, $\psi_n = \bigotimes_{n=1}^{\infty} \psi_n$ Sign by B an arbitrary measurable subset of the product δ -algebra $\bigwedge_{n=1}^{P} \mathcal{A}_n$. Then we have n=1

$$\begin{array}{ccc} & & & \\$$

154