ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ w BYDGOSZCZY
Problemy Matematyozne 1985 z .7

VACLAWA TEMPCZYK
WLADYSLAU VILCZYŃSKI
Universytet Lódaki
ON SOME GEOMETRTCAL CHARACTERIZATION OF SINGULAR NORMED MEASURES

Lat X be a vector space (real or complex) and let K be a Eubset of X having at least two points. We shall say that two different points $p_{1}, p_{2} \in K$ are antipodal in K (or eimply antipodal) if and only if for ovory" $x_{1}, x_{2} \in K$ and for every real number t the equality $t\left(p_{1}-p_{2}\right)=x_{1}-x_{2}$ implies $|t| \leqslant 1$.

It is easy to prove that for every pair x_{1}, x_{2} of different points belonging to the compact set K in Hausdorff topologioal vector space X there exists a pair of antipodal points $p_{1}, p_{2} \in K$ and a real number $t,|t| \leq 1$ auch that $t\left(p_{1}-p_{2}\right)=x_{1}-x_{2}$.

Let (X, \mathcal{A}) be any measurable apace and μ, ν nonnegative measures defined on this space and normed by the condition $\mu(X)=\nu(X)=1$. Using the Jorden decomposition theorem we can prove the next

THEOREM 1. Two normed moasures μ, v defined on X are antipodal if and oniy if $|\mu-\nu|(X)=2$, when $|\mu-\nu|(X)$ meana the total variation of a algned measures $\mu-\nu$ on X.

From this theorem and Hahn decomposition theorem we can obtain simple ometrical characterization of antipodal measures on X.

THEOREM 2. Two normed measures μ, ν defined on X are antipodal if and only if thoy are singular.

Let us oonsider the class $\left\{\left(X_{Y}, A_{Y}\right)\right\}_{r \in r}$ of measurable spaces and the families $\left\{\mu_{Y^{*}}\right\}_{r \in \Gamma}\left\{\mathcal{L}_{\gamma}\right\}_{\gamma \in \Gamma}$ of normed measures defined on X. Put $\mu=\underset{\gamma \in \Gamma}{\infty} \mu_{\gamma}, \nu=\underset{\gamma \in \Gamma}{Q} \nu_{\gamma}$. Uaing theorem 2

it is easy to prove

THEOREM 3. If there exists $\gamma_{0} \in \Gamma$ such that $\mu_{\gamma_{0}}^{\nu_{0}}$ are antipodal then the product measures μ, ν are antipodal. If Γ is a finite set then the above theorem can be reversed. Using the Lebesgue-Radon-Nikodym theorem we can prove THEOREM 4. The measures $\mu=\bigotimes_{k=1}^{n} \mu_{k}, \nu=\bigotimes_{k=1} \nu_{k}$ defined on a product $\left(P_{k=1}^{n} X_{k}, \prod_{k=1 k}^{R} \mathcal{R}_{k}\right)$ of measurable spaces and normed by the condition $\mu_{k}\left(X_{k}\right)=\nu_{k}\left(X_{k}\right)=1, k=1,2, \ldots n$, are antipodal if and only if there exists a natural number $k_{0}, 1 \leq k_{0} \leqslant n$ such that the measures $\mu_{k_{0}}, \nu_{k_{0}}$ are antipodal.

We shall construct the example showing that the theorem 3 can not be reversed if μ, ν are the product measures on the product of infinitely many measurable spaces. Suppose that $X_{n}=\langle 0,1\rangle, \mathcal{A}_{n}$ are Bores subsets of X_{n}. Put for all $n \in N$ and for each Bores subset EC< 0,1\rangle
$v_{n}(E)=\left\{\begin{array}{ll}1 & \frac{1}{n} \in E \\ 0 & \frac{1}{n} \notin E\end{array} \quad, \quad H_{n}(E)= \begin{cases}\frac{k}{n^{2}} & \text { card } E\left\{\frac{1}{n^{2}}, \frac{2}{n^{2}}, \ldots 1\right\}=k \\ 0 & E \cap\left\{\frac{1}{n^{2}}, \frac{2}{n^{2}}, \ldots 1\right\}=\varnothing\end{cases}\right.$ It easy to see that $\nu_{n} \ll \mu_{n}$. Let $\mu=\underbrace{\infty}_{n=1} u_{n}, \nu_{n}=\underbrace{\infty}_{n=1} \nu_{n}$ Sign by B an arbitrary measurable subset of the product 6-algebra $\prod_{n=1}^{p} A_{n}$. Then we have

$$
\nu(B)= \begin{cases}1 & \left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \in B \\ 0 & \left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right) \notin B\end{cases}
$$

and $\mu\left(\left\{\left(1, \frac{1}{2}, \frac{1}{3} \ldots.\right)\right\}\right)=\prod_{n=1}^{\infty} \mu_{n}\left(\left\{\frac{1}{n}\right\}\right)=\prod_{n=1}^{\infty} \frac{1}{n}=0$. So if we put $A=\left\{\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)\right\}$ then $\mu(A)=\nu\left(\prod_{n=1}^{\infty} x_{n} \backslash A\right)=0$, what means that $\mu, \mathcal{\nu}$ are antipodal.

