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CONCERNING A.E. - CONTINUOUS EXTENSIONS OF BAIRE 1 FUNCTIONS

This paper presents new results oonceming extensions of 
Balre 1 vector-valued functiona defined on a subset of finite- 
-dimensional euclidean spaoe to finely continuous [15] (e.g. 
a.e. - continuous, of. [22]) functions defined on the whole apace. 
In particular a problem 13 posed by prof. Z. Grandę ln [9J ls
selved here. In order to prove our ertension tbeorem the notlon
of z— lower semlcontinuous multifunotion ls introduced and the 
theory of continuous selectors for such multifunctlons ls deve- 
loped. Let R denotes the real llne and C*(x) the lattlce of 
oontinuous, bounded and real—valued functions defined on the 
topologieal space X.
The following generał Insertlon theorem ls stated in fl3] (see 
also [3j, [12},tlU],[2^1 , [26  ̂ for related results):

THEOREM O ( [1 3] ). Let X be an arbitrary topologieal 
space and let L(x) and U(x) be classes of bounded functions 
defined on X such that any oonstant function is in the inter-
seotion L(x) O u(x) and such that if gfeu(x), f ć  L(x) and
r 6. R then gArŁU(x) and fi/ rtL(x)t The following state- 
ments are equivalent:
(i) If f£L(x), g&U(x) and g ć  f, then there eiists a 

function h belonging to the lattlce C*(x) such that 

6 v h i f  and such that g(x) h(x) Ł f (x) for eaoh x



for which g(x) <f(x) .

(ii) If f£-L(x) , g ć. u(x) and rfe.R, tho Lebesgue sets

(i) Lr(f)s= (łtX : f(x)*r} and Lr(g):= (xtX : g(x)*r} 
are zero sets in X.

(iii) L(X) and g£ U(x), then f (respeotively g) is
the £ointvise limit of an increasing (resp. decreasing) 
sequence of oentinuous functions.

Recently similar result haa been independently reproved in 
T27J , [2 ] . It is also easily obsenred that the lattice C#( x )  

in theorem 0 may be replaced by others linear lattices of 
functions (seo [19]»T20],C21] in that directlon). In the 
sltuation whero U(x) and L(x) are the olasses of upper and 
lower somicontinuous funotions resp., tho equivalenco of (i) 
and (ii) is due to Michasi fl83, the equivąlenoe of (ii) and 
(iii) is due to Teng [2 6] , and eaoh of tho condltions being 
equivalent to X ls perfeotly normal.

It is noted ( fi 3 3 »fl*0 ), that the boundedness condit- 
lon placed on the funotions in Theorem 0 causes no loss in 
generality if the properties that deflne the olasses L(x) 
and U(x) are presorved under an order preserving homeonor— 
phism from R onto a bounded interwal.

Let us reoall that a function f : X — £ R is z- lower 
semicontinuous (resp. z- upper somioentinuous) in case Lp(f) 
(resp. Lr(f)) is a zero set for oach real number r R. Those 
functions have boon considered by Stone [2*0 any by Blattor 
and Seovor [*3 ] . Obviously the olasses of all z-lowor and 
z— upper somioontinuous functions are oxamplos of L(x) and 
U(x) in theorem O (of. D^J).
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If X la a aat and P C 2X a oallaotlan of aubsats of X,
V .than P la onllad a pawing, and ths palr (X,P) a paved space, 

lf P la olaaad under flnlta Intaraeotlona and oauntable unlana 
and lf X and 0 beleng ta P. If (x,P) la a paved space,
Y a topologieal apaoa and F s X Y a multifunotion (i.o.
a function, whose values ara nen-Teid aubsats of Y ), thon F

P*/is oallod lewar P-noaaurable, ifft

(2) F" (G) != [xtX i  F(x) ( I C ^ j Ł P

ho Ida for all opon aubseta G C Y  , As an import ant eianple we 
have:

LEMMA O. The family

(3) P(X) := £u<^X : U = (x£X ! f(x)>0> for sono f£C*(x)} =
= [ x \ z  s Z = [ x ć X  : f(x) S o) for aone fć.C'(x)}

consisting of cezero sets of C ^ y ) create a paving,
The slnple proof will be ommited here. For related topics see
rt9j,r2o3,r2ij.

A multifunction F s X --£> Y, lower P(x) - measurable with 
respect te (j) will be oalled z—lower semioentinuous (briefly 
z-lso),
If card F(x) = 1 for all x£X, i.e. F(x) =(f(x)}, then F is 
z-lsc if and only if f is continuous on X as a single-valued 
Function,

A/
A pair (c, S) is called a geometrie complex, if C is a subset 
°f a linear space and S is a covering of C by finlte-dimen-

A
sional simplices contained in C, such that S ć -S implies 
that all faoes of S belong to S and S, T t S  implies that 
S O T  is a face of both S and T (or empty).



Lat (C,S) be a oeaplex. We denete by v( C,£) its set 
of rertioes (i.o, the set ef x £-C such that (xJ belongs s) 
and cali

di™ (c, s) iss sup jdim S t SŁ S J its dimension.

For y t  C let S(y) be the simplex ef smallest di men- 
sien in St that centains y, and fer xfcV(C, S) we oall

(«•) St  ( x )  » = ( J  [y €. C j x f c s ( y ) }

the star of x. C is a1ways assumed te be tepologized by the
a/

finest topology induoing the Euolldean topology on eaoh S £ S, 
This topology is usually called the Whitehead topology.

e' io
If U is a oovering of a set X, a complex N(u), called

/*»
its geometrie nerve is assigned to U in the following way: 
Fer U£_U let e^ s U R be defined by ey(v) = 0 
V ^ U and oB(u) = 1 . Let S(u) := (cenv (ey s T^c U
U1 is flnite, n  IJ1 ć $} , c(u) 1= U  s(d) and set 
N(u) := (c(u), S(u)).

AFor the remainder of the paper k is a oardinal number 
and °C a nonnegatiwe integer or 00 .

A' ^
A paved space (X, P) is called (k,oć)- paracospact, iff

^  ^  # N* A
every oovering B<^P of X with card B ^ k  admits a refine 
men t B c. P such that :
(a) dira N(B*) £
(b) there exists an P - measurable map i 1 X —?> N(B * ) 

with jT1 (St oB)CB for all B ^ B * .
LEMMA 1. The paving (3) of cozero sets in an arbitrary 

space X is(jl5^,oo)- paracompaot.
Proof. We start with an open covering B of X which is
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at Btst oountable : B = : i £ l j  , oard I ,
Eaoh is of tho fora : = {x£-X: f^(x) > O'i for sotse f.̂
belonging to C*(x).
Let us define>
(5) f(x) := 2 1  2’ 1 f?(x) , whcre f*(x):= 2~1 [ 1 + — - 3

i<ŁI 1 1 1 +1 f^(x)|

Since the series (5 ) defining f conrerges uniformly,
it follows that f£-C*(x). For eaoh xq£-X there is an
i = i (x )fcl such that x £-U. sińce B is a oovering of X. o 0 1

Therefore f^(xQ)>0 and censequently f(x)/> 0  on the whole 
space X. Def ine :

(6) ’ /  : = f x t X  i f(x)>r} = X S L  (f) ^ P(x)U I*
and obssrra that our oozero set V" is an oountable union of 
zero sets:

00

(7) V1* = U  {x^X : f(x) £ r + 2"“ } .
n=1

If r = k~1 then put V*" =: Vk, := Lr(f), Dq = 0 and
define:

(8) Ukj i= Y (Tkł1 S D k-1) f°r k*1»2,... ,

Vkj = (ft for j > k. For each xo€^X let us seleot k = k(xQ): =
• “ min : x G D ^ J  . Th.ua we have:

(9) k"1 i  f(*o)^(k-1) -1 .1
Obserwe that (9 ) iaplies that x £. U • If not, then

«> «, J - k
f(x ) = 2 1  2”1 ff(x_)^ 21 2_i = 2”k k"1

i=k+1 1 i=k+1

in contradiction with ( 9 ) .  Conseąuently there is an index
J i k = k(x ) such that x £ U.. At the same time x belongs ' o  o j  o
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te \ , h«nce

(10) *oeuJn(Dk v Dw_l)cuJn(vlt+1 s .

The firat incluaion in Cło) foliowa f rom the inolualon :

(11) Vk C Dk CVk+1 .

Next, obaerre that for eaoh j^ k by wirtue ef (8) and 
(11) we have the following inolualon :

<12) Ukj C vk+i ^  °k+1 • *

(13) oard {(n,i)s C Ł t) £ 1+2*3+...+ k+1 =
= 2"1 (k2 + 3k + z)-< j T t n k+2 .

Indeed, if p ć Uk 0 then (k-l)_* > f(p) 2- (k+l) 1 and
(n-1 )”1 > f(p)^(n+l)~^ ao that (k+l)_1 ^ f (p) (n-1 )_1 , which 
in toura implies n > k+2 so that:
^(n,i)s UkJ n Unl 0 0^ = { (1,1), (2,1), (2,2), (3,1), (3,2).....,
(k+1,1), (k+1,2),...,(k+1, k+1)} giving (13).

•V .

Consequently Bo = { *̂kj * (^jJ)^-1̂ 1 N J =: ( s s t s }  defined
by (8) create a star-finite subcoyering of B. Since (8) are 
cozero sets in X, there is a partition of unity fsas 8 £ S } 
subordinated to B0 . Define ^ : X — N (Bq) by formuła :

(1*0 d(x) := 2I .  /•- «  s,  „ = ' s £.S s

This function (1U) is continuous : each 1 ćX has a neighbourho- 
od on which all but at most finltely many g^ vanish, and sińce 
this neighbourhood is mapped into a finite-dimensional fiat in 
C(Bo) and the addition is continuous , so is continuous on
that neighbourhood, from which its continuity on the whole space



X results. Since g (x) = 1, then V(x) is in fact a
s £ S  s

point of the closed geometrio siraplex spanned by ^e^ : gs(x)/oJ.-
s

The inverse image of St e^ consists of all x€rX for vhioh
g (y) ^ 0 and because the support of gy is in Ua, we have

s
(St Oy )C U as reąulred in (b). The item (a) is obvious.

s
The following definitions serve to formulate suitable condi- 

tions on the target space Y of our multifunction F. A map 
H : 2Y —^ 2Y is called a hull-operator on Y if ACH( a ) =
= H^A), h (a ) h (b ) for A d B  CY and H((y} ) = {y} for
y £*. Y holds. A hull-operator H on a topologieal space Y 
is called acT-convex, if the following is true: For every com- 
plex (C, S) with dim (C, s).^ pnd every map v(C,s)— p Y
there exists a continuous map *£ j C — ?> Y such that

(15) 'l(s) C - H( J (ext s)) for all simplices S ^ S.

The sign ext S means here the set of all extreme points
(vertices) of a subset S,

Let Y be a set, d: Y x Y — ^ R a pseudometric on Y 
and H a hull-operator on Y, The function d is oalled H-con- 
vex if for all A ćl Y with A = H( a ) and all £>0 we have:

(1 6) £y C- Y s dist (y, a) : = inf d(y,a)^£j=
a £ A

= H( [y <£. Ys dist (y,a ) <T gJO.

It Y is a uniform space [l73» a hull-operator H on Y is
called oompatible with the uniform struoture, if the uniformity 
ef Y is generated by a family of H-oonvex pseudometxd.es.

"ow«T»r, if H is a oompatible hull-operator en a metrlc space
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(Y,d), the distance function d need not be H-convex.
AA uniform space (Y, u) is called k-bounded iff for 

any entourage V Ot- of (Y, OL) there exists Z Y with 
card Z^k, such that Y = V(z) : = |y € Y : (z,y) £• V for 
some z £- a} . lf a uniform space contains a dense subset Z

.A
with card Z < k, then it is obviously k-bounded . The following 
abstract selection theorem is proved in [i7] !

,  /v  A
THEOREM 1 (L1 7 J ) .  Let (X, P) be a (k,<*r) - paracom-

A
pact paved space, Y' a k-bounded complete metric space and H 
an oc -convex, compatible hull-operator on Y. Then every lower
P-measurąbie multifunction F between X and Y such that

A/
F(x) = cl F(x) = U ( f ( x ) )  admits an P—measurable selector, i.e. 
a function fs X —Z> Y such that f(x)^F(x) for all x ^ X and 
Lr(f), Lr(f) £ ( x ^ G  : G t P j  for all r £  R,

Taking in the above theorem 1 the paving P of the form
(3), Y a separable Frechet space and H(a ) := conv A, we obtain 
with the aid of our key lemma 1 the following :

PROPOSITION 1, Let X be an arbitrary topologieal space,
Y a separable Frechet space and F:X —^ Y a z-lsc multifunct- 
ion with closed, convex yalues, Then F admits a continuous 
selector f:X —^  Y.

However theorem O may be treated as a particular case of 
proposition 1 sińce the multifunctlon F(x) = ff^(x), f2(x)J 
is z-lsc if and only if both f2 and —f ̂ are z—lsc as the 
single-valued functions,

C0R0LLARY 1, Let (x,d,m) be a metric space with 
G g -regular, finite Borei measure without atoms such that
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(17) inf {m(K(x,r)) i xeX, r> O^y-0 ,

K(xtr) := {xt X : d(x.j,x) ^ r)
/V

Lot subsequently ( F, =i) ) be a differentiation basia
Xon X that me ans F <̂- 2 is a preordered f amily of subsets 

J c x  with positlvo moasure m(j) > O and ==> ls a convergen- 
ce relatlon defined as follows :

(18) (Jn) ^  x <==> ( A  (Jn£ F A X €Jn ))A lim dlam Jq = 0 .
n n -i> oo

Suppese ln addltlen that the fellewing condltlen are fulfilled:

(a) A  A  ^  (! £j dias J ć C  )
£>0 xfeX J t F

(B) V A ̂ m({x£X : dist (x,J)<'2 dlam j}) 6 L . m(j).
L> O J Ł F

» * A /■ m(AnJ )(C) ^ n ((x^A ! lim — .......    <; 1 } ) = 0
A £ M  Jn ^ x B(Jn )

where M ls the m»oompletien of the borel trlbe B ( x )  ef X.
Let

f\y
(19) P(X, Td):={x\A t A e M  AD(A,x) = 1 for all xt A,

A £  F<r(X, d)>

where D(a, x ) 1= lim fm(Anjn ) /
Jn =>*

Then any lewer P(X, T^) - measurabla aiultlfunotlen F defined 
en X and with olesed, oenvex values ln a separable Freohet 
space Y has an apprexlmately oentinuous seleoter.

Preefł By wlrtue ef the werk ef Chaika [5 J *ur space 
(X, d, m) has the Lusin-Menoheff property frem which we may
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easily deduoe (of. f8J ) that P(X, T ) is a paving of exact- 
ly cozero sets of approzimately continuous functions, i.o. 
functions belonging to C(x, T^), where

(20) Td : = ( g ć X s d(G,z ) = 1 for eaoh i £ g }

is so oalled denslty topology on X (of. Cl5])« Then we may 
apply to the oase under oonsideration the preceding proposit­
ion 1.

Let X,Y be aa Ln the corollary 1. A multifunction 
F: X — V Y will be oalled approzimately z-lower somicontinuous 
if for ovory open subset U t Y  the set F~(u) belongs to
A/
P(X,Td) from C.19) . We shall distinguish the z-lsc multifunct-
ions from approzimately lsc ones. Notice that apprezlmately 
lso multifunctions with compact, convex valuea may fail to have 
the approzimately continuous selectores and may fail to be 
Bo rei- measurable, while approzimately z-lsc multifunotions must 
belong to the lewer Baire olass 1. The netion of approzimately 
continuous multifunctions wara intreduced and investigated by 
Hermes and lower approzimately somloontinuous multifunctions 
appear in [25] . Note also that appz*oximately z-lsc multifunot­
ions with Talues being intervals on the real line appear in f27] 
under the name approzimately lso. In aur opinion this name is 
in that oentezt unadeąuate, sińce this netion is not the special 
case of the lewer semioontinuity defined in Tl 8], as the oram­
pie 3 frem [25] shows .

Following [27],C2] a multifunction F : X — ? Y has tho 
proporty of apprezimate continuity on X if there ozists an 
approzimately z— lowor senicontinueus multifunction G : X ^ 1 

with olosed, convaz values suoh that G(z)<F(z) for evory
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* e X (!■••• G is a multlselecter for an F),
COROLLARY 2. Tb* multifurnotlen F: X — > Y admits an 

approzimately continuous salaotar if an enly if tha has tho 
Proporty of approtlsat* continuity on X.

Proof: Tho condltlon ls obvlously nocossary, sińce we

The suffiolenoy oemesfrem Corollary 1.
COROLLARY 3. If A.C X is a Gj— subset ef neasure zero 

and g : X Y is a Balro 1 vecter-valuad function, thon there 
azists an approzimately continuous function f : X —  ̂Y such 
that g(x) = f(x) for every point x belonging te A,

Proof: Consider the multlfunotion defined as fellews:

cenv g(a ) 0 0 and F_(g ) is empty wheneter Gn cl oonv g( a ) =

In both cases P (G) is Td - open and of the type Pa  . 
Thus P from ( 2 1 ) is z-lso on (X, ) and in oompliance with
ooroliary 1 has appreximately oontinuous selecter f : X -y Y , 
Obviously f(x) = g(x) on A so that f is the desired eiten- 
sion of g,

From oorellary 3 we directly ebtain the following gene- 
ralization of the prolengatlen theorem of Petruska and Laczke-
Vich (cf, r^33,r13» T7jsf6j, fi0],ZkJ ) .

COROLLARY U, (of, [ 1 0 J  th. 2), Let A<!X. The restrio-

say tako G(x) = |f(x)} where f ls the existing seleoter.

0 0.

tlen to A ef every Y-valuod (bounded) Balro 1 function coin-
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oides with the restriotion ta A af a (boundod) appreiiaatoly 
oantlnuaus fiuctian if and anly if «(a) s  O .

Preefł If »*(a )P 0, wbare ■* is tha exterier sauura an
X generated by ■ , than thara aiists Gj —superset B P A
suob that m(B) = m (a ) . Lat x ć. A ba a paint suoh thatO
D(B, xo) = 1* The funotian :

r y 4 o if X = x#

(22) g(x)t= \
[ ° if ^ * 0

is of the first Baire class, but each approximately continu' us
f ł X — > Y satisfy A ^  [xfcX : f(x) = g(x)}. If «(a ) = O
taka G ̂  -envelsppe B P A  with m(B) = 0  and then, applying
corollary 3, we get a function f: X Y such that
AćTB t ji ć X s f (x) = g(x) } for an arbitrary Baire 1 function
g: X —^ Y. The proof is thereby completed.

Besides the topology (20) we may consider in (X,d,m)
another topology T&o consisting of all subsets U ef X for
which s

(d) U €- Td

(e) U = G g z  where G is metricaly open and m(z) = 0,
It is easy to observe that lies ba tween the usual aatri-
cal topology and Td and T - continuous functions C(X,Ta#)
are axactly those, which aro appreximately continuous every- 
—where and metrically continuous m-almost everywhere (cf.[22], 
hi] ). The following lenna characterizes the paving of cozero 
sets in (X, T_a)s

LEMMA 2, A function f : X R is in C*(x, T&e>
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if and only if for eaoh rć R we have :

(f) {x £x i f(x)> r} = X S Lr(f) = G 1/ Z where G u Z ia

open in the density topology (2 0) , G is metrically open 
and Z is an F^—  set of measure zero

(g) Lr(f) s= |xć.X : f(x)^r^ = D \ Z  where D ̂  Z is closed
f

in the density topolegy (20) , D is olesed in (X, d) and Z 
is an F set ef measure zero.
Proof: Ve may assume that GGZ = 0 (etherwiae we may take
Z = Z \ G  = Z!'(X'G)tF (x)), Let us deoompose Z onto the 

co
union Z = U  Z of olosed sets Z = cl Z . By [5 ] (cf. 

n=1 n n
also fl5j ) there is a perfeot subset PQ such that Zn d P ^
G t/ Z and each point of Z ia a point of density one for n n
P_ • Next let us define 'f , n = 1,2,... as foliowa : n n’

dist (x. X ̂  G)________
(23) fn(*):= | {jlst X\Gj+dist(x,Pn) ̂  n

1 lf x Ł Z n

where as in (16) and (b), dist (x,a) is the distance from
the point x to the set A. It is easily aeen that fn from
(2 3) is metrioally continuous at each point x 4- Zq and is
approximately continuous at each z ć Z , So, f ć C(X,T ).Ti n
Also X N L ( f  ) = GU Z  . Finally, put X R x  — »f(x) : =<e o n  n
£Z 2~n f (x) £ R as in formuła (5 ) and observe that 
n=l n
f £  C*(X,Tae) as well (xŁX t f(x)>o}= GuZ. That achieves 
the proof of sufficiency. Necessity: Since f is T^-conti-
nuous, we have X \ L ( f ) ^ T  (1 F, ( X ) . On the other hand, be-
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causa of the metrical continuity m-almost everywh«re of f ,
it follows from [łój f th. 2a that X ^ L r(f) = G u Z  where G
is o pen and Z is contained in an set of measure zero.
Observe that Z N G = [x ^ Lr(f)J N G = ( x t X  s f(x)>r] n 
(X\G) is an F^ set of measure zero. The proof is finished. 

However it may be also easily observed, that the collect- 
ion of oozero sets is a basis for the topology Tae* Indeed,
from lemma 2 we have :

(2l») P(X, T ) := [guz j Gu-ZtT,, G€_T, Z t F  (X,T), as L a
m (Z) = o \ <^T ' J ae

Let U = G^Zć.T and ićG,ae
Then G ^{x J£ P(X, T^)* Clearly x £ Gi/ [x)łD . Obviously 
P(X, T ^ ) as a paving is olosed‘under finite interseotions 
and henoe it create a basis for the topology Ta#»

Nota, that this topology is completely rogular, but not normal,
similarly as in the oase of T ..a

COROLLARY 5 . Let (X,d,m) be a metric space with the
distance function d and the measure m fulfilling all
requirements of Corollary 1. Then any lower P(X, T ) -
measurąbie multifunction F : X — £> Y defined on X and
with closed, convex values ln a separable Frechet space Y
has an approzimately continuous and m- almost everywhere
metrioally oontinuous selector.

Proof: By virtue of lemma 2, P (X, Ta#) i* a paving
of cozero sets of funotions from the lattioe T )• ae
from which by using Proposition 1 we deduoe our corollary.
In the sequel the spaoes X, Y oontlnue to be as in the
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Corollary 1.
COROLLARY 6. If Z C. X la a closed aubsat with n(z)=0 

and gtZ Y la an Balra 1 abatraot function, then there 
exlata an approxlnately and ■ - a.e. netrlcally continuous 
abatract function ft X — * Y auoh that g(x) = f(x) for eve- 
ry x€- Z *

Proof. Let ua oonalder the multifunction Fs X Y given
by the foraaila (21) froa Corollary 3. Let G be open in Y
auch that G fi cl oonv g(z)/ 0 . Obaerve that *(g))= O
and Z \ g— 1 (g) = Z n ( x \ * " 1(G))£G|((x) s o that X N ( Z v g~1 ( g) h
£P(X, Td). Moreover X ' ( Z v g"1 ( &) ) = (X \ Z) (g~* ( G> O Z).

Clearly X' Z ia aetrloally open and g 1(G)rvZ belongs
to the F (x) and haa nauaura cero. Thua X ̂ (Z v g 1(g)) be- <r
longa to the paving p(x, T ) of C*(X, T )-oozero seta. Theet# ii®
remaining oaae f"(g) a 0 ia triwial. Thua F ia z-lac and
ln oonpliance with Corollary 5 haa an approxi«ately continuous
and ■ - a.e. oontlnuous aelector f t X —$> Y ooincidlng
with g on Z.

COROLLARY 7 (of. FlO], th. 3 p. 337) Let A<=X :a Rn .
The restrlotion to A of every Y-walued (bounded) Baire 1
function ooinoides with the restrlotion to A of a (bounded)
approxinately oontlnuous and m - a.e. metrically continuousn
function if and only if b (c1 a ) = 0 .

Proofi Necesaity: Obwiously cl A is always i-aeasu-
rable. If b(a)>0 then there ia a aubset B ć- ol A relatl- 
vely nowhere dense, denae ln itaelf and with the positive nea- 
sure b(b)>0. Let us seleot two dis joint oountable aubsets 
Aj C A, A ^ a  suoh that B*Ol Aj O cl A2> Aj OAg = 0 .
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Take an arbi trary yector yź T'jo] an then put s
( y  rr x e a

(2 5) A J X  — > g(x) : = J
[ O  if x fe A s A 4

It ia easily checked that g belongs to the first Baire olass 
on A, but each f s X —j; Y with f(x) = g(x) for all x belon- 
ging to A la totally discontlnuous on B, viz. oso f(x) =dY(y,o) 
at each iĆlB, Thua f cannot be in C^K, Ta0)» Sufficiency
ia a standard proof employlng Corollary 6 for Z := cl A.

Indeed, we obtain ln suoh a manner a function f : X — > Y 
fulfllling ACol A c. (x €■- X s f(x) = g(x)j’for an arbitrary
Y-valued function g belonging to the Baire 1 clasa on X.

REMARK. The spaoe X ln Corollary 7 may be endowed with an 
ordinary dlfferentiation basis F oonalstlng of those rectan-
gles fa . b l  x fa , b "] x ... x [a , b 1 for which the follow-h 1 1 2  ̂ n n
Ing inequallty holds:

(26) K“1 <  (bi - a±)/ (bj - aj)^K for all i / J t ^1,2,...,n}

and some positive constant K > O. The measure may be the
n-dlmensional Lebesgue measure as well as a moro generał one 
fulfilling all reąuirements of Coroll. 1. Note that the same 
proof of necesaity worka in the mora generał case of certain ul- 
tramętrio spaces instead of Rn, whlle in the sufficiency any 
addltlonal assumption conoeming the distance function d is 
olearly superfluous.
The Corollary 7 solves plalnly the problem 13a from C9 J and at 
the same time generalizes the theorem J from [1 0J in several 
directlons. The subsequent proposition gives an negative anewer 

to the next problem 1 3b from [9 J :



PROPOSITION 3» There ia a subset A c H 2 with m2( cl a ) =
2= 0 and a Baire 1 function g : R — £> R such that for any

T x T^ - continuous, m2 - almost everywhere continuous funct-
2ion f : R R, A is not contained in the set

((x,y)t.R2 i f(*»y) = e(.xty)y := (f-g)"*1 ({oj ) .
The sign denotes here the two—dimensional Lebesgue measure
on the piane(

Proofs Let A := {5} x R and let us put :

r 1 for y > 0
(27) g(x,y) : = sgn y := < 0 for y= 0

(-1 for y<TO

The function g from (2 7) ia olearly Baire 1 and “2(a) = O.
2Let us suppose that f: R — R is m2 ~ continuous,

T^ x T^ - approrimately continuous function for which A<{(x,y)
: f(x,y) = g(x,y)J. Observe that the following eąuality must
holds 1 f(5,y) = g(5,y) = agn y so that the section f^
fails to have the Darboux property, Bearing in mind that any
section of T. x T , — continuous function must be T -continu- d d u
ous and that all T.,-continuous funotions are Darboux Baire 1d
ones we obtain a oontradiction, Thua (f-g) 1( {o j) cannot be
superset of A and the proof is completed.

The remalning ąuestion 13c from [9J is to prove or
disprove the following Grandę's oonjecture: Let A be a sub-

2set of the piane R . The following sentences are the equiva- 
lent :
(l°) m((cl A) ) = m((ol A)y) = 0 where (cl a ) =X

= {yfeRs (x,y)ćcl A} and (ol A)y ={x£R : (x,y)tcl A}.
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(2°) for ooob Boi.ro 1 function gt S. — * R thoro io ag-a.e.
oontiauo«< and approzinately oontlnuous with rospoot to tho

2strony dlfforontiotlon bosis funotion f : R — b R suoh thot 
A c{(x,y)C R2 : f(x,y) * «(x,y)}. rooall thot o stronę
dlfforontiotlon bosls oonsists of oll rootonelos [a.j»b 1 ] z 
z 1*2' b2  ̂ without no oondltlono (ln tho splrlt of (26))inpo-
ood upon tho rotio (b^-a^)/ (b^ -o^). Uoine tho nothodo dove-
lopod ln this orticlo, we noy roduoo thot problea to flndlne 
of oll cozoro sots of stronely opprozinotoly continuous funct­
ions on tho piano, ln portioulor wo havo tho followlne opon
quostlono:

Ouostion 1. Lot AfeF^R2) bo o ouboot suoh thot t

■ (A0(Ca-h, z+h] z fy-k, y+kj))
(1°°) D ( (z,y) , A) u  lin — 2---------------------------- =t1

* h +  O I* hk

(2 ) lin -1

k i>0

(Ay [z-h, z+h])

h +  O 2h

, „o. VII (A r\ fy-k , y+k])
(3 ) lin -J— 2-------------  = 1  ; z, y fe R .

k ^  O 2k
2Doos thoro ezist a funotion f : R — J>R stronely approzimate- 

ly continuous such thot {(x,y) s f(x,y)> O j = A ?

Ouostion 2, Charoctorize the cozoro sets for d -continu-zy
2ous functions f: R — R where d ls a topoloey rocontly

introducod by o'Malloy in tho followlne way: a noasurablo
2subset A c R is d ^  - opon iff every z-sootion and evo-

V  / O o  %ry y-seotlon Ar aro T^-open, 1,0, tho condition (2 ;and
( oo %3 ) from Question 1 aro fulfilled. A sinilar ąuostion eon be
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raised for the topology ąxy oon*^at^a< all subsets A <1H2 
with the Baire proper t y  whoae all aeotione A^, Ay are quallta- 
tively open, next for the topology q®y oonsisting of all sub-

2 y•eta A C. R with the Baire property and aeotione A , A
“•trically open and for the topology q*^ of all seta A with
Baire property with all aeotions A , Ay 1 — oontlnuous with
respeot to the Wilczyński oategory analogus of the density
topology, eto. We have q* ^ q d-q+ with proper inolus-xy °  xy xy
ions.
A solutlon of eaoh of those questlons leads to sonie new prolon- 
Sation theorems.
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0 PRZEDŁUŻANIU FUNKCJI I KLASY BAIRE'A DO FUNKCJI A.E-CIĄGŁYCH 

Streszozenie

V pracy wprowadza się pojęcie z-półoiągłej z dołu multifunkoji, 
Pokazuje się następnie, *e do takich multifunkcji stosuje się

6 3
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twierdzenia Margała o istnieniu selektora mierzalnego ze 
względu na paving zbiorów kozerowych kraty funkcji oiąglyoh 
określonych na dowolnej (nie koniecznie doskonale normalnej) 
przestrzeni, topologicznej - taki selektor Jest oczywiście 
ciągły. Uzyskana twierdzenie uogólnia dobrze znane wyniki 
Michaela. V dalszej ozęści pracy stosujemy Je do badania ist­
nienia selektorów aproksymatywnie ciągłych i a.e. ciągłych dla 
z-lsc multifunkcji określonych na pewnych przestrzeniach metryoz- 
nyoh wyposażonych w miarę. Istnienie tych selektorów pozwala na 
rozstrzygnięcie problemu 13a, b opublikowanego przez Z. Grandogo 
w £̂93 a dotyczącego istnienia a.e. - ciągłego przedłużenia 
funkcji 1 klasy Balre'a. Metoda zastosowana w i1 0 J  istotnie 
wykorzystuje fakt, że dziedzina Jest prostą rzeozywistą, nato­
miast nasz Wniosek 7, stanowiący główny wynik niniejszego arty­
kułu nie wymaga tego rodzaju ograniczeń. Dla kompletności w 
pracy należało przedstawić b. obszerny aparat pojęoiowy zwią­
zany z twierdzeniem Magerla, pozwoliło to Jednak sprowadzić 
dowód Stwierdzenia 1 do sprawdzenia 2 prostyoh lematów.
Otrzymane wyniki stanowią zarazem przeniesienie rezultatów 
P. Vetro [2 7 ] na przypadek multifunkoji o wartościach w przes­
trzeniach nieskończenie wysil itrowych.


