ZESZYTY NAUKOWE WYZSZEN SZKO£Y PEDAGOGXCZNEJ w BYDGOSZCZY
Problewy Matematyczne 1987 z. 9

WLODZIMIERZ A. SLEFZAK
WSP w Bydgoazczy
CONCERNING A.E. - CONTTNUOUS EXTENSIONS OF BAIRE 1 FUNCTIONS

This paper presents new results concerning extensions of Baire 1 vector-valued functions defined on a subset of finite--dimensional euolidean space to finely oontinuous [15] (e.g. a.e. - continuous, of.[22]) function defined on the whole space. In particular a problem 13 pesed by prof. Z. Grande in [9] is solved here. In order to prove our extension theorem the notion of z - lower semicontinuous multifunction is introduced and the theory of continuous selectors for such multifunctions is developed. Let R denotes the real line and $C^{*}(X)$ the lattice of continuous, bounded and real-valued functions defined on the topological space X . The following general insertion theorem is stated in [13] (see also $[3],[12],[14],[24],[26]$ for related results):

THEOREM O ([13]). Let X be an arbitrary topological space and let $L(X)$ and $U(X)$ be classes of bounded functions defined on X such that any constant function is in the interseotion $L(X) \cap U(X)$ and such that if $g \in U(X), f \in L(X)$ and $r \in R$ then $E \wedge r \in U(X)$ and $f \vee r \in L(X)$. The following statements are equivalent:
(1) If $f \in L(X), G \in U(X)$ and $E \leq f$, then there exists a function h belonging to the lattice $C^{*}(x)$ such that $g \leq h \leq f$ and such that $g(x)<h(x)<f(x)$ for each x

$$
\text { for which } g(x)<f(x) \text {. }
$$ If $f \in L(X), E \in U(X)$ and $r \in R$, the Lebesgue sets $L_{r}(f):=\{x \in X: f(x) \leq r\}$ and $L^{r}(g):=\{x \in X: E(x)=r\}$ are zero sets in X.

If $r \in L(X)$ and $g \in U(X)$, then f (respectively g) is the fointwise limit of an increasing (resp. decreasing) sequence of continuous functions.
Recently similar result has been independently reproved in [27],[2]. It is also easily observed that the lattice $C^{*}(X)$ in theorem 0 may be replaced by others linear lattices of functions (se0 [19],[20],[21] in that direction). In the situation whore $U(X)$ and $L(X)$ are the olasses of upper and lower semicontinuous functions resp., the equivalence of (1) and (1i) is due to Michael [18], the equivalence of (ii) and (iii) is due to Tong [26], and eaoh of the conditions being equivalent te X is perfectiy normal.

It is noted ([13], [14]), that the boundedness condition placed on the functions in Theeren 0 causes ne loss in genorality if the properties that define the olesses $L(X)$ and $U(X)$ are preserved under an order preserving hoasomorphism from R ente a boumded interval.

Let us reoall that a function $f: X \rightarrow R$ is $z-$ lover somicontinuous (resp. z- upper somioontinuous) in case $L_{r}(f)$ (resp. $L^{r}(f)$) is a zere set for each roal number $r \in R$. These functions have beon considered by Stene [24] any by Blatter and Seover [3] . Obviously the olasses of all z-lowor and $z-$ upper somioontinuous functions are oxamples of $L(X)$ and $U(X)$ in theorem O (of. [14]).

If x it aet and $\tilde{P} \subset 2^{X}$ a oelleotion of subsets of X, then \tilde{P} is called paring, and the pair (X, \tilde{P}) a pared space, if \tilde{P} is closed under finite intersections and countable unions and if x and ϕ belong te \tilde{P}. If (x, \tilde{p}) is a pared space, Y a topelegionl apace and $F: X \rightarrow Y$ a mitifumotion (i.e. a function, whose values are nen-roid aubsets of Y), then F is called lever ${ }_{\text {Prmonaurable, }}$ ff:

$$
\begin{equation*}
F^{-}(G):=\{x \in X: F(x) \cap G \neq \phi\} \in \tilde{P} \tag{2}
\end{equation*}
$$

holds for all open subsets $G C Y$. As an important example we have:

LEMMA O. The faddy

(3) $P(X):=\{U \subset X: U=\{x \in X: I(x)>0\}$ for some $f \in C *(X)\}=$

$$
=\left\{x \backslash z: Z=\{x \in X: f(x)=0\} \text { for some } f \in C^{x}(X)\right\}
$$

oonaleting of corer sets of $C^{r}(X)$ create a paving.
The simple proof will be omelet here. For related topics see $[19],[20],[21]$.

A multifunction $F: X \rightarrow Y$, lower $\tilde{P}(X)$ - measurable with respect te (3) will be called z-lewer sealcentimucus (briefly $z=150$) 。
If card $F(x)=1$ for all $x \in X$, 1.e. $F(x)=\{f(x)\}$, then F is $z=1 s c$ if and only if f is continuous on X as aingle-valued function.
A pair (C, \tilde{S}) is called a geometric complex, if C is a subset of linear space and S is a covering of C by finitemimensional simplices contained in C, such that $S \in \widehat{S}$ implies that all faces of S belong to \tilde{S} and $S, T \in \tilde{S}$ implies that $S \cap T$ is face of both S and T (or empty).

Let (C, \tilde{S}) be a complex. We denote by $v(C, f)$ its set of vertices (ie. the set of $x \in C$ such that $\{x\}$ belongs \tilde{s}) and call

$$
\operatorname{dim}(C, \tilde{S}):=\sup \{d i=s: S \in \tilde{S}\} \text { its dimension. }
$$

For $y \in C$ let $S(y)$ be the simplex of smallest dimension in \tilde{S}, that contains Y, and for $x \in V(C, \tilde{S})$ wo call

$$
\begin{equation*}
\text { St }(x):=U\{y \in C \quad: x \in S(y)\} \tag{4}
\end{equation*}
$$

the star of x. C is a^{1} ways assumed te be topologized by the finest topology inducing the Euclidean topology on each $S \in \tilde{S}$. This topology is usually called the Whitehead topology. If \tilde{U} is a covering of a set X, a complex $N(\tilde{U})$, called its geometric nerve ia assigned to \tilde{U} in the following way: Fer $U \in \tilde{U}$ let $\theta_{U}: \tilde{U} \rightarrow R$ be defined by $\theta_{U}(V)=0$ for $V \neq U$ and $e_{U}(U)=1$. Let $\tilde{S}(\tilde{U}):=\left\{\operatorname{cenv}\left\{e_{v}: V \in \tilde{U}_{1}\right\}: \tilde{U}_{1} c \tilde{U}_{1}\right.$ \tilde{U}_{1} is finite, $\left.\cap \tilde{U}_{1} \neq \varnothing\right\}, C(\tilde{U}):=U \tilde{S}(\tilde{U})$ and att $N(\tilde{U}):=(\mathrm{C}(\tilde{U}), \tilde{\mathrm{S}}(\tilde{\mathrm{U}}))$.

For the remainder of the paper \hat{k} is a ordinal number and \mathcal{C} a nonnegative integer or ∞.

A paved space (X, \tilde{P}) is called (\hat{k}, \propto) - paracompact, inf every covering $\tilde{B} \subset \tilde{P}$ of X with card $\tilde{B}<\hat{k}$ admits a refinement $\tilde{B}^{*} \subset \tilde{P}$ such that :
(a) dim $N\left(\tilde{B}^{\star}\right) \leqslant \alpha^{*}$
(b) there exists an \tilde{P}-measurable map $\phi: X \rightarrow N\left(\tilde{B}^{*}\right)$ with $\phi^{-1}\left(\operatorname{st} \theta_{B}\right) \subset B$ for all $B \in \widetilde{B}$.

LEMMA 1. The paring (3) of cozero sets in an arbitrary space X is $\left(\lambda_{1}, \infty\right)$ - paracompact.

Proof. We start with an open covering \bar{B} of X which is
at meet countable: $\widetilde{B}=\left\{U_{i}: i \in I\right\}$, ord $I \leq \tilde{j}^{s}$.
Enron U_{i} is of the form $U_{1}:=\left\{x \in X: f_{i}(x)>0\right\}$ for some f_{i} belonging to $c^{*}(x)$.

Let us defines
(5) $f(x):=\sum_{i \in I} 2^{-1} f_{i}^{*}(x)$, where $f_{i}^{*}(x):=2^{-1}\left[1+\frac{f_{i}(x)}{1+\left|f_{i}(x)\right|}\right.$

Since the series (5) defining f converges uniformly, it follows that $f \in C^{*}(x)$. For each $x_{0} \in X$ there is an $i=1\left(x_{0}\right) \in I$ such that $x_{0} \in U_{i}$ since \tilde{B} is a covering of $x_{\text {. }}$ Therefore $f_{i}\left(x_{0}\right)>0$ and consequently $f(x)>0$ on the whole apace X. Define :

$$
\begin{equation*}
V^{r}:=\{x \in X: f(x)>r\}=X \backslash L_{r}(f) \in \widetilde{P}(x) \tag{6}
\end{equation*}
$$

and observe that our cozero set v^{n} is an countable union of zero sets:
(7) $\quad v^{r}=\bigcup_{n=1}^{\infty}\left\{x \in X: f(x) \geqslant r+2^{-n}\right\}$.

If $r=k^{-1}$ then put $V^{r}=: V_{k}, D_{k}:=L^{r}(f), D_{o}=\varnothing$ and define:

$$
\begin{equation*}
U_{k j}:=U_{j} \cap\left(v_{k+1} \backslash D_{k-1}\right) \text { for } 1 \leqslant j \leqslant k, \quad k=1,2, \ldots \text {, } \tag{8}
\end{equation*}
$$ $v_{k j}=\phi$ for $j>k$. For each $x_{0} \in X$ let us select $k=k\left(x_{0}\right):=$ $:=\min \left\{k_{1} \in N: x \in D_{k_{1}}\right\}$. Thus we have:

$$
\begin{equation*}
k^{-1} \leq f\left(x_{0}\right)<(k-1)^{-1} \tag{9}
\end{equation*}
$$

Observe that (9) implies that $x_{0} \in \underset{j \leqslant k}{\bigcup} U_{j}$. If not, then

$$
f\left(x_{0}\right)=\sum_{i=k+1}^{\infty} 2^{-i} f_{i}^{*}\left(x_{0}\right) \leq \sum_{i=k+1}^{\infty} 2^{-i}=2^{-k}<k^{-1}
$$

in contradiction with (9). Consequently there is an index $j \leq k=k\left(x_{0}\right)$ such that $x_{0} \in U_{j}$. At the same time x_{0} belongs
te $\mathrm{D}_{\mathbf{k}} \backslash \mathrm{D}_{\mathbf{k}-1}$, hence
(10) $\quad x_{0} \in U_{j} \cap\left(D_{k} \backslash D_{\mathbf{k}-1}\right) \subset U_{j} \cap\left(V_{\mathbf{k}+1} \backslash D_{k-1}^{\prime}\right) \subset U_{k j}$.

The first inclusion in (10) follows from the inclusion :
(11) $\quad v_{k} \subset D_{k} \subset v_{k+1}$.

Next, observe that for each $j \leqslant k$ by virtue of (8) and (11) we have the following inclusion :
(12) $\quad \mathbf{U}_{\mathbf{k j}} \subset \mathbf{V}_{\mathbf{k}+1}<\mathbf{D}_{\mathbf{k}+1}$ - Thus :
(13) card $\left\{(n, 1): U_{k j} \cap U_{n i} \neq \varnothing\right\} \leqslant 1+2+3+\ldots+\mathbf{k}+1=$ $=2^{-1}\left(k^{2}+3 k+2\right)<\lambda_{0}^{n}, n \geqslant k+2$.
Indeed, if $p \in U_{k j} \cap U_{n i}$ then $(k-1)^{-1}>f(p) \geqslant(k+1)^{-1}$ and $(n-1)^{-1} \geqslant f(p) \geqslant(n+1)^{-1}$ so that $(k+1)^{-1} \leqslant f(p)<(n-1)^{-1}$, which in torn implies $n \geqslant k+2$ so that:
$\left\{(n, 1): U_{k j} \cap U_{n i} \neq \phi\right\}=\{(1,1),(2,1),(2,2),(3,1),(3,2), \ldots$, $(k+1,1),(k+1,2), \ldots,(k+1, k+1)\}$ giving (13). Consequently $\tilde{B}_{0}=\left\{u_{k j}:(k, j) \in N \times N\right\}=:\left\{U_{s}: s \in S\right\}$ defined by (8) create a star-finite subcovering of $\underset{\text { B. Since (}}{(8)}$ are cozero sets in x, there is a partition of unity $\left\{g_{s}: s \in S\right\}$ subordinated to \tilde{B}_{0}. Define $\phi: x \rightarrow N\left(\tilde{B}_{0}\right)$ by formula :

$$
\begin{equation*}
\delta(x):=\sum_{s \in S} g_{s}(x) \cdot \theta_{U_{s}} . \tag{14}
\end{equation*}
$$

This function (14) is continuous : each $x \in X$ has a nelehbourhood on which all but at most finitely many g_{s} vanish, and since this neighbourhood is mapped into a finite-dimensional flat in $c\left(\tilde{B}_{0}\right)$ and the addition is continuous, so ϕ is continuous on that neighbourhood, from which its continuity on the whole space
x resulte. Since $\sum_{s \in S} G_{s}(x)=1$, then $f(x)$ is in fact a point of the closed geometric simplex spanned by $\left\{\theta_{U_{s}}: g_{s}(x) \neq 0\right\}$. The inverse image of $S t{ }^{U_{S}}$ consists of all $x \in X$ for whioh $g_{s}(y) \neq 0$ and because the support of $g_{U_{s}}$ is in U_{s}, we have $\phi^{-1}\left(S t \theta_{U_{s}}\right)<U_{s}$ as required in (b). The item (a) is obvious. The following definitions serve to formulate suitable conditions on the target space Y of our multifunction F. A map $H: 2^{Y} \rightarrow 2^{Y}$ is called a mull-operator on Y if $A \subset H(A)=$ $=H^{2}(A), H(A) \subset H(B)$ for $A \subset B \subset Y$ and $H(\{y\})=\{y\}$ for $y \in Y$ holds. A hull-operator H on a topological space Y is called α-convex, if the following is true: for every complex (c, \tilde{s}) with dim $(c, \tilde{s}) \leq \alpha$ and every map $\rho: v(c, \tilde{s}) \rightarrow Y$ there exists a continuous map $\tau: C \rightarrow Y$ such that
(15) $\tau(s) \subset H(\rho$ (ext $s))$ for all simplices $s \in \tilde{s}$.

The sign ext S means here the set of all extreme points (vertices) of a subset S.

Let Y be aset, d: $Y \times Y \rightarrow R$ a pseudometric on Y and H a hull-operator on Y. The function d is called H-convex if for all $A \subset Y$ with $A=H(A)$ and all $\varepsilon>0$ we have:

$$
\begin{align*}
& \left\{y \in Y: \operatorname{dist}(y, A):=\inf _{a \in A} d(y, a)<\varepsilon\right\}= \tag{16}\\
& =H(\{y \in Y: \operatorname{dist}(y, A)<\varepsilon\}) .
\end{align*}
$$

It Y is a uniform space [17], a hull-operator H on Y is called compatible with the uniform struoture, if the uniformity of Y is generated by family of H-conver pseudometrios. nowever, if H is a compatible hull-operator on a metric apace
(Y, d), the distance funotion d need not be H-convex.
A uniform space (Y, U) is called \hat{k}-bounded iff for any entourage $V \in O$ of $(Y, O L)$ there exists $Z \subset Y$ with card $Z<\hat{k}$, such that $Y=V(Z):=\{y \in Y:(z, y) \in V$ for some $z \in A\}$. If a unirorm space contains a dense subset Z with card $Z<\hat{k}$, then it is obviously k-bounded The following abstract selection theorem is proved in [17]:

THEOREM 1 ($[17 \bar{j})$. Let $(\mathbf{X}, \tilde{\mathrm{P}})$ be a (\hat{k}, α) - paracompact pared space, Y a \hat{k}-bounded complete metric space and H an \mathcal{C}-convex, compatible hull-operator on Y. Then every lower \sim
P-measurable multifunction F between X and Y such that $F(x)=c l P(x)=H(F(x))$ admita an Pmonsurable selector, 1 , e. a function $f: X \rightarrow Y$ such that $f(x) \in F(x)$ for all $x \in X$ and $L_{r}(\mathbf{I}), \quad L^{r}(r) \in\{X \backslash G: G \in \widetilde{P}\} \quad$ for all $r \in R_{0}$

Taking in the above theorem 1 the paving \tilde{p} of the form (3), Y a separable Freohet space and $H(A):=c o n v, A$, we obtain with the aid of our key lemma 1 the following:

PROPOSITION 1. Lat X be an arbitrary topological space, Y a separable Freohet space and $F: X \rightarrow Y$ a $Z-l s c$ multifunction with closed, convex values. Then F admits a continuous selector $f: X \rightarrow Y$.

However theorem 0 may be treated as a particular case of proposition 1 since the maltifunction $F(x)=\left[f_{1}(x), f_{2}(x)\right]$ 1s z-lso if and only if both f_{2} and f_{1} are $z-1 s o$ as the single-valued functions.

COROLLARY 1. Let (X, d, m) be a metric space with G δ-regular, finite Borel measure without atoms such that
(17)

$$
\begin{aligned}
& \inf \{m(K(x, r)): x \in X, r>0\}>0, \\
& K(x, r):=\left\{x_{1} \in X: d\left(x_{1}, x\right)<x\right\}
\end{aligned}
$$

Let subsequently (\tilde{F}, \Rightarrow) be a differentiation basis on X that means $\tilde{F} \subset 2^{X}$ ia a preordered family of subsets $J \subset X$ with positive measure $m(J)>0$ and \Rightarrow is a convergentce relation defined as follows :

$$
\begin{equation*}
\left(J_{n}\right) \Rightarrow x \Leftrightarrow\left(\bigwedge_{n}\left(J_{n} \in \tilde{F} \wedge x \in J_{n}\right)\right) \wedge \lim _{n \rightarrow \infty} \text { diam } J_{n}=0 \tag{18}
\end{equation*}
$$

Suppose in addition that the following condition are fulfilled: (A) $\wedge_{\varepsilon>0} \wedge_{x \in X} \bigvee_{J \in \tilde{F}}(x \in J \cap$ diam $J<\varepsilon)$
(B) $\bigvee_{L>0} \bigcap_{J \in \tilde{F}} m(\{x \in X:$ dist $(x, J) \leqslant 2$ diam $J\}) \leq L \cdot m(J)$.
(c) $\wedge_{A \in \tilde{M}^{m}}^{m}\left(\left\{x \in A: \lim _{J_{n} \Rightarrow x}^{m\left(A \cap J_{n}\right)} \frac{m\left(J_{n}\right)}{m}<1\right\}\right)=0$
where \tilde{M} is the m-completien of the berel tribe $\tilde{B}(x)$ of X. Let
(19) $\tilde{P}\left(X, T_{d}\right):=\{x \backslash A: A \in \tilde{M} \wedge D(A, x)=1$ for all $x \in A$,

$$
\left.A \in F_{\sigma}(x, d)\right\}
$$

where $D(A, x):=1 i m\left[m\left(A \cap J_{n}\right) / m\left(J_{n}\right)\right]$.

$$
J_{n} \Rightarrow x
$$

Then any lever $\tilde{P}\left(X, T_{d}\right)$ - measurable muitifunotion F defined on X and with olesed, convex values in a separable Freohet space Y has an approximately continuous seleoter.

Preef: By wirtue of the work of Chatika [5] our space (x, d, m) has the Lusin-Monohoff property from which we may
-asily deduce (of. [8]) that $\tilde{P}\left(X, T_{d}\right)$ is a paving of exactly cozero sots of approximately continuous functions, i.e. functions belonging to $C\left(X, T_{d}\right)$, where
(20) $T_{d}:=\{G \subset X: D(G, X)=1$ for each $x \in G\}$

1s so called donsity topolegy on X (of.[15]). Then wo may apply to the oase under oensideration the preceding propesition 1.

Lat X, Y be an \ln the corollary 1. A maitifunction F: $X \rightarrow Y$ will be called approximately zolower somicontinuous if for overy open subset $U C Y$ the set $F^{-}(U)$ belongs to $\tilde{P}(X, T)$ from (19) . We shall distinguish the z-lsc multifunctions from approximately lsc ones. Notice that approximately 1sc multifunctions with compact, convex valuos may fail to have the approximately continuous solectores and may fail to be Borel. measurable, while appreximately z-1sc multifunctions must belong to the lower Baire olass 1. The netion of approximately continuous multifunctions were intreduced and investigated by Hormes and lower appreximately somioontinueus malitifunctions appear in $[25]$. Note alse that appreximately z-lso multifunotions with values being intervals on the roal line appear in [27] under the name appreximately lso. In our epinion this name is in that oontext unadequate, since this netion is not the special case of the lewer semicontinuity defined in [18], as the example 3 frem [25] shows

Following [27],[2] a multifunction $F: X \rightarrow Y$ has the preperty of appreximate continuity on X if there existe an approximatoly $z-1$ - ${ }^{2}$ or somioontinueus multifunction $G: X \rightarrow Y$ with olesed, convex values such that $G(x)<F(x)$ for every
$x \in X$ (i.e. G is a multiselecter fer an F).
COROLLARY 2. The maltifumotion $F: X \rightarrow Y$ admits an appreximately centinueus seleoter if an only if the has the property of approximate continuity on X.

Preef: The cendition is obvieusly necesaary, since we may take $G(x)=\{f(x)\}$ where f is the existing selecter. The ufficienoy oemes fren Cerellary 1.

COROLLARY 3. If $A \subset X$ te a Gg-subset of measure zere and $g: X \rightarrow Y$ is a Baire 1 veoter-valued funotion, then there exista an appreximately continueus funotion $f: X \rightarrow Y$ suoh that $f(x)=f(x)$ for every point x belonging te A.

Preof: Censider the multifunotion defined as fellews:

$$
F(x)_{t}=\left\{\begin{array}{l}
\{g(x)\} \text { if } x \in A \tag{21}\\
\text { ol oonv } g(A) \text { othorwise }
\end{array}\right.
$$

If G ia epen in Y, then $F^{-}(G)=X \backslash\left(A \backslash g^{-1}(G)\right)$ if $G \cap$ cl oonv $g(A) \neq p$ and $F^{-\infty}(G)$ is ompty whonever $G \cap c l$ conv $G(A)=$ $\neq \varnothing$.

In both cases $F^{-}(G)$ is T_{d} - open and of the type F_{σ}. Thus F from (21) is $z-1 s 0$ on (X, T_{d}) and in compliance with oerollary 1 has appreximately oentinueus seleoter $f: X \rightarrow Y$. Obvieusly $f(x)=g(x)$ on A so that f is the desired extensien of 6 .

Frem oerellary 3 we directly btain the fellewing generalization of the prelengation thoorem of Potruska and Lacakevioh (cr. $[23],[1],[7],[6],[10],[4]$).

COROLLARY 4. (of. [10] th. 2). Let ACX. The reatrico tion to A of every Y-valuod (bounded) Baire 1 fumotion cein-
oides with the restriotion te A of (bounded) appreximately oontinuous function if and only if $m(A)=0$.

Preef: If $m^{*}(A)>0$, whore n^{*} is the oxtorior measure on X generated by m, then there exista G_{δ}-superset BクA such that $m(B)=m(A)$. Lot $x_{0} \in A$ be a point such that $D\left(B, x_{0}\right)=1$. The function :

$$
g(x):=\left\{\begin{array}{rrr}
y \neq 0 & \text { if } & x=x_{0} \tag{22}\\
0 & \text { if } & x \neq x_{0}
\end{array}\right.
$$

is of the first Baire clase, but each approximately continuc 18 $f: X \rightarrow Y$ satisfy $A \not \subset\{x \in X: f(x)=g(x)\}$. If $\quad(A)=0$ take $G \delta$-enveleppe BクA with $m(B)=0$ and then, applying corollary 3, we get a function $f: X \rightarrow Y$ such that $A \subset B \subset\{x \in X: f(x)=g(x)\}$ for an arbitrary Baire 1 function g: $X \rightarrow Y$. The proof is thereby completed.

```
Besides the topology T T (20) we may consider in ( }x,d,m\mathrm{ )
```

another topology $T_{a \in}$ consisting of all subsets U of X for which :
(d) $\quad U \in T_{d}$
(e) $U=G \cup Z$ where G is metricaly open and $m(Z)=0$. It is easy to observe that $T_{\text {ae }}$ lies botween the usual metrical topology and T_{d} and $T_{a e}$ - continuous functions $C\left(x, T_{a 0}\right)$ are exactly those, which are appreximately continueus every--where and metrically continuous m-almost everywhere (cf.[22], [11]). The following lemma characterizes the paving of cozero sets in ($X, T_{a \phi}$):

LEMMA 2. A function $f: X \rightarrow R$ is in $C *\left(X, T T_{a s}\right)$

If and only if for each $r \in R$ we have :
(f) $\{x \in X: f(x)>r\}=X \backslash L_{r}(f)=G \cup Z$ where $G \cup Z$ is open in the density topology (20), G is metrically open and Z is an F_{σ} - set of measure zero
(E) $L^{F}(f):=\{x \in X: f(x) \geqslant r\}=D \backslash Z$ where $D \backslash Z$ is closed in the density topelegy (20), D is olesed in (X, d) and Z is an F_{σ} set of measure zero.
Proof: We may assume that $G \cap Z=\varnothing$ (otherwise we may take $\left.Z_{0}=Z \backslash G=Z \cap(X \backslash G) \in F_{\sigma}(X)\right)$. Lot us decompose Z onto the union $z=\bigcup_{n=1}^{\infty} z_{n}$ of closed set $z_{n}=c l z_{n}$. By [5] (cf. also [15]) there is a perfect subset P_{n} such that $Z_{n}<P_{n}$ $\mathcal{C}_{G \cup Z_{n}}$ and each point of z_{n} is a point of density one for P_{n}. Next let us define $f_{n}, n=1,2, \ldots$ as follows:
(23) $f_{n}(x):=\left\{\begin{array}{l}\frac{d i s t(x, X \backslash G)}{d_{\text {dist }}(x, X \backslash G\}_{\text {dist }}\left(x, P_{n}\right)} \text { if } x \& Z_{n} \\ 1 \text { if } x \in Z_{n}\end{array}\right.$
where as in (16) and (B), dist (x, A) is the distance from the point x to the set A. It is easily seen that f_{n} from (23) is metrically continuous at each point $x \notin z_{n}$ and is approximately continuous at each $z \in Z_{n}$. So, $f_{n} \in C\left(X, T_{a \theta}\right)$. Also $X \backslash L_{0}\left(f_{n}\right)=G \cup Z_{n}$. Finally, put $X \ni x \rightarrow f(x):=$ $\sum_{n=1}^{\infty} 2^{-n} f_{n}(x) \in R$ as in formula (5) and observe that $f \in C^{\prime \prime}\left(X, T_{\text {Re }}\right)$ as well $\{x \in X: f(x)>0\}=G \cup Z$. That achieves the proof of sufficiency. Necessity: Since f is T_{d}-contrnous, we have $x \backslash L_{r}(f) \in T_{d}{ }^{n} F_{j}(X)$. On the other hand, be-
cause of the motrical contimulty malmost overywhere of f, it follows from $[16]$, th. 2a that $X \backslash L_{r}(f)=G U Z$ where G 1s open and Z is contained in an F_{σ} set of measure zero. Observe that $Z \backslash G=\left[x \backslash L_{r}(f)\right] \backslash G=\{x \in X: f(x)>r\} \cap$
($\mathrm{X} \backslash \mathrm{G}$) is an F_{σ} set of measure zero. The proof is finishod. However it may be also easily observed, that the collectIon of oozero sets is a basis for the topology $T_{a 0^{\circ}}$ Indeed, from lemma 2 we have :
(24) $P\left(X, T_{\mathbf{a d}}\right):=\left\{G \cup Z: G \cup Z \in T_{d}, \quad G \in T, \quad Z \in F_{\sigma}(X, T)\right.$,

$$
m(z)=0\} \subset T_{0}
$$

Lot $U=G \cup Z \in T$ and $x \in U$.
Then $G \cup\{x\} \in P(x, T a d)$. Clearly $x \in G \cup\{x\} \subset U$. Obviously $P\left(X, T_{\text {eq }}\right)$ as a paving is olosed under finite interseotions and hence it oreate a basis for the topolocy T_{B} 。

Note, that this topology is completely regular, but not moreal, aimilarly as in the oase of T_{d}.

COROLLARY 5. Let ($X, d,=$) be a metric space with the distamce function d and the measure fulfilling all requirements of Corollary 1. Thon any lower $P\left(X, T_{a e}\right)$ measurable multifunotion $F: X \rightarrow Y$ defined on X and with closed, convex values in a separable Frechet space Y has an approximately continuous and molaost evorywhore metrioally oontinuous selector.

Proof: By virtuc of lema 2, $P\left(X, T T_{0}\right)$ is a paving of cozero sets of funotions from the lattioe $c^{\prime \prime}\left(X_{i}, T_{a 0}\right)$ from whioh by uaing Proposition 1 we doduce our corollary. In the sequel the spaces X, Y oontinue to be as in the

Corollary 1.
COROLLARY 6. If $Z \subset X$ is a closed subset with $\mathrm{Z}(\mathrm{z})=0$ and $c: Z \rightarrow I$ is an Baire 1 abstract function, thon there exists an approximately and m - a.e. metrioally oontinuous abotract function $f: X \rightarrow I$ anoh that $G(x)=f(x)$ for oveYy $x \in Z$.

Proof. Let us ooneider the multifunotion $F: X \rightarrow Y$ given by the formala (21) from Corollary 3. Let G be open in Y such that $G \cap c l$ oonv $G(Z) \neq \varnothing$. Obsezre that $m\left(z \backslash g^{-1}(G)\right)=0$ and $Z \backslash f^{-1}(G)=Z \cap\left(X \backslash \epsilon^{-1}(G)\right) \in G_{\delta}(X)$ so thet $x \backslash\left(Z \backslash G^{-1}(G)\right)$ $\in P\left(X, T_{d}\right)$. Moreover $x \backslash\left(Z \backslash G^{-1}(G)\right)=(X \backslash Z) \cup\left(\varepsilon^{-1}(G) \cap Z\right)$.

Cleariy $X \backslash Z$ is motrionlly open and $E^{-1}(G) \cap z$ bolongs to the $F_{\sigma}(X)$ and has momere zero. Thus $X \backslash\left(Z \backslash g^{-1}(G)\right)$ be-
 romalning oase $F^{(}(G)=\emptyset$ ts trivial. Thus F is z-lso and In ooreliance with Corollary 5 has an approximately continuous and - a.e. oontinuous eoleotor $I: X \rightarrow Y$ ooinciding with E on Z.

COROLLARY 7 (of.[10], th. 3 p. 337) Let $A \subset X:=R^{n}$. The restriotion to A of every Y-valued (bounded) Baire 1 funotion ooincides with the restriotion to A of (bounded) approximetely oontinuous and mon-o. metrically continuous function if and only if $\quad(01 A)=0$.

Proof: Necessity: Obriousiy cl A is always m-measurable. If $m(A)>0$ then them 1a aubset $B C o l A$ relatively mowhere dense, dense in itself and with the positive meaaure $m(B)>0$. Let us soleot two disjoint oountable subsets $A_{1} \subset A_{1} A_{2} \subset A$ suoh that $B<o l A_{1} \cap$ cl $A_{2}, A_{1} \cap A_{2}=\varnothing$.

Take an arbitrary vector $y \in Y \backslash\{0\}$ an then put :

$$
A>x \rightarrow B(x):= \begin{cases}y & \text { Ir } x \in A_{1} \tag{25}\\ 0 & \text { if } x \in A \vee A_{1}\end{cases}
$$

It ie easily checked that G belongs to the first Baire class on A, but each $f: X \rightarrow Y$ with $f(x)=g(x)$ for all x belonging to A is totaliy discontinuous on $B, v i z$, oso $f(x)=d_{Y}(y, 0)$ at each $x \in B$. Thus f cannot be in $C *(X, T$, Sufficiency 1s a standard proof omploying Corollary 6 for $Z:=c 1$ A.

Indeed, we obtain in suoh a manner a funotion $f: X \rightarrow Y$ fulfilling $A \subset o l A \subset\{x \in X: f(x)=g(x)\}$ for an arbitrary Y-ralued function f belonging to the Baire 1 class on X.

REMARK, The spaoe X in Corollary 7 may be endowed with an ordinary differentiation basis F consisting of those rectargles $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \ldots x\left[a_{n}, b_{n}\right]$ for which the following inequality holds:
(26) $\quad k^{-1}<\left(b_{i}-a_{i}\right) /\left(b_{j}-a_{j}\right)<K$ for all $1 \neq j \in\{1,2, \ldots, n\}$
and some positive constant $K>0$. The measure min may be the n-dimensional Lebesgue measure as well as more general one fulfiling all requiremente of Coroll. 1. Note that the same proof of necessity works in the more general case of certain ultrametrio spaces instead of R^{n}, while in the sufficiency any additional assumption concerning the distance function d is oleariy superfluous.

The Corollary 7 solves plainly the problea 13a from [9] and at the same time generalizes the theorem 3 from [10] in several directions. The subsequent proposition gives an negetive anawer to the next problem 13b fro: [9]:

PROPOSITION 3. There is a subset $A \subset R^{2}$ with $m_{2}(\operatorname{cl} A)=$ $=0$ and a Baize 1 function $g: R^{2} \rightarrow R$ such that for any $T_{d} \times T_{d}$ - continuous, m_{2} - almost everywhere continuous function $f: R^{2} \rightarrow R, A$ is not contained in the set
$\left\{(x, y) \in R^{2}: f(x, y)=g(x, y)\right\}:=(f-g)^{-1}(\{0\})$.
The sign m_{2} denotes here the two-dimensional Lebesgue measure on the plane.

Proof: Let $A:=\{5\} \times R$ and lot us put :
(27)

$$
f(x, y):=\operatorname{sgn} y:=\left\{\begin{aligned}
1 & \text { for } y>0 \\
0 & \text { for } y=0 \\
-1 & \text { for } y<0
\end{aligned}\right.
$$

The function E from (27) is clearly Baize 1 and $m_{2}(A)=0$. Let us suppose that $f: R^{2} \rightarrow R$ is m_{2} - ace. continuous, $T_{d} \times T_{d}$ - approximately continuous function for which $A<\{(x, y)$: $f(x, y)=g(x, y)\}$. Observe that the following equality must holds : $f(5, y)=g(5, y)=\operatorname{sgn} y$ so that the section f_{5} fails to have the Darboux property. Bearing in mind that any section of $T_{d} \times T_{d}$ - continuous function must be T_{i}-continueonus and that all T_{d}-continuous functions are Darboux Baire 1 ones wo obtain a contradiction. Thus $(f-g)^{-1}(\{0\})$ cannot be superset of A and the proof is completed.

The remaining question 130 from [9] is to prove or disprove the following Grange's conjecture: Let A be a subset of the plane R^{2}. The following sentences are the equivalent:
$\left(1^{\circ}\right) m\left((\text { or } A)_{x}\right)=m\left((01 A)^{y}\right)=0 \quad$ where $(\operatorname{cil} A)_{x}=$ $=\{y \in R:(x, y) \in c 1 A\}$ and $(c l A)^{y}=\{x \in R:(x, y) \in c 1 A\}$.
 continuous and approximately continuous with reapeot to the strong differentiation baels remotion $f: R^{2} \rightarrow R$ such that $A C\left\{(x, y) \in R^{2}: f(x, y)=\epsilon(x, y)\right\}$. Let us real that a strong differentiation beria oonelats of all reotercies $\left[a_{1}, b_{1}\right] x$ x $\left[a_{2}, b_{2}\right]$ without no conditions (in the spirit of (26))inpoend upon the ratio $\left(b_{2}-a_{2}\right) /\left(b_{1}-a_{1}\right)$. Using the methods doveloped in this article, we may reduce that problem to finding of all comoro sets of strongly approximately continuous funotions on the plane. In particular wo have the following open questions:

Question 1. Let $A \in F_{\sigma}\left(R^{2}\right)$ be a abet such that:

(3 $\left.{ }^{00}\right) \quad \lim _{k \rightarrow 0} \frac{m_{i}\left(\Delta_{z} \cap[y-k, y+k]\right)}{2 k}=1 ; x, y \in R$.
Does there exist a function $f: R^{2} \rightarrow R$ strongly approximatery continuous such that $\{(x, y): f(x, y)>0\}=A$?

Question 2. Characterize the cozero sets for $d_{x y}$-continuonus functions $f: R^{2} \rightarrow R$ where $d_{x y}$ is a topology recently introduced by 0 'Haley in the following way: a measurable subset $A \subset R^{2}$ is $d_{x y}$ - open iff every $x-s e o t i o n ~ A_{x}$ and every y-seotion A^{y} are $T_{d}-o p e n, 1 . e$. tho condition $\left(2^{00}\right)$ and ($3^{\circ 0}$) from Question 1 are fulfilled. A similar question can be
reised for the topology $q_{x y}$ consisting all rubsets $A<R^{2}$ with the Baire property whose all seotions A_{x}, Δ^{y} are qualitatively open, next for the topology $q_{x y}^{0}$ consisting of all aubsots $\triangle C R^{2}$ with the Beire property and aootions A_{x}, A^{y} motrically open and for the topology $\mathrm{q}_{\mathrm{x}}^{+}$of all sote A with Baire property with all eoctions $A_{x}, A^{y} \quad I$ - oontinuous with respect to the Wilozyhaki oatogory anmlogue of the donsity topology, eto. We have $q_{x y}^{*} \subset q_{x y}<q_{x y}^{+} \quad$ with proper inolus10ns.

A solution of enoh of those questions leade to some now prolongation thoorems.

REFERENCES

[1] Aversa ∇_{0}, Lackovich M., Extension theorems on derivatives of additive interval funotions, Acta Math. Aond. Soi. Itungar. , 39 (1982), 267-277
[2] di Bari C.M., Vetro P., Selezioni continue o misurabili, Rendioanti del Circ. Mat. di Palermo, XXXIII (1984), 461--469
[3] Blatter J., Seever G.L., Interposition of somioontinuous funotions by continuous functions, Analyse Fonctionelle ot Applications, C.R. du Colloque d'analyse, Rio de Janolro 1972, Hormann, Paris 1975, 27-51
[4] Bruckner A.M., A theorem on extending derivatives, Bolletino U.M.I. 4, 10 (1974), 490-499
[5] Chaika M_{0}, Tho Lusin-Menchoff property in metric space, Indiana Univorsity Mathomatics Journal 21 (1971), 351-354
 ty Naukowe Politechniki Gdanskiej, Mat. XI (1978), 71-74
[7] Grande Z. Sur le prolongement des fonctipns, Acte Math. Acad. So1. Frungaricae 34 (1979), 43-45
[8] Gcande Z., Granice ciaców funkcji eprokaymatymie cia63ych, Zeszyty Naukowe Wydz. Mat., Fiz. 1 Ch. UG, 3 (1976) 5-9
[9] Grande Z., Les problemes concernent les fonctions róel1es, Problemy Matematyczne, 3 (1982), 11-27
[10] Grande Z_{0}, Topolewska M., Sur les ronctions vectorielles approximativement continues, Casopis pro péstovíni matematiky, 107:4 (1982), 333-340
[11] Grande E., Sur une topologie d'o'Malley, Problemy Matematyczne, 4 (1984), 31-34
[12] Loffman J., Jörgensen, A general in-between theorem, Mat. Scand. $50(1982), 55-65$
[13] Lane E.P., Lebesgue sets and insertion of continuous function, Proc. AMS 87:3 (1983), 539-542
[14] Lane E.P., Insertion of a continuous funotion, Topology Proo. 4 (1979), 463-478
[15] Lukes J., Maly J., Zajicek Le, Fine topology methods in Real snalysis and Potential Theory, Lecture Notes in Math. 1189 (1986)
[16] Mauldin R.D., On the Baire system generated by a Inear 1attice of functions, Fund. Math. 68 (1970), 51-59
[17] Mágerl G., A unified approach to geasurable and continue ous selections, Trans. AMS 245 (1978), 443-452
[18] Michael E., Continuous solections I, Ann. of Math. 63
(1956), 361-382
[19] Mrowka S., Characterization of classe of functions by Lebesgre sets, Czechoslovak Math. Journal 19:94 (1969), $738-744$
[20] Nrowka S., On some approximation theorems, Nieuw Archief for Wiskunde 3 (1968), 94-111
[21] Mrówka S., Structures of continuous functions, VI Lattices of continuous functions, Commentationes Math., 17 (1975), 411-420
[22] Nishiura T., The topology of almost everywhere continuous, approximately continuous funotions, Acta Math. Acad. Sci. Hungar. 37 (1981), 317-328
[23] Petruska Gy, Laozkovich M., Baire 1 functions, approximately continuous functions and derivatives, Acta Math. Acad. SC1. Hungar. 25 (1974), 189-212
[24] Stone M. H_{4}, Boundedness properties in function lattices, Cand. J. Math., 1 (1949), 176-186
[25] Slezak W., Ceders conjecture on Baire 1 selections is not true, Real Analysis Exchange 9:2 (1983-84), 502-507
[26] Tong H., Some oharmoterizations of normal and perfectly normal spaces, Duke Math. J. 19 (1952), 289-292
[27] Votro P., Ordinarily approximately continuous selections, Rend. del Cire. Mat. di Palermo XXXII (1983), 415-420
o przedluzantu funkcji i klasy baire' a do funkcji a.e-ctaqclych

Streszozenie

- praoy wprowadza sie pojecie z-póloiqgiej z dolu multifunkoji, pokazuje sip nastepmie, zo do takich multifunkoji stosuje sip

Abstract

twierdzenie Märgela o istniontu selektora mierzalnego ze względu na paving zbiorbw kozerowych kraty funkoji ciagiyoh okrélonych na dowolnej (nie konieoznie doskonale normalnej) przestrzeni. topologioznej - taki selektor jest oozywífole ciagiy. Uzyskane twierdzenie uoǵlnia dobrze znane wyniki Michaela. W dalszej ozṕoi pracy stoaujemy jo do badania istnienia selektorów aproksymatywne ciaglych i a.e. ciq6iyoh dla z-1sc multifunkoji okrélonych na pewnyoh przestrzeniach metrycznyoh wyposatonyoh miare. Istnienie tyoh selektorow pozwala na rozstrzygnipoie problemu 13a, b opublikowanego przez z. Grandego - [9] a dotyczacego istnienia a.e. - ciagiego przediuzenia funkoji 1 klasy Baire' . Metoda zastosowana w [10] istotale wykorzystuje fakt, zo dziedzina jest prosta rzeozywista, natomiast nasz Wniosek 7, atanowiąoy glówny wynik miniejszego artykulu nie wymaga tego rodzaju ograniozeń, Dla kompletnofoi w pracy naletelo przedstawic b. obszorny aparat pojeoiowy zwiazany z twierdzeniew Mägerla, pozwolilo to jednak sprowadzié dow'́d Stwierdzenia 1 do sprawdzenia 2 prostyoh lematow. Otrzymane wyniki stanowia zarezom proeniesienie rezultatow P. Vetro [27] na przypadek multifunkoji o wartotoiaoh w preestrzoniach nieakokozonie wyalarowych.

