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ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY

Problemy Matematyczne 1987 9

WEODZIMIERZ A. SLEZAK

WSP w Bydgoszczy

ON PREPONDERANTLY EQUICONTINUOUS COLLECTIONS OF TRANSFORMATIONS

The purpose of thls artiole is to show that a problem 11
posed by Z. Grande in [i03 has an affimat ive answer, even In
a nora generat setting than it is reguired In CioJ. At the
same time we glve a solution of the question stated at the end
of fi3J end we prove some related theorems, In what follows
X, dA), Q, dy), , dZ) denote three separable, oomplete me-
trio spaces, the first of whioh is eguiped with a positive
Borei measure m such that m(K (i°, r<"+<se and infeEm(K(x°,r))
J x°€-xj > 0 Ffor all r>0 where K(z°, r):= £xfeX : dx(x°,jc)
~r|] Is an open bali centered at X and with radius r.
R denotes as usually the real line endowed with the euclidean
distance. Glven an arbitrary set F we denote the space of
all bounded transformatlons on F whose target space is Z by
B(F, 2). Thls spaoe is completely metrized by the uniform

metric D defined by:
h2) = sup (d*"h~f), h2(F)) : ffcf} .
By ZX we denote the space of all transformations defined on

X and with values In Z.

DEFINITION 1. A family F of m-measurable transformat-
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ions Tf:X —£Z is sald to be preponderantly equioomtinuous
(cf. fio}, p. 22) if there is a multifunotion E from X into
the hyperspaoe of nenenpty m-meaaurable subsets of X and a
positive real-vaiued function £ t X —> R+ suoh that for all

i#¢.X we have s

) x°£e(x) Q\der E(x°), where der E(x) denotes the set
of all acounulation pointa of EX) ;

(b) the ratio n(u(x®°)H E(x°))/ m(U (x°)) isgreather than
1/2whenewer U(x°) is an opon neighbourhood of x°
whose dianeter diam U(x®°):= sup dLMu(x*)x U ( x ° x)

©) the restriotions JFiE(x°) : ftp} create a family equi-

continuouaat X° _This seans that

a1y A \ /\ A E(Xx°)nK(x°, 1)
t>0 r>0 ffF x X
=> dz(f(x°), F(x))*fc]
IT F = £fJ consists of a single transformation Ff:X —-£Z ,
then the above definition 1 reduoes to preponderant continui-
ty of f (cf. [T5]» Ci12],Ci8J, 22J). Note that there is no topo-
logy T on X for which preponderantlycontinuous funotions
were exactly T- continuous. This follows from the fact that
for two distinot preponderantly continuous at x£X Tfunctions
f,g : X R the measure m(E~r"(X)p E®(Xx)) may be earbitrarily
smali in each neighbourhood of x and thus f+g may fails
to be preponderantly continuous at X£X. In [133 Z. Grande
has been introduced the following definition:
DEFINITION 2. A family FcZ of transformations

f: X Z fulfils the property if for each nonvoid closed



67

subset K of X there is a point x°¢. K such that the restric-
tions {fIK t f6. f}¢-ZK form an equicontinuous at x° col-
lection of transformations (0) with K instead of E(i®)).
Ve shall shortly writte F£ A2 in that situation,
A moro generat notion has been investigatod by Biagio Ricceri
(Rocky Mountain J. of Math., vol. 1U, no 3 1987~ pp. 503-517).
Under his terminology the functions from the family FtAj are
equibelonging to the first Baire class. If F consists of a
single transformation f, then £fj¢.A2 slImply means that F
is of the first Baire class [i9J
If f sX xY Sf Z , we shall cali a family of transformations
N Y =~ Z, x4 X defined by fA(y) := f(x,y), the X-sections
of f. The Y-sections are defined similarly by fy(xX):= f(Xx,y).-
Nuroerous papers were devoted to the condltions guaranteeing
the Borel measurabillty of a transformation, expressed in teras
of its seotionwiae properties cf, a chart in @7, P. 169
In particular fi3} essentially contains the following deep
theorem s

THEOREM 0. (cf. [I3]Dc If g:X x Y —» Z 1Is a transfor-
mation such that
@ {ey ty6 y}¢c A2 and
(=) all seotions g™ : Y -~ Z, x€X belong to the Baire
claas of, 0Z LC4£L , then g also belongs to the Baire
class oC.

In case X =Y = Z =R this is exactly the theorem 6
from [13] . Although the possibility of generallzing the
domaine Is not mentioned in Remark 3 onp. 125 in P3] > but

this is evident by the penetrating inspection of the origimal
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proof. Th* generaliaation of the rang* apao* Z 1la pomlted,
aa it foliowa fro* tho equallty g 1(K(*,r)) = £(X,y)EX x Y
t® (, J(X,y)kr}tFlL.(X x i) by wirtn* of th* faot that for
«all mCZ a roal-walued funotlon (X,y)t-p ez(X,y)«=
tm dz(a, f(x,y)) fulflla asaunptlons (d) and (0) and oach opon
aat Y In Z la a oountabl* unlen of opon balia In the proaen-
oa of tho aoparablllty of Z, of. [15].

LEMMA 1. If O<dx(x’, *2) 3~1 ain (S5(x1), "(x2)) and

K(xi, 3~1<~(xi)) , thon tho intoraootion
=1

2 U (a1, x2) :=

LON

(B) E(x1)0E2)AU (x, x2) la nonenpty.

Proof: Obsorve, that x2) Ffor if£ {l,2j and
that
dlaa U (x1, x2)iwa dian K(x*, 315 0NM)) &
1<i£2
max 2»3“1 e nax M (xi1): 1lil<2j

1:51*2
Thua from tho doflnltion 1 wo obtaln tho exlstence of numbora

**n>1/2 1 1£ {1,23 auoh that

) mFUAL , x2) 0 ECil)) = r+ .m(U (x\ x2)), 1t{l1,2]

If the Intoraocotion (3) wora empty, thon
2

G) a [u(x\ x2)a(e(x1) HEMX2))] = 21 nfEOcDHDMNU(X?,x2)I=
1=1

m (U (x1, x2)) *51 r >m (U (x1, x2))
1=1 1

In spite of tho faot that (3) la a measurable subset of
V(xl x2 )- Consoguontly theso threo seta nust havea point

in connion, aay X"E E(x*)A E(x2)A U(x1, x2) , whichprovea our
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lemma.

DEFINITION 3 . (cf. r2j). Lat X R+ b# a PO»itl-
v« Ffunction and let K ba a aubset of X. By a $ -decompoai-

tion of K we sball maan a sequenoe of seta C K :nE£Ssj ,

whlch 1a a relabelling of tha countable colleotion

6) = {xGK : ) >1/m™ AE ( , 2 1 mM™1)* whara
(xj , Jfcn} 1a a countable densa aet in X.
Tha key features of auch a deoompoaition are racapitulated in

a subaequent lemma:

LEMMA 2. Let ( : ntnJd be a (F-decompoaition of K.

(i) X1, x2 impliea d~rl, x2) <'niin fcT(xi): 1L i1* 2]

(iin) if Xq belonga to the cloaure cl Kn of Kn then tho-
re are pointa 1£Kn with dx(xo, x)”™3~1 njinfcFC0)»
S (D}

Proof s If xCK then c~Xx) > m * for aome poaitive

integer m and dx (i, x°)<2 1 m 1 for aomo J s jJ(x,m)€ N.

Thua
XxEKra =: Kn whare n = n(m, j) = 21-1. (2 - 1) and (i)
ia proved. IT XxME-K then £ (x”)>m 1 whenever

By the triangle inequality we have:
dx (x1, x2) N dx™1> XJ N + dX ~xj ’ N2 1 m1l + 2 1 m 1=

=m_1 < min M"E (s*) : iM.NM 20 and (ii) 1ia proved.
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If x0£, Cr|1 K s cl K-J then there is a a*qu«no* ikt K_rl = K"J

oonv«rg«nt to Lat r 6-(o,U-1 m *1) ba anu*bar auob

that d™i"t x®) = 2~1 *~1 - 2r and Hlat dx(xk, tJ) r for

all k> kg,

ThUS dX™"xd» xj >1dx(xk* Xo) + d ~Xo* Xp e 21 “71 “ 2r + r~
.Y

for k> KkQ < Moraov»r w« hnv®@ <ES(x )>nm and for auffioien-

=2 1**-r~ 2~"m " and consequently I™"¢.K(Xx* , 2

tly larga k> ko , dx(xlc, x#) <" U4+ * 1~ 3 1 min[cF(x )tE(x0))

sinca xk tands to Xq

THEOREM 1. Eaoh prapoadarantly eguicontlnuous family F
of functions f j X —->12Z has thaproparty A2

Proof: WIthout loaa of geaerallty w« oan aupposethat tha
funotlona from the family F ara uniformly boundad, 1i,aa thare
aro a point z i-Z and a poaitiva numbar M = M(z)> 0 such
that
a) EFQ)EZ : (x,F) £. X x F }c: K (z, W)
This follows from tha fact that tha formuta (1)depends only
on uniform!ty of the apace Z and thus tha particular distance
functions may ba raplacad by tha uniformly equivalent onas,
e.g- d = min |d*t 1} - Assume by a way of contradiction that
F fails to haye the Ag proparty from dafinition 2 andyai 1is
preponderantly equicontinuous in the maaning of definition 1*

Then there exists a closed set K CX such that
o)

®) A \Y% A \% \% [d(F(x), F(x ))*
xoL \ £E-(x)>0 0>0 xeKQTFfE,F

£ F.ADX(*.xQ)~ 0] -

In other words
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(©)) A \ osc h(xjH, wher* h» X =>B(F, 2) s
xotKo £=<(xo)°

defined by the formuta h()(F) = fF(xX)E(Z, d) and, as usual-
iy *
(10) oae h(i#):= inf £sup|D(h(x), h(xo0))s x CK(x0,6 )} > o}=

a inf {eup {d(f(xX), f(xQ)) : (X,FEK(x0,& ) x F} :e>> oj

— A _
We have Ko— nSi Kn’ wherc for n=1t2, .,, the set Kn

is defined as follows
(11) Kn = {x¢ KgC X tosc h(Xx) » n”"1}

The function (osc h) : X «£R being upper setnicontinuous,
eaoh of the sets (li) , nf N ,is closed in X, Since the set
Kg is complete, as a closed subspaoe of a complete metric
spaoe X, then by fanous Baire Category Theorem one of the sets
KN, n¢.N - by way of example K~- 1is of the second category
in X,

Let Am denotes the relative interior of Km in KO and
take Q t= cl %- We may assume that Q 1is a nonempty per-
fect set contained in X, with the property that the oscillat-
ion (10) of the restriction of h to Q exceeds m "at
every point of Q. Let be a positivefunctionassociated

with multifunction E in definition 1 and choose a further

positive function s X— R+ so that s
(12) D (h(*™» h(x2)) <1/ 6m for any x2 belonging to
E(x1) and satisfying 0 €d™ (X1, x2)¢cr(x*) , Let

= min™<$N,<?2” and let ™Qn : n TN} be a d*-decomposi-

tion (soe definition 3) of the set Q. By Baire*s bategory
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theorem invoked once again we can find that one of theae sub-
sets, say Q is dense somewhere
cl [¢g"n V] DV for certain subset V relatively open in Q

Let x1 ,Ux be any points in QO V . By virtue of thedensity

of and the item (iii) fromLemma 2 we may select the

points x”‘3 , x% belonging to Qk so that

(13) dx™Mx» *kn N 3-1 mIn { ” te{3,*3 Define:
Gl U (i, x£) = K~1, 3" 3Xi))nK(xN,3“1 c3(xM))
for 1t {3, and obsenre that

(15) diam U(il, xE) ~ 2/3 min*<$3(xt) ,

Then, by lemma 1, there are ‘points E (xX™)n E(X™M)n

AU(X1, x) . From the definition (i¥) of U (X*, x*) we have

(16) max Jdx (x*+2 , x4), dx(xXE+2 , x* <
< min { cLju1) , 3 *
Conseguently s
an max | D (h (x*+2), b(x£))» D (h(x£+2), h(X1))} 1/6m

On theother hand, from the item (ii) of lemma 2, we have s
(18) dx(xXE , xE)<min {5 (XE) ,
ThHus there exists a point Xx£E € E (X)) n E(x™)o U (X, xM)

where U (X, x™ ) is defined by a similar manner as in (i%),

Therefore
(19) max {dx (x£ , x£) : jt{3, min i

from which we obtain
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0) D(h (*?), < 1ea for -
Combing (17) and (20) together we obtain by the triangle ine-
quality
1)  D(h(x3), hc™*) )~ D(h(x3), h(x3)) + D(h (x3), h(x"))+
+ h(:4)) .~ (h(x3), h(4)) + D(h(XE), h(x3))
+ D(h(x3), £>(M)) + DC(h(xE) , h(x*) ) + D(h(xit), h(xE))

+ D(h(x™), ti(k))< 6 « 1/ 6m = m 1

But this contradicts our choice of Q := cl and m€-N,
slnce (21) means that (osc h)(x) can[;/got be greater than

1/m for x (4. Conseguently (8) cannot be fulfilled and
the family F must have the A - property, aa reagulred, Hence
the proof of our theorem 1 is iompleted,

Collating theorem® O and 1 together we obtain:

COROLLARY 1. Let g:XxY =~ Z be a transformation
whose all Y- sections g (=, Y):Vy € vy} Z~N create a prepon-
derantly equicontinuous family and all X- sections gx:= g(x>)fe
£.ZY , 1tX belong to the Baire class oC, O0<of<£2 Then g
belongs to the Baire clsss cF too.

In my earlier paper f25] the transformations defined on the
real line are investigated in a similar spirit, A notlon of

E- eguicontinuity with respect to a system of path E : X —> ZX
satisfying the intersectlon condition (cf, (2 ) is intro-
duced and a result similar to the above oorollary 1 is obt.ained
in such framework, In particular approximative eguicontinuity

(cf, £7} ) and I- approximative eguicontinuity (i«e, related

to the category analogu* of the density topology introduced by
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Wilczynski, see £28] ) is covered. However note, that the
uniformity generated by the density topology (seef£2l])leads
to the notion of approximative eguicontinuity defined in [7]
while the 1I- density topology of Wilczynski fails to bo uni-
formlzable. For the basis facts conceming uniform spaces the
reader is refered to C23]

Taking into account that the property Ag implies in

tourn the following property of the family FC Z
2) FEA <=> A A \Y [f is equicontinuous
xfcX r>0 xQ¢ K(x,r) atxl
oJ

and modifying in a suit;ble manner the theorem 5 +from CI3]jwe
are able to obtain from our theoreml the following:

COROLLARY 2, Let g:XxY —-JZ be a transformation
whose all Y- sections create a preponderantly eguicontinuous
family and all X- sections are densely continuous (= cliaguish),
Then g 1is also densely continuous (= cliguish) as a trans-
formation defined on the produot space. Bearing in mind that
we can allways replace d~ by <a uniformly equivalent bounded
distance function d and slightly modifying the proof of theo-
rem 7 Ffrom 1133 wO obtain immediately

THEOREM 2. Any equi-upper samicontinuous family F of
functions Ff:X —~ R has the property Ag. The saune holds for
equi—lower semicontinuity of F.

Let us recall (cf. [i1],CUJ,C6Jd,(9)) that a collection
of functions F<ZRX is equi-upper semicontinuous at a point
x C X if

23) AV A A [x€-k(x ,6) =~f(x) - F(x kt3
f F X£X
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The collection F 1is equi-upper semicontinuous if (23) hoids
for every x£X. Equi-lower semicontinuity is defined in a simi-
lar manner or by replacing f by -f in the formuta (23}.

At the present we are going to introduce a one-sided concept

of preponderant equi-aemicontinulty.

DEFINITION A family P of m-measurable real-valued
functions f: X -~ R is said to be preponderantly upper semi-
equicontinuous if there are a function Si X —-$ R+ and a multi-
function E exaotly as in the definition 1 such that for all
i°t X conditions (&) and (b) from definition 1 are both satls-
fied and moroover

e AV A A [XEE(X°)nK(x°, T)
£>0 ry0 TFTiF1l xfeX

=— > f(x)c(-00, F(x°) +£)}

Sometimes the values of E are additionally demanded to be H.
sets. A family C. R is called preponderantly lower semi-
equicontinuous if P = {“i : FEF~" is prepondernatly upper
semi-equicontinuous. If the above family F£ 1include a single
function 7, i€-{1,2» , then f 1is called upper (resp. lower)
preponderantly semicontinuous. Notice, that there are preponde-
rantly non-continuous functions, but simultaneously both lower
and upper preponderantly semicontinuous (see an example in
fl2j). Let us suppose at present that our space Y 1is additio-
nally endowed with a positive Borel measure m” satisfying

a condition analogous to the condition imposed on m.

The subsequent theorem is an analogue of the th. 8, p. 20

from [7J:
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THEOREM 3. Let g: X x Y R be a function whos# all
T-aections are approximately ( upper semicontinuous
and F2:= N oo *Nx}cCRY ia a preponderantly upper semi-
equicontinuous family. Then g 1is preponderantly upper setni-
continuous on the product space X x Y endowed with the tensor

product » & of measures.

Proof: Let (x°, y°)E-X x Y and let£>0 be given. The-

re 1ia a number r”> 0 such that

(25) g, y°)E(-m, g(x°f y°) + £/2) whenever x6JS(x°)n
fIK(x®, r1) and m FE(x°)OoUX°N>(l-t) m (u(x°)) if
diam U(x°)<J2(x°, D).

On the other hand, by the preponderant upper semieguicontinuity

of the faunily F2 we have t
©6) g(x, y)c(-ao, g(x,y°) + £/2) whenever x£E(x°)n

OK(x0, r1) and yCE(y°)nK(y°, rn) for a suitable, suffi-
ciently smali r2> O.
Define E2(i°, y°) := E (x°)x E1(y°). For all (x,y) belonging
to the intersection E2(x°, y°)0 K ((x° , y°)t r*) where
rj "= “in jr~ - i €.{i,z}} we have g(x,y)- g(x°, y°) =
= g(x,y) - g(x,y°) + g(x,y°) g(x°, y°X¥/2 + £/ 2
so that g(x,y) <« (-00, g(x°, y°) + £).
If U2 (x°Ff y°) is contained in U(x®) xV (y°) then:
@7 “2 Tu2 (x°, yo)rt E2 (x°, y°)JE
*»2 [U (X)) x V(¥y?)) A (E(x®)x E1 (¥°))] =
= “2 tu (x°)aE(x°) x V (Y°)AEL(y° )= ri tu(x°) A
DE (x°)]1 mY tv(y?) AE1(Y)I= (1-1).m(u(x°))-
@2+ m (Wy°)) = [i72 + t(172-t)Im2 (u(x°)x V(y°)) >
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>1/2 m2 U2(x°, y°)

vb*mv«r diam V(y°) (y°) -The sign means h«re m® my
and in X x Y the distance function d~"((x1, y™")T (*2» y2)):=
mai ~dx (il, xZ), dyfyl, y2)} 1i» selected.

Obviously a theorem similar to theorem 3 holds for functions
with preponderantly lower semiequicontinuous sections (of.[7],
th. 9 )= The next theorem is in spirit of famous Kempisty"s
result fifil.

We need the following lemma:

LEMMA 3« Suppose that a function g : X x Y —=J R has all
of its Y-seotions preponderantly lower semicontinuous (not
necessarily equisemicontinuous 1). Then for each positive real
constant s the function gg : X xY —~R define by the formu-

ta:

28) 8S(*°, y°) J= »up [g (X%, ¥) 1y « (¥°, )}

is preponderantly lower semicontinuous on the product space
X x YFdj, m2) where =m@®mY and d~ is defined at the
end of the proof of theorem 3«

Proof: Let (i°, yO)tX i Y be an arbitrary fixed point
and lett>0 be given . By (28) there is a point y1 belon
ging to the bali K(y°, s) such that g(x°, yl1)e-(ss(*0.y° )-£.e»).
Since the seotion g («f y”) is preponderantly lower semiconti-
nuous on X, there exists a radius rleo0 suoh that for each
X EE(x°) fiK(x°, rl1) we have g(x, yl1)€ (gs(x°,y°) + 00 ).
Since d~fy0, yl) s , there exists a number r2>0 such that

dY(y°, yl1l) = a - r2# By the triangle inequality we have

(29) dy(y , y)Ndy(ylf y°) + d(y°®, y)<:(s-r2) + r2=s
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for each y£K(y®°, r2) . Thus y1 belongs to the bali K(y,a)
whenever y£ K (y°, r,). Conseguently g(x, y1) ™ g _(X,y) whe-
never y£K (y°, r2) and i £E(i°)AK(i®°, ri~r* But g(x* Y*A

(«a(x®, y®°) - , +<0) so also gs(x,y)t (99(x°, y°) > )
for all (x,y) €E(x°) h k(x°, M) x K(y°, r2)?E2(x°, y°)o
nK((**» y°)t r3) where E2(x°, y°) := EX®°) x K(y6, r2) ,
r~ o= min {r®, ié{l,2}} and K((x°, y°), rY) = Kx°, r) x
K(y®, r”) graco a specific choise of a distanoe function d2 on
X x Y. Ob»*rve that (i°, y°)E.E2(x°, y°) Adsr E2(x°, y°)
and that m ru(x®) x V (O)ft EA(x°, yo)*=m (u(x°)A E(x°)).
Y (V(Y0) nK(y®, r2))> 21 m (u(x?)) & (v{¥y°)) = 2.1 m2[u(x®)x
V(y°)] whonever V(y°)¢ K(y°, rg). Hence m2(U2(x°, y°) A
KE x°, y°))>2~1 m2(u2 (x°, y°)) provlded dlam U2(x°,y°)*-

&2 (x°, y°) = min (cf(x0), r~J where cFIs a function from
the Item (b) of def. 1. Since (x°, y°)€-X x Y was arbitrary®
we have defined a multlfunction (x°, y°) &> E2(x°, y°) and two
positive functions (x°, y°) <IMN(X°, Y°), (X°, y°)var(x°,y°)
= rM satisfying mutatis nmtandls all reauirements of defini-
tion U . Observe however that E2fy)c F_(X x Y) iff E()fe
é—ﬁg(x) . Thus gS X XY —=~R is preponderantly lower semi-
continuous jointly, as a function of two variables.

THEOREM U. Let g : X x Y —~R be a function whosa all
Y- sections are preponderantly lower semicontinuous and all
Y- sections are d™- upper semicontinuous. Then g 1is a limit
of a decreasing sequence of preponderantly lower semicontinuous
functions.
Proof: Take an arbitrary seguence sl1”>327,...>0 tend-

ing decreasingly to zero and observe that because of the assu-
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med dy - upper semicontinuity of Y- aections we h»ve
b(x, y)=H" 6 xXiy) =1i" 8 (i» y) wher* g aure defi-
S 0 9

n 4® sn
ned by (28). Moreover for all ne.N the following Inequallty:

B0) sup g™ Ky, *n+1) =1 S8 (X, y)"gs (X, y) =
n+1

sup g5 K&y, ap)
n

holda, aince K(yf sn+1)C K(y, an) for y€ Y. That observatlon
achieves the proof. Under the continuum hypotheaia one can oon-
atruct a nonmeasurable function g : X x Y —~ R with approxima-
tely lower semioontinuoua X — sections and approximately upper
aemicontinuous Y- sections. Let us remark that paper [ill con-
tains a theorem aimilar to our theorem but conoeming agualita-
tive aemicontinuity under the following rather artificial condi-
tion imposed upon d»
(31D A = AA A fYyE£ K(y , dist(y , Fr K(y .9

>0 r>° y nfeK (yo»r~ y fey

=) yliK(y»P)} -

An inspection of ourproof shows that the condition (31) in
@ 13ia superfluous. Our method also allows us togeneralize
onto the oase of arbitrary metrio spaces the theorem 6 froin
[71 in which the apace Y is needloasly assumed to be eucli-
dean and finite-dimenaional. Finally, we give a theorem related
to the resulta from [33 and QU]

DEFINITION 5 (cf. [27J ). A transformation f: X z
is said to be non-alternating (in the sense of Whyburn) if,
whenever C 1is connected in Z, its inverse image f 1(c) is
connected in X.

Observe, that in the case where X=Z=R definition 5 reduces
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to f belng (weakly) increasing or decreaslng,
In the saguel we shall assume additionally that the space Z
has In addition the property, that each bali In Z Is connec-
ted, and that X = R

THEOREM 5, Let Ff:X *Y —} Z be a transformation whose
all Y- sections are non-alternatlng and all X- sections create
a separable subspace of the space B1(Y, z) of Baire 1 bounded
transformations. Then f is also of the first Baire class.

Proof: Let us put hX):= fg,BA(Y, Z2) . We prove that h
is a transformation of the first Baire class. Since the target
space h *X 1is separable, eaoh open set In this Image is a
countable unlon of open balia. On the other hand each open bali
K(g,r) is a countable unlon of the closed balls K(g, r-2"n),
n=1,2,... . Therefore it suffioes to prove that inverse images
h~1 (K(g, r-2-n)) are subsets of X of the type PF\..

Indeed, we have

(32) h 1 (86(@@,s)) = {itX : D), g )is} s{xtX :drfr_y),
aly)) N s for eaoh yfcY} = fy)~1({ztZ
ay)) s sp-

All the balls K(g(y), s)tZ are connected on the strength of
our additional assumptlon imposed upon the space Z. Bearing In
mind, that the seotlon fy, y£Y are non-altemating, we oon-
clude without diffloulty that (fy)-1 (K(g(y), s)) 1is connec-
ted and thus also convex, provided that X is the real line.

Hence h » (K(g,s)) 1is oonvex as the Intersection of the inde-
xed Ffamily of oonvex sets. Since each oonvex subset of the

real line is ambiguous, therefore h*“1(0) ¢ for ®nch open

subset U¢"hifX provided U 1is a countable unlon of closed
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balls. Conseguontly h : X —4 B™(Y, 2) is of the first Baire
class and bas tho separable range . Observe that f(x,y) =

= fc(*Ky) so that, by virtue of Baire theorem, the Y- sections
of f Ffulfil the property A" . Invoking the theorem 0 with
€= 1 we obtain the claimed assertion. Note, that the space X
may be generalized to be e.g. a curve in euclidean space, in
partioular a oircle, i.e. a topological spaoe without no order
relation compatible with topology.

COROLLARY 3« Assume additionally that Y is compact me-
tric spacoe. Let f - X x Y —>2Z be a transformation with non-
—altornating Y- sections and continuous X- section. Then f 1is
in the first Baire olass.

Proof: The space C(Y, z) endowed with the uniform metric

@G3) D(gl, g2) == sup {d*(Ql(y), 92(¥)) : YE vy}
is separable In the presence of compactness of Y and separa-

bility of Z. Thus we may apply the last theorem 5. In case whe-—

+ 00
re Z=Ra O [-k, k3 this corollary gives a negative answer
k= -

to the questlon 3 a,g from Cioj. In ooimection with Corollary
3 let us recolleot, that by an old result of H.D. Ursell [26]
a function F : R2 R with isotonio Y- sections and L- mea-
surable X- sections is L- measurable on the piane. Obviously
this result may be generalized in a style of theorem 5. On the
other hand a function Tf: R2 -4 R with nondecreasing both

X- seotions and Y- sectlonk may fails to be Borel measurable.
Paper [2k] contains an example of function defined on the piane

not belonging to the first Baire class, whose all X- sections

are rlght-oontinuous and inoreasing while all Y- sections are



82

decreasing.

The author wishes to express his gratitude to Doc. J. Ewert

for helpful oriticizm,
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0 PRZEWYZSZAJACO JEDNAKOWO CIAGLYCH RODZINACH PRZEKSZTALCEN
Streszczenie

W pracy tej pokazano, ze przewyzszajaco Jednakowo ciag-
4a rodzina przeksztatcen mierzalnej przestrzeni metrycznej w
osrodkowa przestrzen metryczng posiada wprowadzong przez
Grandego wkasnos¢ A”N.  Jako wniosek otrzymuje sie pedne roz-
wigzanie problemu 11 opublikowanego w trzecim zeszycie Proble-
mow Matematycznych Tfio] . Wprowadzono réwniez pojecie prze-
wyzszajgco jednakowo podciagtej rodziny odwzorowan i udowod-
niono 2 proste fakty dotyczace tego pojecia. Prace konczy
twierdzenie o przynaleznosci do pierwszej klasy Baire*a pew-
nego odwzorowania okreslonego na przestrzeni produktowej i o

wartosciach w przestrzeni metrycznej, stanowigce uogoélnienie
wczesniejszego wyniku autora [24]-



