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ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY

Problemy Matematyczne 1987 z. 9

WEODZIMIERZ A. SLEZAK

WSP w Bydgoszczy

CONCERNING CONTINUOUS SELECTORS FOR MULTIFUNCTIONS WITH
NONCONVEX VALUES

There aro already many papers devoted to the investigations
°f the conditions under which a multifunction whose values fails
to be convex admlts a continuous selector see R2]-8jT11], [133J 4

The present one is mainly consecrated to the existen-
ce of continuous seleotors for nonconvex multivalued naps defi-
bed on produot spaces. Flrstly we give some preliminaries.

Let X be any tojSological space. IT with each element x
of X we associate a nonempty subset F(x) of another topologi-
oal space Y, we say that F:X —}Y 1is a set- vulued funotion
(= multifunction) of X into Y.

If BcY and F: X —rY then we define

Q) F+(B)
F~(b)

(xfeX s F(x)*b },

[i¢.X : F(x)dB 0 0} = X\F+(Yn B)

vhere F+ and F are resp, the upper and lower inverses of F.
Ve employ the theory of semicontinuous set- valued funotlons

obd of topologles on hyperspaces of subsets of Y as developed
1b ClI3 and[20], If F j X Y then F is called
uPper (resp. lower) semicontlnuous on X if the set F~(a) is

°losed (resp. open) in X whenever A is olosed (resp. opch)
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in Y. Equivalently, F 1is usc (resp. Isc) on X if the
set F+(A) is open (resp. olosed) in X where A 1is opon
(resp. closed) subset of Y.

XFf ACY, then the olosure of A will be denoted by A.

Let us consider the olasses

@ 1(Y) :=[ACY A=A and A 0 0} , K(y):=(CAEI(y):A
is compact}.

The collection B(y) of all classes of the form

@) ooz, ..., on3 = (AL1(Y): Ad "0 0%, Ano1 / 0
i=1

i =1,2,...,n},
with 0~ © P en in Y is a base for a topology
on 1(y) oalled the Vietoris or exponential topology. A subbase
for this topology on |[I(y) is the collection S(y) consisting

of all classes having one of the following forma
() 0+ = (a£l(y) : Ado}, o" := Ja<#l(y): Ano O O}, with O

open in Y. If BEIB(y)# then by (3) and (k) we have
/n n

(6) B =[O0~ 02,...,0n]= O+n(™ O0“ ), where 0= ~ (O}
Henoeforth, K(y) will be treated as a subspace of Xx(y), the
underlying topology being the one defined above.

A multifunotion Fs X —~ I(Y) is called continuous if for each
open hyperset G in |[I(y) the counterimage F \ g) is open

in X. It is elear from the definitions that a multifunction
Fs X — 1Y) is continuous if and only if it is both upper

and lower semicontinuous.

If the space Y is metrizable by the distanoe function

d: Y x Y R then the hyperspace I1(y) is metrizable by the
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generalized Hausdorff metric:

(6) h(A, B):= max [sup £dist (a, B) : ae A\ ,
sup [dist (b, a): btB)], A, B61(y),

where dist (a, B) := Inf£d(a,b): b £ b} Notice, that two
equivalent metrios d*» and d£ on Y do not necessarily indu-
oe equivalent metrios (6) in the hyperspace of bounded, clo-
sed subsets of Y» In case of nonbounded closed subsets (6)
in faot is only the generalized metric in the sense of 0.K.
Jung [223 , but then we may define h” = aro tg.>h for obtain
a bona fide metric. On the hyperspace K(Y) the topology
induced by the distance function (6) coincides with the Vieto-
ris one, while the relationships between the Hausdorff conti-
nuity and the aboye defined Vietoris continuity for multifunct-
ions witfi values in 1(Y) are the following: Any niultivalued
function F: X —£ I(y) continuous with respeot to the generali-
zed Hausdorff (6) is Isc (cf. [2U]t lemma 1.0, hut may Tfails
to be usc (see H. M. I& [23], proposition 1 and Ex 1i).

For Q: [o, t] —> K(y), where [Jo, T] is a compaot inter-
val on the real line and Y is a metrio space endowed with
the distance function d define the variation of Q on the
subinterval [t-s, t], s>0 as follows . Let P denotes a
partition of [t-s, tJ, i.e. a finite collection of points
t-s = tO/ tll"”k §_t,1 .=t and let P denote the set of

all such partitions. For the fixed partition P define

@ Vvrs@Q, P) = Z-l h@QCtn ), Q(tn)) , VE_B(a):m
n=
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IT Q 1is Hausdorff continuous and has bounded variation (7)
then v~(Q) i* finite for all t£.[o,T] and continuous as a
function of the variable t (see 19D theorem 101 on p.581,
the identical proof of continuity applias in oase of V*(q))
Now, we are prepared to generalize the target space in theorem
2 froni d1]t P. 570, originally stated for the multifunction
with values in finite-dimensional Euclidean spaces.

THEOREM 1. Lat X:= Jo,tJ be a compact interval and Y
an arbitrary matrio spaca and let Fs X —)K(y) raaps this
interval into the hyperspace of oompact non-void subsets of Y
contlnuously. Then:

a) If Q has a bounded variation (7) in X, thenQadmits
a continuous saleotor g, i.e. a continuous single-values

map Q:X Y with the property

(8)q(x)E0(x) for all itX, qfeC(X, Y)

b) If Q satisfies the Lipschitz condition of the form

(©)) h@(x), Q(E))™K.|x - t 1, x,t C.X, K>0

then Q admits a Lipschitz continuous salactor g satisfying:
(10) d(qOOt q(t)) — K Ix — t]

with the same Lipschitz constant K.

Proofj Let the image Q(x) := O0* Q(x)c-Y be embeded
X tX
isometrioally into the Banach space Y = C(Q(x), r) of conti-
nuous real functions on Q(x) endowad with the uniform norm.

This embedding is expllcitly givan by the formuta:
ax) 3 z d (-, 2 &rcQQCO, B

where d denotes the distance function on Y restricted to
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Q(xX). Observe that by virtue of the assumed continulty of

our multifunction Q and by the oompactness of X the image

Q(x) 1ia also compact in Y and thua C(Q(x)f r) is actually

a separable Banach funotion space.

Por each positlve integer k let us consider a partition of

X given by pointa: 0, Tk“\ 2T k>\ eee» (k-1) T. Choo-

ae an arbitrary point yo belonging to Qo) and define

yk t-Q(T k_1) to be the metrio projection of yk onto Q(T k-1)
d(Yo» y?) = dist (yE» QCT k_1)) =

Next chooae inductively the pointa y}' ~ QT k"l) such that

d(yj_1t yj ) = dint (yj_i* QT 1)) = Define gktc(x, Y) aa

the polygonal aro Joining the above selected pointa y»~ ,

jJCIJo,1 . .,k™ , namely:

(11) q(x) = t y*+1+(1"0y* where iT k-1Ff if(itl)T k~1
x - IT k“1
and t is defined as follows: CI2) t - for
X * T k™1
x t[iT k71 , (i+1)T k”13

Observe that for any x¢X and any Kk, there ezista an inte-
ger J = j(k) auoh that [x — JT k“WC T k_1 . For x belon-

ging to TQ-i) T k”"] we have:

(12) dist (gk ), QONDNd(gk(x), gk T k*1)) +
+dist (k@ Tk™1), Q(x))£ h(QQ(Q-1>T k"1 ),
QAT k71)) + h(QAT k7 1), QX))

where the last ineguality foliowa from the faot that

d(yk_11 yk) "d(gk(x), yk) by virtue of (11> and

since
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(¢%)) h@QUGg-D T k-1 , QAT k~1)) ~ dist (yj...1 U(ITk*1))=
.k k »
= dNj-1» yj )
on the strength of our choice of pointa yj

Nextobserve that for x,t ¢ X and any k, if j, i ara inte-

gers auch that
(1*0 Ix - JT k711 <T k“1 , Jt iT k_1]/T k21
w* hav« from the trlangle inequality

(15 d(gk(®), gk(*))" d(akC), agk(JTk"1)) + *Z, d(gk((n+1V
n-j
<T k*1), gk(nTk_1))+ d(gk (IT k”1), gk(t))"

-2h(QQ(X), QUIT k-1)) + 2 : hQ((+DT k"1),
1 n=j 1
Q(nT k~ )) + h(Q(v) , CigiTk"l))

Now, to show part (&) of the theorem, we firat demonstrate,
that %qk s k=1,2,... m <i-C(X, \,(\) crsate an equicontinuous
family of functlona. Given an arbitrary but fixed poaitive num-
ber €>O we ohooae an integer k’/‘\ aufficiently large so

that for k ™ k£ the followlng implioation holds:

(16) It -1 |/T kel imPlies hCAF*)>* Q(*)) £/ 3.
Next, aince Q 1i® bounded varlation (7) and t

ia oontinuous aa a function of t<€X, and hence (bearing
in mind that the domaine X 1is oompact) unlformly oontinu—
ous on X, we oan chooae a posltive number £> 0 suoh that
V* (Q) C £/ 3 whenever la-b[-CC>. Since |JT/k - iTAi-
4 01x - t1+ 2T k71 if k 1is greather than KkT/S and

if 11 - x k ~/2 then we have ~ A €-/ 3. Then from

(15) we have d(k(x), gk(t))™ £/3 + £/3 + £/3 = £ whene-
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ver k”mai (VT/5, ) and jx - t\i$/2, " Thus equlcontinuity
is showi, By virtue of the definltion (li) for each k the
image qghl(x) is oontained in convex hull conv Q(x), where

Q(x) = \J tiCY. Our multifunction Q being continuous
x ftX

with compact values i1a clearly upper semicontinuous.

It is well known that the image Q(x) of compact set X under
usc multifunction 0 is also compact in the underlying Banach
spaoe Y := c(q(xX), R)"see for aiuiple papers [25] or f26]).

On the other hand the convex hull of compact subset Q(x) in
Banach space Y 1is also oompact in Y. Thus all functions

qg t C(X, Y) have the same common range space oonv Q(x), and
this range space is oompaot, (Therefore also complete and sopa-
**eble). Ve ara now in a position to apply the generalized

Arzela-Ascoli theorem,in compliance with which the set

(qk :k=1,2,...} is preoompact in the Banach function space
Al
C(x, Y) endowed with the norm I]lqlll:= sup £ 1|g() I: xFcxj ,

where HB*H 1is the norm in VY.

Thus the sequence (@C)™°, has a Cauchy subsequence and by
virtue of the inequality (12) and from the continuity of Q
and olosedness of Its values this subseguence is convergent to
the limit q such that q(x) £ Q(x) for each x € X. The
space C(X, Y) being complete, this selector g is continuous.
The proof of the part (@) is already completed. To show part

(b) we assume, without loss of generality that in (15):
aan 1 6 JT k"1£ ... iT k"1~ tEX.

Then utillzing the Lipschitz oondition (9) for Q, the Inequa-

11ty (15) becomesi
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1-1
(18)  d(ak (), gk()) ~ K [(GT k"1) - x) + X  ((«+1 T k"1
n=j
-nT k") t (t - ITKk'1)] = K *t - x|.

Because the right-hand slde of (18) laindependent onk, we
Infer that the family |gk ; k=1,2,.,} Is equlcontlnuous and
similarly as in part /(as we oan find a subsequenoe ({:‘k;\oo oon-
verging uniformly to, say, q4C(X, Y) and this function g sa-
tisfies (10) as it is evident passing to the limit in (18)
where k runa ov#r the domaine of oonsidered subsequence.
Again, from the inequality (12) and the fact that each set
Q(x) is olosed in Y (and also in Y ),we concludethat
q()E.Q(X), x~X and thus q 1is the desired selector,

The proof 1is achieved. The domaine inthe above theorem 1 oan-

not be essentlally generalized, as the following example,adap-

ted from fI2j shows

THOREM 2, There is a continuous multifunction F: RM-?
—t K(RM) satisfying the Lipschitz condition (9) but without
any continuous selector

Proof: The proof will be only outlined, It is based
on the example 2 , p. 190 from [L2J with inessential changes.
Let us consider the polar coordinates in X = R3, naroely
(r, @ CPH. For r>0 let F(r,0-, Cp) be the circle of
radius R=r which lies in a piane passing through the origin
parallel to the tangent piane to the sphere of radius r cen-
tered at the origin, such that (r, @, ) is the point of
tangency. For r=0 1let F, O,<P =|(0,0,0)J . By direct

oomputation one may verify that F 1is Lipschitzian and the
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number K=2 aarras aa a Li.psohd.tz constant. Suppoaa P wara
ta admlt a centinuous salaotor fi 9? RN . Than tha restria-
tlon T ]S2 of this salaotor to tha sphara {Cw r=1}%}

*i 82 would ba a oross - saotlon of tha oirdle bundla over that
sphara 82 . This oontradlcts tha faot that tha sphara 52 doas
not admlt a oontlnuous unit tangentraotor field, In fact, tha

erlstanoa of suoh a fiald
(19) ~f (1,e, CF)lJ]a>= O, a = (1, fKs?2

la equlwalent to tha axlstanca of tha homotopybatwaonthean-
tipodal map a(l, ® )= (@, -0-, - @ and tha ldantlty map.

This honotopy in S from 1 to a is ginn by tha formuta:

20) Hx»t)= (1 - 2t)x + 2 sqre(t- t2)F(x) , |[[foOf/= 1,
x = (1, ef<F)E£S2

Sut tha axlatanoa of (20) is olaarly Inoonsistant with tha
fact that dag a = -1. By tha sama reasoning, our multlfunct-
lon doas not admlt a oontlnuous salaotor in any nelghbourhood
°f the origin. Thus the Lipschitz oonditlon is not even suffi-
°tent for the exlstence of a local oontlnuous selector. In gene-
ral ona cannot expeot mora than a Baire classe one selector.
QUESTION 1. Let F: R2 — > K(R2) be a compact- valued
nultifunotlon satisfying tha oonditlon (9). Does F must hare
n oontlnuous salector 7 The next example axplalns that the
oonditlon that Q in theorem 1 has a bounded varlatlon cannot
relaxed, aren If the target space Is flnlte-dImanslonal.
THEOREM 3. Let Y = R2 and let X ba the same as In
tla theorem 1. There Is a continuous multifunction Q: X — K(y)

vhioh does not admlt a oontlnuous selector (of. [12], p- 189).



Proof: For tfcfo,lJ lot us put:
@n S(t) = £(XYy) R : x =o00» s, y = sin s : t~rs* 2jf}
and for t> 0 lot us dofino the funotlon Aj X <>L(Y, y) by
tho formuta:

cost N sin t »

22) ACE) =

.- sin t~1 oos t 1

Then deflno
CAMMs®):=la(OIX.y1 T : X, y)fcS(OJif
23) X 3t Q) j=7/ t>0,
S(0) If t =0.
To show that Q 1is oontlnuous in the Hausdorff topology, It
suffltces to show that Q [Is continuous at 0 £X, But h(Q(bv),

Q(o))™ St . Furthermore Q does not admlt a continuous soloc-

tor sinco the graph of Q

2k) Gr Q s= E(t,X,y)<=X x Y : (X,y) ™ QMOIFf

oonsldered as a subset of the cylinder x fo,lj is not arc-
wise connected. In fact, tho gap in Q(t) for >0  will
disoonneot any arc £(t, q(t)) s t€X} , Thus Q Is continu-
ous on X but there does not exist a oontlnuous point- valued
function q: X —$Y with values q(t)£Q(t), tE X
We are going to unite the theorem 1 with the following result
of Ilasumi T*01® (see also T9l for a simpler proof)

THEOREM k (HoJ )< Let X be an extremally disconnected
topologioal space, Y a regular (T) Hausdorff space and
Fi X — Y a oompact- valued upper aemicontinuous multifunct-

ion from X into Y, Then there eiists a continuous selector

f for F,
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Though Hasami Ct0] assumed X to the Hausdorff, his proof
works unchanged in the situatlon of the above statement and
will, therefore, be omitted. Let us reoall, that a topologioal
spaoce X [Is extremally disoonneoted if the olosure of every
open set in X [Is open,

REMARK 0, A penetrating Inspection oftheexisting proofa
of theorem 4(see f9J»CIOj) also permits us to relaxe the assum-
ptlons about the regularity of multifunction F. instead of to
be usc it may be allowed te be pseudo upper semioontinuous only
In oase where Y 1is a mstric space in which the closures of
open balls are closed balia (for eiample any linear metric
spaoe has this property). A multifunction F sX —«Y 1is oalled
Pseudo upper semicontinuous if thebig inversimage8 of closed
balls F’(K(y,r)), y Y areallclosed in X, However the
notion of pseudo upper sesiicontinuity appears sometimes in the
literature under different names, Observe, that in the proof
of theorem 1 in T9]» P, 5 »e may take as A the field genera-
ted by open balls and its closures and then the proof of theo—
rem Kk on p, 7 in T9J remains correct, ao that the theorem
carries over the present situatlon.

THEOREM 5. Let X be the same as in theoreml , Z an
®xtremally disconnected topological space, and Y a complete
""etric spaoe fulfilling the assumptions from Remark O_ and let

X x Z —-7Y be a multifunction such that all Z- sections
(25) x 3z FZ(x) = F&, z) , z Z
fulfil the Lipschitz condition of the form

(26) h(F , z) , F(t, 2)) » K@) =[x - tl
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and all X- seotions : Z —£>Y are upper semloontlnuous.

Assume that the values of F are compact subsets of Y. Under
those hypotheses there Is a oontlnuous selector f: X x Z-%Y
with K(z) - Lipsohitzian Z- sectlons.

Proof: Let C(x, Y) denote the spaoe of all continuous
maps from X Into Y. The so-oalled compact- open topology
in C(X, Y) Is that having as sub-basis all sets (f¢-C(X,y):
f(K) G- gJ where K£K(x) is compaot and G <LX is open. Let
CR(X, Y) be the subset of C(X, Y) having Lipschitz constant

K. Define the multifunotion P: Z -~ C(X, Y) by formuta:

@7 P(z):= [ftCK@)(X, Y): F(X)E.F(x) for eaoh
itxj

It is easy to observe, that the values of P are closed sub-

sets of CK(R)(x* Wo P**ove that (27) is pseudo upper

semioontinuous multifunction from Z into K(c(X,Y)). In fact

it suffioes to prove, that P_(d) is closed in Z whenever

D is a closed set of the form
D := (FEC(X,Y): D(F, fo) := supfd(f(x), fFo(x)):x€X}< i*

where fo”™-C(x, Y) and ryO0O is a posltive real number. Deno-
te by K(fo(x),r) the olosed bali in Y centered at fQ(xX)€Y

and of radius r. We have:
28) P“(®) ={z¢.Z: P(z¥MD / 0}={zfezZ: K (fc(X), r)nkF(x,z)"0
for all x e xr .

Slnoe all X- sectlons of F are usc, i.e. f7(£) is closed

for eaoh olosed subset K C-Y, we infer that the set

29 [ztZ : F(x, 2) A K(fo(X), r ) 4 0}



i® olosed In Z for each x4X, Therefore s

@0 p-(b) = A {z : FX,z2)n K(Fo(x), r) 4
XcX

= fi F* K ), n
XiX X 0

#s closed In Z for each x belonging to X. Consequently P
i® upper semicontinuous. By virtue of theorem 1 the values of
(27) are nonvold. The compaotness of the values of multifunct-
ion p foliowe by using the Arzela-Asooli theorem from the
®9uieontinuity of the famlly Cjf(X,Y) and from the fact that
for each 1tX the seotlon |f(X)s f "P(*)J is oompaot in Y
N virtue of the point-compaetness of our starting multifunct-
®°h F. Applying theorem * we get the continuous function
PeC(Z, C(X, Y)) suoh that p(z)¢.P(z) for each =z t Z. Define
z) s= p(z)(xX). By standard argument f£.C(X x Z, Y). More-
veor T, z)C.F(x, z> Ffor each (x,z)€-X x Z and F* fulfil-
(lo) with the Lipschitz constant K(z), Theproof (similar
to the proof of theorem 6 from my prevlous paper [21J )is the-
~eby aehieved.

Let us remark, that the space X _hr)] theorem 5 may be
J

*8suined to b© tho whole real lino R = 0 Cn# n+ljf sifce
L _ n= -t
selectors of == FZ|fn, n+tlj may bO find with tho

*<*<Utional property that ~(n+ljs *h+1(nh+1) 8114 thus may be
atioked to obtain deslred seleotor.
QTJESTION 2. Does there exlsts a multifunction F: R “mR
v~th closed (noncompact and nonconvex) values fulfilling (9)
posessing no continuous (lipsohitzian) seleotor ? The sign
n In (9) in the present situatlon stands for generalized

“hsdorff metric (in the meaning of Yung [22] ).
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c) if KO is an open bali in qﬁ and t.xtKO are such
that d(x, t) = 2 R then for eaoh r?0 the intersection
KQn K(x, R+r) OK (t, R+n) fl 0 0 1is nonempty whenever n £ N.

Denote by xQ certain point from this intersection.

fi rc)” cn » kfch»23 such that dCt®, t2).£ro Tfor all
n (LN.
Each strongly connected metric space is connected, separable
and locally compact, but it may be incomplete. Each convex
oompact subset of Banach space is strongly connected and each
finite dimensional Hilbert space is strongly connected.

THEOREM 6. (cf. f5j»C6J) . Let X be a strongly connec-
ted metric space and Y an arbitrary metric space. If Q: X Y
is a multifunction such that : 1° card 0(x) = n for each
XEX ,2° Q 1is lower semicontinuous (resp. upper semiconti-

nuous)then Q admits exactly n distinot continuous selectors:

Moreover Q(C is oontinuous.

Combining theorems 6 and h we are able to prove the follow-

ing:
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THEOREM 7, Let X be strongly connected metric space,
Z an extremally disconnected topological space and Y an
arbitrary metric space, Consider a multifunctionF: X x Z Y

such that

(32) card F(x,z) = n for each x,z2)fe.X x Z

ond such that all Z-section (25) are lower semicontinuous and
all X- sectlons are upper semicontinuous, Then F has a conti-
nuous selector f: X x Z -pY

Proof: Let us redefine D in the proof of theorem 5

as follows:
(B33) D = (F<kC(%x, Y): sup {d(f(x), fo(X¥j: xCCn]zr} =

= D(fO» r»
and use the theorem 6 instead of theorem 1 to check that P(z)oo0
for all zfezZz, The values of P are all of the cardinality
n N and thus are compact so that the theorem Ucan be invoked
to obtain p, The desired selector f 1is definedsimilarly as
th the proof of theorem-£5].

If X in theorem 6 is normable and separable rather than
strongly connected, and the space Y 1is Banach then if Q
~hifiiig the Lipschitz cendltion (9) , its selectors from
(31) are also Llpschltzlan with the same constant K, It would
he interesting to known can be the above condition imposed on
the space X relaxed, The possibility to obtain continuous
8®lectors for multifunotions, whose Z-sections fulfills the
Condition of others existing theorems e.g. [R}j, A for mul-

tifunotion with contractible values, [i6] for amltifunctions

vtth starsheaped values will be investigated in a latter paper
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QUESTION 3« Dom tho target spaoe Y [In theorens 1
and 5 oan be generalized to be an objeot of the oategory
ef Lipschitz spaoea and Llpeohitz napa whioh Is defined aimi-
larly as In Preser T273 < For any set Y let S(y) bo tho fani-
ly of all nonnegative funotlons bdefined on the sguare Y z Y

whioh are symetrio and vanlshlng on the diagonal: b(y~,y®)=

b(y2» B b(ysy) =0 y.» y2» y ™ Y»
A Lipschitz 3truoturo on Y |Is subset L~S Cy) suoh that:

A A yAYgtyY bEL 7A y2 =" b(Yi*Y2A "0 »

A A
b,cfeL a€.S(Y) a-b +C ==~ aclL =

(L3) A \/ A b(p,q) + b(q,e) Pap, e).
afclL bCL P,q,e e.Y

A Lipschitz spaoe is a palr (Y, L(y)), where L(y) is a Lip-—
sohltz structure on Y, Lot (X, L(x))t (Y, L(y)) be two Lip-
schitz spacos «

For T: X Y we define 1 S(Y) s(x) by the fornula:
(3™) (T b)(ilo)s= b(T z , T e) for every bts(Y): z,e<X.

A singlevalued map T:X —yY 1is oalled a Lipschitz operator
iff L(y) *(x) » It is olear that every Lipschitz space
(Y, L(y)) carries the uniform structure determined by the

entouragea:
(35) [(y,*)EY z Y : b(y,e)™MM3r ,b <£lL(y), t>0

Every Lipschitz operator is a uniform norphizm,
Any function g: L(y) L(x) 1is called a Lipschitz rank.

Denote :



101

(36) UWEtEX XX x (TxDt A »(N)FgG) ()i
atL(T)

It la erident that TtX —~ Y la a Lipsohite aparator iff there
exlata a raak a suoh that
@G7) Gr TXT «= {((xt,x2), (yltya))<.(x x X) x (T x )t

S
yi = A XiN » 0 »1*2 F «* -

The author la v»ry obliged to Krzysztof Przestawski fer

his very helpful orlticisa and nuaeroaa essentlal Improveaienta.
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V SPRAWIE CIAGLYCH SELEKTOROW DLA MULTIFUKCJI Z NIEWYPUKLYMI

wartosciami

Streszczenia

Gtownym wynikiem tego artykudu jest dowdd iatnienia ciag-
tego selektora dla multifunkcji F: X z Z —=~Y o0 zwartych
wartosciach spekniajgcej warunek Lipsohitza za wzgledu na
Pierwszga zmienng oraz podclagtej z goéry ze wzgledu na druga
2mienng z osobna, przy czym o przestrzeni Z zaktada sie , ze
Jest ekstremalnie niespéjna , a o przestrzeni X, ze Jest zwar-
tym przedziatem prostej rzeczywistej, podczas gdy wartosci sa
Podzbiorami dowolnej zuped#nej przestrzeni metrycznej. Wymagato

to uog6lnienia twierdzenia Hermesa z fil]. Dla kompletno3oi
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przytoczono zaadaptowane z literatury przyktady, 4e pewne Inne
nasuwajace sie kierunki uogélnien skazane sa na niepowodzenie.
Opracowang dla twierdzenia 5 Metoda dowodu zastosowano nastep-
nie do przypadku multifunkcji, ktorej wartonci sa zbiorami skon-
czonymi tej samej mooy, przy ozym przestrzen X mole by¢ wtedy
jedynie silnie spéjna w sensie Carbone, a llpschitzowskos¢ ciec

zastgpiona zostaje potciagtoscig z dotu.



