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ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY 
Problemy Matematyczne 1987 z. 9

WŁODZIMIERZ A. ŚLĘZAK 
WSP w Bydgoszczy

CONCERNING CONTINUOUS SELECTORS FOR MULTIFUNCTIONS WITH 
NONCONVEX VALUES

There aro already many papers devoted to the investigations 
°f the conditions under which a multifunction whose values fails 
to be convex admlts a continuous selector see f2 ]- £8 j f (1 1 ] , [ 1 3”J, 

The present one is mainly consecrated to the existen- 
ce of continuous seleotors for nonconvex multivalued naps defi- 
bed on produot spaces. Flrstly we give some preliminaries.

Let X be any tojSological space. If with each element x 
of X we associate a nonempty subset F(x) of another topologi- 
oal space Y, we say that F:X — } Y is a set- vulued funotion 
(= multifunction) of X into Y.
If B c Y and F: X — r> Y then we define

(i) F+(B) := (xfeX s F(x )*b },

F~(b ) : = [i ć .X : F(x)dB 0 0} = X \ F +( Y n B)

vhere F+ and F are resp, the upper and lower inverses of F.
Ve employ the theory of semicontinuous set- valued funotlons 
obd of topologles on hyperspaces of subsets of Y as developed 
Ib Cl 3 and[20], If F j X Y then F is called
uPper (resp. lower) semicontlnuous on X if the set F~( a) is 

°losed (resp. open) in X whenever A is olosed (resp. opc^)
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in Y. Equivalently, F is usc (resp. lsc) on X if the 
set F+(A) is open (resp. olosed) in X where A is opon 
(resp. closed) subset of Y.

Xf A C Y, then the olosure of A will be denoted by A.
Let us consider the olasses

(2) l(Y) := [ A C Y  : A = A and A 0 0} , K(y ): = (A£I( y ):A
is compact}.

The collection B(y ) of all classes of the form
r n(3 ) lolt 02, ..., 0n 3 := (AŁI(Y): Ad (J 0±, A n o 1 / 0 ,

i = 1
i = 1,2,...,n } , 

with 0 ̂ ° P en in Y is a base for a topology 
on I(y ) oalled the Vietoris or exponential topology. A subbase 
for this topology on I(y ) is the collection S(y ) consisting 

of all classes having one of the following forma :

(k) 0+ : = (a£I(y) : Ado}, o" := Ja<łI(y): A n o  0 0}, with 0

o pen in Y. If B£lB(y)# then by (3 ) and (k) we have :
/ n n

(5 ) B =[0^ 02,...,0n ]= 0+ n ( ^  0“ ) , where 0 = ^  0± .

Henoeforth, K(y) will be treated as a subspace of X ( y ) ,  the 
underlying topology being the one defined above.
A multifunotion Fs X —^ l(Y) is called continuous if for each 
open hyperset G in I(y ) the counterimage F \ g ) is open 
in X. It is elear from the definitions that a multifunction 
Fs X — l(Y) is continuous if and only if it is both upper 
and lower semicontinuous.
If the space Y is metrizable by the distanoe function 

d: Y x Y R then the hyperspace I(y ) is metrizable by the
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generalized Hausdorff metric:

(6) h(A, B):= max [sup £dist (a, B) : ae A\ ,
sup [ dist (b, a ): bŁB)], A, B 6 I(y ),

where dist (a, B) := lnf £d(a,b): b £ b }. Notice, that two 
equivalent metrios d^ and d£ on Y do not necessarily indu- 
oe equivalent metrios (6) in the hyperspace of bounded, clo- 
sed subsets of Y» In case of nonbounded closed subsets (6) 

in faot is only the generalized metric in the sense of O.K.
Jung [22 3 , but then we may define h^ = aro tg.>h for obtain 
a bona fide metric. On the hyperspace K(Y) the topology 
induced by the distance function (6) coincides with the Vieto- 
ris one, while the relationships between the Hausdorff conti- 
nuity and the aboye defined Vietoris continuity for multifunct- 
ions witfi values in l(Y) are the following: Any niultivalued 
function F: X — £> I(y) continuous with respeot to the generali
zed Hausdorff (6) is lsc (cf. [2U] t lemma 1.0, hut may fails 
to be usc (see H. M. lćo [23], proposition 1 and Ex i).

For Q: [o, t ] — > K(y ), where [o, T] is a compaot inter-
val on the real line and Y is a metrio space endowed with 

the distance function d define the variation of Q on the 
subinterval [t-s, t] , s >0 as follows . Let P denotes a 
partition of [t-s, tJ, i.e. a finite collection of points
t-s = t / t. / ,,, St, . = t and let P denote the set of o 1 ^ k + 1
all such partitions. For the fixed partition P define :

(7) V^_s(Q, P) := Z. h(Q(tn ), Q(tn )) , Vt_B(q):m
n= 1
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If Q is Hausdorff continuous and has bounded variation (7 ) 

then v^(Q) i* finite for all t£.[o,T] and continuous as a 
function of the variable t (see 19D theorem 101 on p.581, 
the identical proof of continuity applias in oase of V*(q)) 
Now, we are prepared to generalize the target space in theorem 
2 froni tl 1 ] t P. 5**0, originally stated for the multifunction 
with values in finite-dimensional Euclidean spaces.

THEOREM 1. Lat X : = [o ,t J be a compact interval and Y 
an arbitrary matrio spaca and let Fs X — )K( y ) raaps this 

interval into the hyperspace of oompact non-void subsets of Y 
contlnuously. Then:
a) If Q has a bounded variation (7) in X, then Q admits

a continuous saleotor q, i.e. a continuous single-values 
map q:X Y with the property

(8)q(x)£0(x) for all itX, qfeC(X, Y)

b) If Q satisfies the Lipschitz condition of the form :

(9) h(q(x), Q(t))^K.|x - t I , x, t Ć.X, K > 0

then Q admits a Lipschitz continuous salactor q satisfying:

(1 0 ) d(q(x)t q(t)) — K l X  — t |

with the same Lipschitz constant K.

Proofj Let the image Q(x) := O* Q(x)c-Y be embeded
x tX

isometrioally into the Banach space Y = C(Q(x), r ) of conti

nuous real functions on Q(x) endowad with the uniform norm. 
This embedding is expllcitly givan by the formuła:

q(x) 3 z ^  d (., z) Ćr C(Q(X), R)

where d denotes the distance function on Y restricted to
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Q(x). Observe that by v±rtue of the assumed continulty of 
our multifunction Q and by the oompactness of X the image 

Q(x) ia also compact in Y and thua C(Q(x)f r ) is actually 
a separable Banach funotion space.
Por each positlve integer k let us consider a partition of 
X given by pointa: 0, Tk“\  2T k’\  •••» (k-1) T. Choo-
ae an arbitrary point yo belonging to Q(o) and define
yk t-Q(T k_1) to be the metrio projection of yk onto Q(T k-1)

d(Yo» y^) = dist (y£» QCT k_1)) •
k. — 1Next chooae inductively the pointa yj ^  Q(JT k" ) such that 

d(yj_1t yj ) = dint (yj_i* Q(JT fc” 1)) • Define qk tc(x, Y ) aa 
the polygonal aro Joining the above selected pointa y^ , 
j C [0,1 ..,k^ , namely:

(11) q(x) = t y^+1+ ( 1"Oy* where iT k-1f if(itl)T k~1
x - IT k“1

and t is defined as follows: ClZ) t :=    .■ for
x * T k"1

x t[iT k” 1 , (i+1 )T k” 1 3

0bserve that for any x ć. X and any k, there ezista an inte- 

ger J = j(k) auoh that [x — JT k“ Î̂ C T k_1 . For x belon

ging to f(j-i) T k” ' ] we have:

(12) dist (qk (x), Q(x))^ d(qk (x), qk(jT k*1)) +
+ dist (qk(j T k " 1), Q(x))£ h(Q((j-1>T k"1 ),

Q(jT k”1)) + h(Q(jT k” 1), Q(x))

where the last ineąuality foliowa from the faot that

d(yk_ 1 1 yk ) ^ d ( q k(x), yk ) by virtue of ( 11 > and
sińce
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(13) h(Q((j-l) T k-1 , Q(JT k~1)) ^ dist (yj. , , 1 U( JT k“ 1))=
. k k »

= d^j-1» yj )

on the strength of our choice of pointa yj .
Next observe that for x,t ć X and any k, if j, i ara inte-

gers auch that

( 1*0 Jx - JT k” 1 I < T k“1 , | t iT k_1| /. T k_1 

w* hav« from the trlangle inequality :

(15) d(qk(t), qk(*))^ d(qk(x), qk( j T k " 1)) + "Z, d(qk((n+lV
n-j

• T k“ 1), qk(nTk_1))+ d(qk (lT k” 1), qk (t))^
-?h(Q(x), Q(JT k-1)) + 2 : h(Q((n+l)T k"1),

1 n =j 1
Q(nT k~ )) + h(Q(t) , CiCiTk"1))

Now, to show part (a) of the theorem, we firat demonstrate,
c k  ^that {q s k=1,2,... }■ <i-C(X, Y) crsate an equicontinuous

family of functlona. Given an arbitrary but fixed poaitive num-
/•  ̂ber £ > O we ohooae an integer k ^  aufficiently large so

that for k ^  k£ the followlng implioation holds:

( 1 6 ) |t - 1  | / T  k e_1 imPlies hC^f*)* Q(*)) £/ 3.

Next, a ince Q i® bounded varlation (7 ) and t 
ia oontinuous aa a function of t €_X, and hence (bearing 

in mind that the domaine X is oompact) unlformly oontinu— 
ous on X, we oan chooae a posltive number £ >  O suoh that 

V* (Q) C £/ 3 whenever Ia-b[-ĆC>. Since | JT/k - i T A i - 

4 l x - t ! + 2T k” 1 if k is greather than kT/S and 

if 11 - x k  ̂ /2 then we have ^ A  €-/ 3. Then from
( 1 5 ) we have d(qk(x), qk(t))^ £/3 + £/3 + £/3 = £. whene-



91

ver k ^ mai (VT/ 5 , ) and jx - t\i$/2, ' Thus equlcontinuity
is showi, By virtue of the definltion (li) for each k the
image qłŁ( x )  is oontained in convex hull conv Q ( x ) ,  where
Q(x)  := \J ti(x) C. Y. Our multifunction Q being continuous 

x fc X
with compact values ia clearly upper semicontinuous.
It is well known that the image Q(x)  of compact set X under 
usc multifunction 0 is also compact in the underlying Banach 
spaoe Y := c(q(x), R)^see for aiuiple papers ["2 5 ] or f26]).
On the other hand the convex hull of compact subset Q(x)  in 

Banach space Y is also oompact in Y. Thus all functions 
q Ł C(X, Y) have the same common rangę space oonv Q ( x ), and 

this rangę space is oompaot, (Therefore also complete and sopa- 

**eble). Ve ara now in a position to apply the generalized
Arzela-Ascoli theorem,in compliance with which the set
( k\q : k = 1 , 2 , . . . }  is preoompact in the Banach function space

AJ
C(x, Y) endowed with the norm l||q|||:= sup £ l|q(x) II: xfcxj , 
where ll * H is the norm in Y.

Thus the sequence (q*C)^°, has a Cauchy subsequence and by 
virtue of the inequality (1 2 ) and from the continuity of Q 
and olosedness of lts values this subseąuence is convergent to 

the limit q such that q(x) £  Q(x) for each x €. X. The 
space C(X, Y) being complete, this selector q is continuous. 
The proof of the part (a) is already completed. To show part 
(b) we assume, without loss of generality that in (15):

(17) 1  6 JT k"1 £ ... iT k"1 ^ t £X.

Then utillzing the Lipschitz oondition (9 ) for Q, the lnequa- 

llty (15) becomesi



92

1-1
(1 8) d(qk (x), qk(t)) ^ K [((jT k"1) - x) + X  ((«+1 T k" 1

n=j
- nT k'1) t (t - IT k” 1 )] = K *|t - x|.

Because the right-hand slde of (18) la independent on k, we
lnfer that the family |qk ; k= 1 ,2 ,.,} Is •qulcontlnuous and

/ \ / k \oosimilarly as in part (a) we oan find a subsequenoe (q ; oon-
verging uniformly to, say, q4C(X, Y) and this function q sa-
tisfies (1 0 ) as it is evident passing to the limit in (1 8 )
where k runa ov#r the domaine of oonsidered subsequence.
Again, from the inequality (12) and the fact that each set

Q(x) is olosed in Y (and also in Y ), we conclude that
q(x)£.Q(x), x ^ X  and thus q is the desired selector,
The proof is achieved. The domaine in the above theorem 1 oan-
not be essentlally generalized, as the following example, adap-
ted from fl2j shows :

THOREM 2, There is a continuous multifunction F: R^-?
— t> K(R^) satisfying the Lipschitz condition (9 ) but without
any continuous selector .

Proof: The proof will be only outlined, It is based
on the example 2 , p. 190 from [1 2 J with inessential changes.

3Let us consider the polar coordinates in X = R , naroely 
(r, (P, Cf). For r > 0 let F(r,0-, Cp) be the circle of

radius R=r which lies in a piane passing through the origin 
parallel to the tangent piane to the sphere of radius r cen- 
tered at the origin, such that (r, ©■, ) is the point of
tangency. For r=0 let F(0, O', <-f) = | ( o , 0 , o ) J  . By direct 
oomputation one may verify that F is Lipschitzian and the
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number K=2 a arras aa a Li.psohd.tz constant. Suppoaa P wara 
ta admlt a centinuous salaotor f i 9? R^ . Than tha restria

tlon f | S2 of this salaotor to tha sphara {(*■» r=l}
2*i S would ba a oross - saotlon of tha oiróle bundla over that

2 2 sphara S . This oontradlcts tha faot that tha sphara S doas
not admlt a oontlnuous unit tangent raotor field, In fact, tha
•rlstanoa of suoh a fiald

(19) ^ f (1 , e, Cf ) | a> = O , a = ( 1 , <f K s 2

la equlwalent to tha axlstańca of tha homotopy batwaon the an-
tipodal map a( 1, ® ) = (1, -O- , - (j) and tha ldantlty map.
This honotopy in S from 1 to a is g i n n  by tha formuła:

(20) H(x»t)= (1 - 2t)x + 2 sqrt(t- t2)f(x) , |[f(x)f/= 1,
x = (1, e»f<f ) £ S 2

Sut tha axlatanoa of (20) is olaarly lnoonsistant with tha 
fact that dag a = -1. By tha sama reasoning, our multlfunct— 

lon doas not admlt a oontlnuous salaotor in any nelghbourhood 
°f the origin. Thus the Lipschitz oonditlon is not even suffi- 
°tent for the exlstence of a local oontlnuous selector. In gene- 
ral ona cannot expeot mora than a Baire classe one selector.

QUESTION 1. Let F: R2 — > K(R2) be a compact- valued 

nultifunotlon satisfying tha oonditlon (9). Does F must hare 
n oontlnuous salector 7 The next example axplalns that the 
oonditlon that Q in theorem 1 has a bounded varlatlon cannot 

relaxed, aren If the target space ls flnlte-dlmanslonal. 
THEOREM 3. Let Y = R2 and let X ba the same as In 

tlla theorem 1. There ls a continuous multifunction Q: X — K(y) 

vhioh does not admlt a oontlnuous selector (of. [12], p. 1 8 9 ).



Proof: For tfcfo,lJ lot us put:

(2l) S(t) := £ (x,y) R^ : x = oo» s, y = sin s : t ̂  s * 2jf}

and for t> O lot us dofino the funotlon Aj X •*> L(Y, y) by 
tho formuła:

9*t

(22) A(t) :=
cost t”  ̂ sin t ^

. - sin t~1 oos t 1

Then deflno
( A(t)s(t):=|a(t)[x,y] T :(x,y)fcS(t)jif 

t) j= / t > 0,
S(0) lf t = 0.

(2 3 ) X 3t Q(

To show that Q is oontlnuous in the Hausdorff topology, lt 
suffłces to show that Q ls continuous at O £X, But h(Q(t), 
Q(o))^ S"t . Furthermore Q does not admlt a continuous soloc- 
tor sinco the graph of Q

(2k) Gr Q s= £(t,x,y)<=X x Y : (x,y) ^  Q(t)lf

oonsldered as a subset of the cylinder x fo,lj is not arc-
wise connected. In fact, tho gap in Q(t) for t > 0  will 
disoonneot any arc £(t, q(t)) s t €. X } , Thus Q ls continu
ous on X but there does not exist a oontlnuous point- valued 
function q: X — $> Y with values q(t)£Q(t), t £  X .

We are going to unitę the theorem 1 with the following result 
of Ilasumi T*0!! (see also T9l for a simpler proof)

THEOREM k ( HoJ )« Let X be an extremally disconnected 
topologioal space, Y a regular (T^) Hausdorff space and 
Fi X — Y a oompact- valued upper aemicontinuous multifunct
ion from X into Y, Then there eiists a continuous selector 
f for F,
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Though Hasami CtO] assumed X to the Hausdorff, his proof 
works unchanged in the situatlon of the above statement and 
will, therefore, be omitted. Let us reoall, that a topologioal 
spaoe X ls extremally disoonneoted if the olosure of every 
open set in X ls open,

REM ARK 0, A penetrating lnspection of the existing proof a
of theorem 4(see f9J»ClOj) also permits us to relaxe the assum- 
ptlons about the regularity of multifunction F. instead of to 
be usc it may be allowed te be pseudo upper semioontinuous only 
In oase where Y is a mstric space in which the closures of 
open balls are closed balia (for eiample any linear metric 
spaoe has this property). A multifunction F sX —«̂  Y is oalled 
Pseudo upper semicontinuous if the big invers image8 of closed
balls F”(K(y,r)), y Y are all closed in X, However the
notion of pseudo upper sesiicontinuity appears sometimes in the 
literaturę under different names, 0bserve, that in the proof 
of theorem 1 in T9]» P, 5 »e may take as A the field genera- 
ted by open balls and its closures and then the proof of theo— 
rem k on p, 7 in f9j remains correct, ao that the theorem 
carries over the present situatlon.

THEOREM 5. Let X be the same as in theoreml , Z an 
®xtremally disconnected topological space, and Y a complete 
"'etric spaoe fulfilling the assumptions from Remark O _ and let 

X x Z — 7 Y be a multifunction such that all Z- sections

(2 5)  x  3 z FZ(x) := F(x, z ) , z Z 

fulfil the Lipschitz condition of the form

(26) h(F (x, z) , F(t, z)) ^  K(z) • |x - t I
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and all X- seotions : Z — £>Y are upper semloontlnuous.
Assume that the values of F are compact subsets of Y. Under 
those hypotheses there ls a oontlnuous selector f : X x Z —*• Y 

with K(z) - Lipsohitzian Z- sectlons.
Proof: Let C(x, Y) denote the spaoe of all continuous

maps from X Into Y. The so-oalled compact- open topology 
in C(X, Y) ls that having as sub-basis all sets (f ć-C(X,y): 
f(K) C~ gJ where K£K(x) is compaot and G <LX is open. Let 
CR(X, Y) be the subset of C(X, Y) having Lipschitz constant 
K. Define the multifunotion P: Z —^ C(X, Y) by formuła:

(27) P(z):= [ f t C K(z)(x, Y): f(x)ć.F(x) for eaoh
i t x j  .

It is easy to observe, that the values of P are closed sub

sets of CK(5t)(x* Wo P**ove that (2 7 ) is pseudo upper
semioontinuous multifunction from Z into K(c(X,Y)). In fact
it suffioes to prove, that P_(d ) is closed in Z whenever
D is a closed set of the form

D := (f£C(X,Y): D(f, fo) := sup £d(f(x), fo(x)) :x€X}< i*

where fo ^-C(x, Y) and r y 0 is a posltive real number. Deno
te by K(fo(x),r) the olosed bali in Y centered at fQ(x)€Y 
and of radius r. We have:

(28) P“(D) ={z ć .Z: P(z )/1D / 0}={zfeZ: K (fc(x), r)nF(x,z)^0

for all x e. xjr .
Slnoe all X- sectlons of F are usc, i.e. f”(£) is closed 
for eaoh olosed subset K C-Y, we infer that the set

(29) [ z t Z  : F(x, z) A K(fo(x), r ) 4 0}



i® olosed ln Z for each x4X, Therefore s

(30) p-(D) = fi {z : F(x,z)n K(fo(x), r) 4 =
xcX

= fi F" (K (f (x), r) 
xiX x 0

■*-s closed ln Z for each x belonging to X. Consequently P 

i® upper semicontinuous. By virtue of theorem 1 the values of
(27) are nonvold. The compaotness of the values of multifunct- 
ion p foliowe by using the Arzela-Asooli theorem from the 

®9uieontinuity of the famlly Cjf(X,Y) and from the fact that 
for each i t X  the seotlon |f(x)s f ̂ P(*)J is oompaot in Y 
^  virtue of the point-compaetness of our starting multifunct— 
't-°h F. Applying theorem *ł we get the continuous function 
P e C(Z, C(X, Y)) suoh that p(z)ć.P(z) for each z Ł  Z. Define

z) s= p(z)(x). By standard argument f£. C(X x Z, Y). More- 
°v®r f(x, z)ć.F(x, z ) for each (x,z)€-X x Z and F* fulfi1-

(lo) with the Lipschitz constant K(z), The proof (similar
to the proof of theorem 6 from my prevlous paper [2 1 J ) is the-
^eby aehieved.

Let us remark, that the space X in theorem 5 may be
j-OO

*8suined to b© tho whole real lino R = O  Cn# n+ljf sińce 
tł> _ n= - to

selectors of : = FZ |fn, n+lj may b© find with th©

*<*<Utional pro per ty that ^(n+ljs *łn+ 1 (n+l) 8114 thus may be
atioked to obtain deslred seleotor.

QTJESTION 2. Does there exlsts a multifunction F: R -*■ R
v^th closed (noncompact and nonconvex) values fulfilling (9 )

posessing no continuous (lipsohitzian) seleotor ? The sign
n ln (9 ) in the present situatlon stands for generalized

^hsdorff metric (in the meaning of Yung [2 2] ).
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c) if K is an open bali in C and t.x t K  are such o n ' o
that d(x, t) = 2 R then for eaoh r ? 0  the intersection 
KQn K(x, R+r) OK (t, R+n) fl 0 0 is nonempty whenever n £ N.
Denote by xQ certain point from this intersection.

fi rc) ̂  cn » kfcb » 23 such that dCt^, t2 ).£ro for all
n (L N.

Each strongly connected metric space is connected, separable
and locally compact, but it may be incomplete. Each convex
oompact subset of Banach space is strongly connected and each 
finite dimensional Hilbert space is strongly connected.

THEOREM 6. (cf. f5j»C6J) . Let X be a strongly connec

ted metric space and Y an arbitrary metric space. If Q: X Y 
is a multifunction such that : 1° card 0(x) = n for each 

x £X , 2 °  Q is lower semicontinuous (resp. upper semiconti- 
nuous)then Q admits exactly n distinot continuous selectors:

Moreover Q ( is oontinuous.
Combining theorems 6 and h we are able to prove the follow- 
ing:
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THEOREM 7, Let X be strongly connected metric space,
Z an extremally disconnected topological space and Y an
arbitrary metric space, Consider a multifunction F: X x Z -*> Y
such that

(32) card F(x,z) = n for each (x,z)fe.X x Z

ond such that all Z-section (2 5 ) are lower semicontinuous and 
all X- sectlons are upper semicontinuous, Then F has a conti
nuous selector f: X x Z -)> Y .

Proof: Let us redefine D in the proof of theorem 5
as follows:

(33) D := (f<ŁC(x, Y): sup {d(f(x), f0(x)j: x C C n] ź r }  =

= D(f0 » r»

and use the theorem 6 instead of theorem 1 to check that P(z)0 0 

for all zfeZ, The values of P are all of the cardinality 

n N and thus are compact so that the theorem U can be invoked
to obtain p, The desired selector f is defined similarly as

th the proof of theorem-£5 ].

If X in theorem 6 is normable and separable rather than 

strongly connected, and the space Y is Banach then if Q 
^hlfiiig the Lipschitz cendltion (9 ) , its selectors from
(31) are also Llpschltzlan with the same constant K, It would 
he interesting to known can be the above condition imposed on 
the space X relaxed, The possibility to obtain continuous 

8®lectors for multifunotions, whose Z-sections fulfills the 

Condition of others existing theorems e.g. [Rj, Cl for mul- 
tifunotion with contractible values, [i6 ] for amltifunctions 
vtth starsheaped values will be investigated in a latter paper
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QUESTI0N 3« Do m  tho target spaoe Y ln theorens 1
and 5 oan be generalized to be an objeot of the oategory
ef Lipschitz spaoea and LIpeohitz napa whioh ls defined aimi- 
larly as ln Preser T273 • For any set Y let S(y ) bo tho fani- 
ly of all nonnegative funotlons b defined on the sąuare Y z Y
w hi oh are symetrio and vanlshlng on the di agon a 1 : b( y ̂ ,y^) =

= b ( y 2 » 611111 b (y s y )  = 0 y.,» y2 » y ^  Y»
A Lipschitz 3 truoturo on Y ls subset L ^ S  Cy) suoh that:

 ̂ ^  y^YgtY b £ L  7  A  y2 =ŝ  b ( Y i * Y2  ̂ ^ 0 »

A  A
b,cfeL a€.S(Y) a - b + C ==^  a ć L  •

(L3) A  \/  A  b(p,q) + b(q, e) p a(p, e).
afcL b C L  P,q,e e.Y

» A Lipschitz spaoe is a palr (Y, L(y)), where L(y) is a Lip—
sohltz structure on Y, Lot (X, L ( x ) ) t (Y, L(y)) be two Lip
schitz spacos «
For T: X Y we define : S(y) s ( x )  by the fornula:

(3^) (T b )(i|o)s= b(T z , T e) for every b t s ( Y ) :  z,e<X.

A singlevalued map T:X — y> Y is oalled a Lipschitz operator 
iff L(y ) *^L(x ) » It is olear that every Lipschitz space
(Y, L(y )) carries the uniform structure determined by the 
entouragea:

(35) [(y,*)£Y z Y : b(y,e)^t3r , b <£.L(y ), t > 0 .

Every Lipschitz operator is a uniform norphizm,
Any function g: L(y) L ( x )  is called a Lipschitz rank. 
Denote :
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(36) (u,u) t (X x X) x (T x T) t A  »(n)fg(»)(*)i
atL(T)

It la erident that TtX —^ Y la a Lipsohite aparator iff there 
•xlata a raak a suoh that

(37) Gr TxT «= {((xt,x2), (yltya))<.(x x X) x (T x Y)t
S

yi = ^ xi^ » i =» 1 * 2 Jr «=• * •

The author la v»ry obliged to Krzysztof Przesławski fer 
his very helpful orlticisa and nuaeroaa essentlal lmproveaienta.
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2̂7 J

V SPRAWIE CIĄGŁYCH SELEKTORÓW DLA MULTIFUKCJI Z NIEWYPUKLYMI
w a r t o ś c i a m i

Streszczenia

Głównym wynikiem tego artykułu jest dowód iatnienia ciąg
łego selektora dla multifunkcji F: X z Z — ^ Y o zwartych 
wartościach spełniającej warunek Lipsohitza za względu na 
Pierwszą zmienną oraz półclągłej z góry ze względu na drugą 
2mienną z osobna, przy czym o przestrzeni Z zakłada się , że 
Jest ekstremalnie niespójna , a o przestrzeni X, że Jest zwar
tym przedziałem prostej rzeczywistej, podczas gdy wartości są 
Podzbiorami dowolnej zupełnej przestrzeni metrycznej. Wymagało 
to uogólnienia twierdzenia Hermesa z fil]. Dla kompletno3oi



104

przytoczono zaadaptowane z literatury przykłady, 4e pewne Inne 
nasuwające się kierunki uogólnień skazane są na niepowodzenie. 

Opracowaną dla twierdzenia 5 Metodą dowodu zastosowano następ
nie do przypadku multifunkcji, której wartońci są zbiorami skoń
czonymi tej samej mooy, przy ozym przestrzeń X mole być wtedy 
jedynie silnie spójna w sensie Carbone, a llpschitzowskość cięć 
zastąpiona zostaje półciągłością z dołu.


