ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyozne 1987 z. 9

WLODZIMIERZ A. SLEZAK
WSP Wydgoszozy

CONCERNING CONTINUOUS SELECTORS FOR MULTIFUNCTIONS WITH NONCONVEX VALUES

There are already many papers devoted to the investigations of the oonditions under which a multifunction whose values falls to be convex admits continuous selector see [2]-[B],[11],[13], [16]-[17]. The present one is meinly conseorated to the existence of continuous seleotors for nonconvex multivalued maps defined on product spaces. Firstly we give some preliminaries.

Let X be any topological space. If with each element x of X we assoolate a nonempty subset $F(x)$ of another topological space Y, we say that $F: X \rightarrow Y$ is a set- valued funotion (= multifunotion) of X into Y.

If $B \subset Y$ and $F: X \rightarrow Y$ then we define

$$
\begin{align*}
& F^{+}(B):=\{x \in X: F(x)<B\} \tag{1}\\
& F^{-}(B):=\{x \in X: F(x) \cap B \neq \varnothing\}=X \backslash F^{+}(Y \backslash B)
\end{align*}
$$

Where F^{+}and F^{-}are resp. the upper and lower inverses of F. We employ the theory of semicontinuous set- valued functions and of topologies on hyperspaces of subsets of Y as developed in $[18],[14],[3],[1]$ and $[20]$. If $F: X \rightarrow Y$ then F is called upper (resp. lower) semicontinuous on X if the set $F^{(A)}$ is olosed (resp. open) in X whenever A is closed (respe open)
in Y. Equivalently, F is usc (resp. lsc) on X if the set $\mathrm{F}^{+}(\mathrm{A})$ is open (resp. closed) in X where A is open (resp. closed) subset of Y.

If $A \subset Y$, then the olosure of A will be denoted by \bar{A}. Let us consider the olasses
(2) $I(Y):=\{A \subset Y: A=\bar{A}$ and $A \neq \varnothing\}, K(Y):=\{A \in I(Y): A$

$$
\text { is compact\}. }
$$

The collection $B(Y)$ of all classes of the form
(3) $\left[0_{1}, 0_{2}, \ldots, 0_{n}\right]:=\left\{A \in I(Y): A G \bigcup_{i=1}^{n} 0_{i}, A \cap O_{i} \neq \emptyset\right.$,

$$
1=1,2, \ldots, n\}
$$

with $O_{1}, O_{2}, \ldots, O_{n}$ all open in Y is a base for a topology on $I(Y)$ called the Vietoris or exponential topology. A subbase for this topology on $I(Y)$ is the collection $S(Y)$ consisting of all classes having one of the following forms:
(4) $0^{+}:=\{A \in I(Y): A<0\}, 0^{-}:=\{A \in I(Y): A \cap 0 \neq \phi\}$ with 0 open in Y. If $B \in B(Y)$, then by (3) and (4) we have:
(5) $B=\left[0_{1}, 0_{2}, \ldots, 0_{n}\right]=0^{+} n\left(\bigcap_{i=1}^{n} o_{i}^{-}\right)$, where $0=\bigcup_{i=1}^{n} o_{i}$. Henceforth, $K(Y)$ will be treated as a subspace of $I(Y)$, the underlying topology being the one defined above. A multifunotion $F: X \rightarrow I(Y)$ is called continuous if for each open hyperset G in $I(Y)$ the counterimage $F^{-1}(G)$ is open in X. It is clear from the definitions that maltifunction $F: X \rightarrow I(Y)$ is continuous if and only if it is both upper and lower semioontinuous.

If the space Y is metrizable by the distance function $d: Y \times Y \rightarrow R$ then the hyperspace $I(Y)$ is metrizable by the

Generalized Hausdorff metric:
(6) $h(A, B):=\max \{\sup \{d i s t(a, B): \quad a \in A\}$,
$\sup \{$ dist $(b, A): b \in B\}\}, A, B \in I(Y)$.
Where dist $(a, B):=\inf \{d(a, b): b \in B\}$. Notice, that two equivalent metrics d_{1} and d_{2} on Y do not necessarily induece equivalent metrics (6) in the hyperspace of bounded, cleosod subsets of Y. In case of nonbounded closed subsets (6) In fact is only the generalized metric in the sense of $C . K$. Jung [22], but then we may define $h_{1}=$ are lg oh for obtain a bona ide metric. On the hyperspace $K(Y)$ the topology Induced by the distance function (6) coincides with the Vietoris one, while the relationships between the Hausdorff continutty and the above defined Vietoris continuity for multifunctions with values in $I(Y)$ are the following: Any multivalued function $F: X \rightarrow I(Y)$ continuous with respect to the generalized Hausdorff (6) is lac (cf.[24], lemma 1.4), but may fails to be uso (see H. M. Ko [23], proposition 1 and Ex 1).

For $Q:[0, T] \rightarrow K(Y)$, where $[0, T]$ is a compact interval on the real line and Y is a metric space endowed with the distance function define the variation of Q on the subinterval $[t-s, t$], $s>0$ as follows. Let p denotes a partition of [toes, t], ie. a finite collection of points $t-s=t_{0}<t_{1}<\ldots<t_{k+1}=t$ and let \hat{p} denote the set of all such partitions. For the fixed partition \tilde{r} define :

$$
\begin{align*}
& v_{t-s}^{t}(Q, \widetilde{p}):=\sum_{n=1}^{K} h\left(Q\left(t_{n+1}\right), Q\left(t_{n}\right)\right), v_{t-s}(q):= \tag{7}\\
& \sup \left\{v_{t-s}^{t}(Q, \tilde{P}): \tilde{p} \in \hat{p}\right\}
\end{align*}
$$

If Q is Hausdorff continuous and has bounded variation (7) then $V_{0}^{t}(Q)$ is finite for all $t \in[0, T]$ and continuous as a function of the variable t (see [19] theorem 101 on p.581, the identical proof of continuity applies in case of $V_{o}^{t}(Q)$) Now, we are prepared to generalize the target space in theorem 2 from [11], p. 540, originally stated for the multifunction with values in fintteadimensional Euclidean spaces.

THEOREM 1. Lot $X:=[0, T]$ be a compact interval and Y an arbitrary metrio space and let $F: X \rightarrow K(Y)$ maps this Interval into the hyperspace of oompact non-void subsets of Y continuousiy. Then:
a) If Q has a bounded variation (7) in X, then Q adaits a continuous selector q, i.e. a continuous single-values map $q: X \rightarrow Y$ with the property
(8) $q(x) \in Q(x)$ for all $x \in X, \quad q \in C(X, Y)$
b) If Q satisfies the Lipschitz condition of the form :
(9) $h(Q(x), Q(t)) \leqslant K \cdot|x-t|, x, t \in X, \quad K>0$
then Q adsits a Lipsohitz continuous selector q satisfying:
(10) $\quad d(q(x), q(t)) \leqslant K|x-t|$
with the same Lipschitz constant K.
Proof: Let the image $Q(X):=\bigcup_{X \in X} Q(x) \subset Y$ be ombeded isometrically into the Banach space $\underset{\mathcal{Y}}{\mathbb{F}}=C(Q(X), R)$ of continuous real functions on $Q(X)$ endowed with the unifory norm. This embedding is explicitly given by the formula:

$$
u(x) \ni z \quad d(., \quad z) \in C(Q(X), R)
$$

Where d denotes the distance function on Y restricted to
$Q(X)$. Observe that by virtue of the assumed continuity of our multifunction Q and by the compactness of X the image $Q(X)$ is also compact in Y and thus $C(Q(X), R)$ is actually a separable Banach function space.

For each positive integer k let us consider a partition of
 se an arbitrary point y_{0}^{k} belonging to $Q(0)$ and define $y_{1}^{k} \in Q\left(T k^{-1}\right)$ to be the metric projection of y_{0}^{k} onto $Q\left(T_{k^{-1}}^{k}\right)$ 1.0. $d\left(y_{0}^{k}, y_{1}^{k}\right)=d i s t\left(y_{0}^{k}, Q\left(T k^{-1}\right)\right)$.

Next choose inductively the points $y_{j}^{k} \in Q\left(j T k^{-1}\right)$ such that $d\left(y_{j-1}^{k}, y_{j}^{k}\right)=\operatorname{dist}\left(y_{j-1}^{k}, Q\left(j T k^{-1}\right)\right)$. Define $q^{k} \in C(X, \tilde{Y})$ as the polygonal arc joining the above selected points y_{j}. $j \in\{0,1, \ldots, k\}$, namely:
(11) $\quad q(x)=t y_{i+1}^{k}+(1-t) y_{i}^{k}$ where $1 T k^{-1} \leq x \leq(i+1) T k^{-1}$ and t_{x} is defined as follows: (12) $t_{x}:=\frac{x-1 T k^{-1}}{T k^{-1}}$ for $x \in\left[1 T k^{-1},(j+1) T k^{-1}\right]$

Observe that for any $x \in X$ and any k, there exist an intoger $j=j(k)$ such that $\left|x-j T k^{-1}\right|<T k^{-1}$. For x belongsing to $\left[(j-1) T k^{-1}\right]$ wo have:
(12) dist $\left(q^{k}(x), Q(x)\right) \leqslant d\left(q^{k}(x), q^{k}\left(j T k^{-1}\right)\right)+$

$$
\begin{aligned}
& +\operatorname{dist}\left(q^{k}\left(j T k^{-1}\right), Q(x)\right) \leq h\left(Q\left((j-1) T k^{-1}\right),\right. \\
& \left.Q\left(j T k^{-1}\right)\right)+h\left(Q\left(j r k^{-1}\right), Q(x)\right)
\end{aligned}
$$

Where the last inequality follows frow the fact that

$$
d\left(y_{j-1}^{k}, y_{j}^{k}\right) \geqslant d\left(q^{k}(x), y_{j}^{k}\right) \quad \text { by virtue of }(11) \text { and }
$$

since

$$
\begin{align*}
h\left(Q \left((J-1) T k^{-1},\right.\right. & \left.Q\left(J T k^{-1}\right)\right) \geqslant \text { dist }\left(y_{j-1}^{k}, Q\left(j T k^{-1}\right)\right)= \tag{13}\\
& =d\left(y_{j-1}^{k}, y_{j}^{k}\right)
\end{align*}
$$

on the strength of our choice of points y_{j}.
Next observe that for $x, t \in X$ and any k, if j, i are intogers such that
(14) $\left|x-j T k^{-1}\right|<T k^{-1}, \mid t \quad$ iT $k^{-1} \mid<T k^{-1}$
wo have from the triangle inequality :

$$
\begin{align*}
& q\left(q^{k}(t), q^{k}(x)\right) \leqslant d\left(q^{k}(x), q^{k}\left(j^{T} k^{-1}\right)\right)+\sum_{n-j}^{1-1} d\left(q^{k}((n+1),\right. \tag{15}\\
& \left.\left.\cdot T k^{-1}\right), q^{k}\left(n T k^{-1}\right)\right)+d\left(q^{k}\left(1 T k^{-1}\right), q^{k}(t)\right) \leq \\
& \leq h\left(Q(x), Q\left(j T k^{-1}\right)\right)+\sum_{n=j}^{1-1} h\left(Q\left((n+1) T k^{-1}\right),\right. \\
& \left.Q\left(n T k^{-1}\right)\right)+h\left(Q(t), Q\left(1 T k^{-1}\right)\right)
\end{align*}
$$

Now, to show part (a) of the theorem, we first demonstrate, that $\left\{q^{k}: k=1,2, \ldots\right\}<C(x, \tilde{Y})$ create an equicontinuous family of functions. Given an arbitrary but fixed positive numbbert $\varepsilon>0$ we ohoose an integer $k{ }_{\varepsilon}^{*}$ sufficiently large so that for $k \geqslant k_{\varepsilon}^{*}$ the following implication holds:
(16) $\quad|t-x|<T \quad k_{\varepsilon}^{*-1}$ implies $h(Q(t), Q(x))<\varepsilon / 3$. Next, since Q is of bounded variation (7) and $t \mapsto v_{0}^{t}(Q)$ is continuous as a function of $t \in X$, and hence (bearing in mind that the domaine X is oompaot) uniformity continueonus on X, wo can choose a positive number $\delta>0$ such that $\mathbf{v}_{\mathrm{a}}^{\mathrm{b}}(Q)<\varepsilon / 3$ whenever $|\mathrm{amb}|<\delta$. Since $|\mathrm{jT} / \mathrm{k}-1 \mathrm{~T} / \mathrm{k}| \leqslant$ $\leq|x-t|+2 T k^{-1}$ if k is greather than $4 T / \delta$ and if $|t-x|<\delta / 2$ then wo have $\nabla_{j T / k}^{1 T / k}(Q)<\varepsilon / 3$. Then from (15) we have $d\left(q^{k}(x), q^{k}(t)\right)<\varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon$ whence-
ver $k \geqslant \max \left(4 T / \delta, k_{z}^{*}\right)$ and $|x-t|<\delta / 2$. . Thus equicontinuity ds shown. By virtue of the definition (11) for each k the image $q^{k}(x)$ is contained in convex hull conv $Q(x)$, where $Q(x):=\bigcup_{x \in X} Q(x)<\tilde{Y}_{\text {. }}$ Our multifunction Q being continuous with compact values is clearly upper somicontinuous. It is well known that the image $Q(X)$ of compact set X under usc multifunction Q is also compant in the underlying Banach space $\tilde{Y}:=C(Q(X), R)$ (see for exemple papers [25] or [26]). On the other hand the convex hull of compact subset $Q(x)$ in Banach space \tilde{Y} is also compact in $\tilde{Y}_{\text {. Thus all functions }}$ $q^{k} \in C(X, \tilde{Y})$ have the same common range space conv $Q(X)$, and this range space is compaot. (Therefore also complete and separable). We are now in a position to apply the generalized Arzele-Ascoli theorem,in compliance with which the set $\left\{q^{k}, k=1,2, \ldots\right\}$ is precompact in the Banach function space $C(X, \tilde{Y})$ endowed with the norm $\|q\|:=\sup \{\|q(x)\|: x \in x\}$, where $\|\cdot\|$ is the norm in $\tilde{Y}_{\text {. }}$ Thus the sequence $\left(q^{k}\right)_{1}^{\infty}$, has a Cauchy subsequence and by virtue of the inequality (12) and from the continuity of Q and olosedness of its values this subsequence is convergent to the limit q such that $q(x) \in Q(x)$ for each $x \in X$. The space $C(X, Y)$ being oomplete, this selector q is continuous. The proof of the part (a) is already completed. To show part (b) we assume, without loss of generality that in (15):

$$
\begin{equation*}
x \leqslant j T x^{-1}<\ldots<1 T x^{-1} \leqslant t \in X . \tag{17}
\end{equation*}
$$

Then utilizing the Lipachitz condition (9) for Q, the inequality (15) becomes:
(18) $d\left(q^{k}(x), q^{k}(t)\right) \leq K\left[\left(\left(J T k^{-1}\right)-x\right)+\sum_{n=j}\left(\left(n+1 T k^{-1}\right.\right.\right.$ $\left.\left.-n T k^{-1}\right)+\left(t-1 T k^{-1}\right)\right]=K \cdot \mid t-x /$.

Because the right-hand side of (18) is independent on k, we infer that the family $\left\{q^{k}: k=1,2, \ldots\right\}$ is equicontinuous and similarly as in part (a) we can find a subsequenoe ($\left.q^{k}\right)_{1}^{\infty}$ converging uniformly to, say, $q \in C(X, Y)$ and this function q satisfies (10) as it is evident passing to the limit in (18)
where k runs over the domaine of considered subsequence. Again, from the inequality (12) and the fact that each set $Q(x)$ is olosed in Y (and also in \tilde{Y}), we conclude that $q(x) \in Q(x), x \in X$ and thus q is the desired selector. The proof is achieved. The domaine in the above theorem 1 cannot be essentially generalized, is the following example, adap ted from [12] shows :

THOREM 2. There is a continuous multifunction $F: R^{3} \rightarrow$ $\rightarrow K\left(R^{3}\right)$ satisfying the Lipschitz condition (9) but without any continuous selector -

Proof: The proof will be only outlined. It is based on the example 2 , p. 190 from [12] with inessential changes. Let us consider the polar coordinates in $X=R^{3}$, namely (r, θ, φ). For $r>0$ let $F(r, \theta, \varphi)$ be the circle s^{1} of radius $\mathrm{R}=\mathrm{r}$ which lies in a plane passing through the origin parallel to the tengent plane to the sphere of radius r centered at the origin, such that (r, θ, φ) is the point of tangency. For $r=0$ let $F(0, \theta, \varphi)=\{(0,0,0)\}$. By direct computation one may verify that F is Lipschitzian and the
 to adrdt a continuous seleotor $f: R^{3} \rightarrow R^{3}$. Thon the reatriotion $f \mid S^{2}$ of this seleotor to the sphore $\{(r, \theta, \varphi): r=1\}$ \# s^{2} would be oross - section of the oixhle bundle over that -phere S^{2}. This oontradicts the faot that the ephere s^{2} does not adalt oontinuous unit tangent veotor field. In fact, the -xisteno of suoh a fiold
(19) $\langle f(1, \theta, \varphi) \mid \bullet\rangle=0, \bullet=(1, \theta, \varphi) \in s^{2}$

1: equivalont to the existonce of the homotopy betwoen the antipodal map $a(1,0, \varphi)=(1,-\theta,-\varphi)$ and the idontity map. Thie homotopy in S^{2} from 1 to a is given by the formula:

$$
\begin{array}{r}
H(x, t)=(1-2 t) x+2 \operatorname{sqrt}\left(t-t^{2}\right) r(x),\|r(x)\|=1, \tag{20}\\
x=\left(1, \theta^{\prime}, \varphi\right) \in s^{2}
\end{array}
$$

But the existenoe of (20) is olearly inoonsistent with the fact that dog $a=-1$. By the same reasoning, our multifunctIon does not admit a oontinuous seleotor in any neighbourhood of the origin. Thus the Lipschite oondition is not oven sufficient for the existence of a local continuous selector. In general one oannot expeot more than a Baire classe one selector. QUESTION 1. Let $F: R^{2} \rightarrow K\left(R^{2}\right)$ be a compact- valued multifunotion satisfying the oondition (9). Does F arust have a continuous selector ? The next example explains that the Condition that Q in theorem 1 has a bounded variation cannot be relaxed, even if the target space is finite-dimonsional. THEOREM 3. Let $Y=R^{2}$ and lot X be the ame as in the theorem 1. There 1s a continuous maltifunction $Q: X \rightarrow K(Y)$ Whioh does not admit a continuous selector (or. [12], p. 189).

Proof: For $t \in[0,1]$ lot us put:

$$
\begin{equation*}
s(t):=\left\{(x, y) \in R^{2}: x=000 s, y=\sin s: t \leq s \leq 2 \pi\right\} \tag{21}
\end{equation*}
$$

and for $t>0$ let us define the function $\tilde{A}_{:} X \rightarrow L(Y, Y)$ by the formula:

$$
\hat{A}(t):=\left[\begin{array}{cc}
\cos t t^{-1} & \sin t^{-1} \tag{22}\\
-\sin t^{-1} & \cos t^{-1}
\end{array}\right]
$$

Then define

$$
x \ni t \rightarrow Q(t):=\left\{\begin{array}{l}
\hat{A}(t) S(t):=\left\{\hat{A}(t)[x, y]^{T}:(x, y) \in S(t)\right\}_{\text {if }} \tag{23}\\
t>0,
\end{array}\right.
$$

To show that Q is continuous in the Hausdorff topology, it suffices to show that Q is continuous at $O \in X$. But $h(Q(t)$, $Q(0)) \leqslant \pi t$. Furthermore Q does not admit a continuous selector since the graph of Q
(24) Gr $Q:=\{(t, x, y) \in X X Y:(x, y) \in Q(t)\}$
considered as a subset of the cylinder $s^{1} \times[0,1]$ is not arcwise connected. In fact, the gap in $Q(t)$ for $t>0$ will disconnect any arc $\{(t, q(t)): t \in X\}$. Thus Q is continueaus on X but there does not exist a continuous point- valued function $q: X \rightarrow Y$ with values $q(t) \in Q(t), \quad t \in X$. We are going to unite the theorem 1 with the following result of Hasumi [10] (see also [9] for a simpler proof)

THEOREM 4 ([10]). Let X be an extremally disconnected topological space, Y a regular (T_{3}) Hausdorff space and $F: X \rightarrow Y$ a compact- valued upper semicontinuous multifunotion from X into Y. Then there exists a continuous selector f for F.

Though hasund [10] assumed X to the Hausdorff, his proof works mohanged in the situation of the above statement and will, therefore, be ondted. Let us recall, that topological space X is extremally disoonneoted if the olosure of every open set in X is open.
peanir 0 . A penetrating inspection of the existing proofs of theoren 4 (see [9], [10]) also permits us to relaxe the assumptions about the regularity of multifunction F. Instead of to be usc it may be allowed te be pseudo upper semicontinuous only In oase where Y is a metric space in which the closures of open balls are closed balla (for example any linear metric space has this property). A multifunction $F: X \rightarrow Y$ is called pseudo upper semicontinuous if the big invers images of olosed balls $F^{-}(K(y, r)), y \in Y$ are all closed in X. However the notion of pseudo upper semicontinuity appears sometimes in the liferature under different names. Observe, that in the proof of theorem 1 in [9], $p, 5$ we may take as A the field generated by open balls and its closures and then the proof of theorem 4 on p. 7 in [9] remains correct, no that the theorem carries over the present situation.

THEOREM 5. Let X be the same as in theorem1, Z an extromally disconnected topological space, and Y a complete metric space fulfilling the assumptions from Remark 0 and let $F: X \times Z \rightarrow Y$ be a multifunction such that all Z - sections

$$
\begin{equation*}
X \ni z \rightarrow F^{z}(x):=F(x, z), \quad z \in Z \tag{25}
\end{equation*}
$$

fulfil the Lipsohitz condition of the form

$$
\begin{equation*}
h(F(x, z), F(t, z)) \leqslant K(z) \cdot|x-t| \tag{26}
\end{equation*}
$$

and all X - seotions $F_{x}: Z \rightarrow Y$ are upper semicontinuous. Assume that the values of F are compact subsets of Y. Under these hypotheses there is a oontinuous seleotor f : $X \times Z \rightarrow Y$ with $K(x)$ - Lipsohitzian $Z=$ sections.

Proof: Let $C(X, Y)$ denote the space of all continuous maps from X into Y. The somoalled compact- open topology in $C(X, Y)$ is that having as sub-basis all sets $\{f \in C(X, Y)$: $f(K) \subset G\}$ where $K \in K(X)$ is compact and $G<Y$ is open. Let $C_{K}(X, Y)$ be the subset of $C(X, Y)$ having Lipsohitz constant K. Define the multifunotion $P: Z \rightarrow C(X, Y)$ by formula:

$$
\begin{align*}
& Z \ni z \mapsto P(z):=\left\{f \in C_{K(z)}(X, Y):\right. f(x) \in F(x) \text { for eaoh } \tag{27}\\
&x \in X\} .
\end{align*}
$$

It is easy to observe, that the values of P are closed subsets of $C_{K(x)}(X, Y)$. We prove that (27) is pseudo upper semioontinuous mraltifunction from Z into $K(C(X, Y))$. In fact it suffioes to prove, that $P^{-}(D)$ is closed in Z whenever D is a closed set of the form

$$
D:=\left\{f \in C(X, Y): \tilde{D}\left(f, f_{0}\right):=\sup \left\{d\left(f(x), f_{0}(x)\right): x \in X\right\} \leqslant x\right\}
$$ where $f_{0} \in C(X, Y)$ and $r>0$ is a positive real number. Denote by $\bar{K}\left(f_{0}(x), r\right)$ the closed ball in Y contered at $f_{0}(x) \in Y$ and of radius r. Ve have:

(28) $P^{-}(D)=\{z \in Z: P(z) \cap D \neq \phi\}=\left\{Z \in Z: \bar{K}\left(r_{0}(x), r\right) \cap F(x, z) \neq \varnothing\right.$

$$
\text { for } \left.a l l x \in X^{\}}\right\} .
$$

Sinoe all X - sections of F are usc, i.e. $F_{X}^{-}(\bar{K})$ is closed for eaoh olesed subset $\bar{K}<Y$, we infer that the set

$$
\begin{equation*}
\left\{z \in Z: F(x, z) \cap \bar{K}\left(f_{0}(x), r\right) \neq \varnothing\right\} \tag{29}
\end{equation*}
$$

-

is olosed in z for each $x \in X$. Therefore :
(30) $P^{-}(D)=\bigcap_{x \in X}\left\{z: F(x, z) \cap \bar{K}\left(f_{0}(x), x\right) \neq \varnothing\right\}=$

$$
=\bigcap_{x \in X} F_{x}^{-}\left(\bar{K}\left(f_{0}(x), x\right)\right.
$$

Is closed in Z for each x belonging to X. Consequently P is upper semicontinuous. By virtue of theorem 1 the values of (27) are nonvoid. The compaotness of the values of multifunctIon P follows by using the Arzelamasooli theorem from the equicontinuity of the family $C_{K}(X, Y)$ and from the fact that for each $x \in X$ the section $\{f(x): f \in P(z)\}$ is oompact in Y by virtue of the point-compactness of our starting multifunctlon F. Applying theorem 4 we get the continuous function $p \in C(z, C(X, Y)$) suoh that $P(z) \in P(z)$ for each $z \in Z$. Define ${ }^{f}(x, z):=p(z)(x)$. By standard argument $f \in C(X x z, Y)$. Moreover $f(x, z) \in F(x, z)$ for each $(x, z) \in X x z$ and F^{z} fulfil1s (10) with the Lipsohitz constant $K(z)$. The proof (similar to the proof of theorem 6 from my previous paper [21]) is theroby achileved.

Let us remark, that the space X in theorem 5 may be assumed to be the whole real line $R=\bigcup_{n=-\infty}^{+\infty}[n, n+1]$, since the selectors q_{n} of $Q_{n}:=F^{2} \mid[n, n+1]$ may be find with the additional property that $q_{n}(n+1)=q_{n+1}(n+1)$ and thus may be stioked to obtain desired seleotor.

QUESTION 2. Does there exists a multifunction $F: R \rightarrow R$ With closed (nonoompact and nonconvex) values fulfilling (9) but posessing no oontinuous (lipsohitzian) seleotor? The sign h in (9) in the present aituation stands for generalized Haudorff motric (in the meaning of Yung [22]).

Following [6] a metric space (x, d) is strongly connedted if there exists a sequence $c_{n} \in K(x)$ of compact subsets such that :

c) if K_{0} is an open ball in C_{n} and $t, x \in K_{0}$ are such that $d(x, t)=2 R$ then for each $r>0$ the intersection $K_{0} \cap K(x, R+r) \cap K(t, R+n) \cap C_{n} \neq \varnothing$ is nonempty whenever $n \in N_{0}$ Denote by x_{0} certain point from this intersection.
d) if x_{i}, x_{j} belongs to $C_{n}, i, j \in\{0,1,2\}$ are such that $d\left(x_{i}, x_{j}\right)<2, r_{0}$ then there exist points $t_{k} \in K\left(x_{0}, x_{0}\right) \cap$ $\cap K\left(x_{k}, r_{0}\right) \cap C_{n}, k \in\{1,2\}$ such that $d\left(t_{1}, t_{2}\right)<r_{0}$ for all $n \in N$ 。

Each strongly connected metric space is connected, separable and locally compact, but it may be incomplete. Each convex compact subset of Banach space is strongly connected and each finite dimensional Hilbert space is strongly connected.

THEOREM 6. (cf. [5],[6]) . Let X be a strongly connected metric space and Y an arbitrary metric space. If $Q: X \Rightarrow Y$ is a multifunction such that : 1^{0} card $Q(x)=n$ for each $x \in X, 2^{0} Q$ is lower semicontinuous (resp, upper semicontinous) then Q admits exactly n distinct continuous selectors:
(31) $Q(x)=\left\{q_{1}(x), q_{2}(x), \ldots, q_{n}(x)\right\}, q_{1} \in c(x, y)$

Moreover $Q \mid C_{n}$ is continuous.
Combining theorems 6 and 4 we are able to prove the followling:

THEOREM 7. Let X be strongly connected metric space, Z an extremally disconnected topological space and Y an arbitrary metric space. Consider a multifunction $F: X \times Z \rightarrow Y$ such that

```
card }F(x,z)=n for each (x,z)\inX x Z
```

and such that all Z-section (25) are lower semicontinuous and all X - sections are upper semicontinuous. Then F has a continuous selector $f: X \times Z \Rightarrow Y$.

```
        Proof: Let us redefine D in the proof of theorem 5
``` as follows:
(33) \(D:=\left\{f \in C(X, Y): \quad \sup \left\{d\left(f(x), f_{0}(x) \mid: x \in C_{n}\right\} \leq r\right\}=\right.\)
\[
=D\left(f_{0}, r, n\right)
\]
and use the theorem 6 instead of theorem 1 to check that \(P(z) \neq \phi\) for all \(z \in Z\). The values of \(P\) are all of the cardinality \(n \in N\) and thus are compact so that the theorem 4 can be invoked to obtain p. The desired selector \(f\) is defined similarly as In the proof of theorem-[5].

If \(X\) in theorem 6 is normable and separable rather than strongly connected, and the space \(Y\) is Banach then if \(Q\) Fulfilis the Lipschitz condition (9), its selectors \(q_{1}\) from (31) are also Lipschitzian with the same constant K. It would be interesting to known can be the above condition imposed on the space \(X\) relaxed. The possibility to obtain continuous selectors for multifunotions, whose Zesections fulfills the condition of others existing thoorems e.E. [8], [13] for multifunction with contractible values, [16] for multifunctions with starsheaped values will be investigated inalatter paper.

QUESTION 3. Does the target apace \(Y\) in theorems 1 and 5 on n be generalised to be an object of the oategory of Lipsohitz spaces and Lipechitz maps which is defined sinai= laxly as in Fraser [27]. For any sot \(Y\) lot \(S(Y)\) be the Tamify of all nonnegative functions \(b\) defined on the square \(Y\) Y which are symetrio and vanishing on the diagonal: \(b\left(y_{1}, y_{2}\right)=\) \(=b\left(y_{2}, y_{1}\right)\) and \(b(y, y)=0 \quad y_{1}, y_{2}, y \in Y\).

A Lipschitz structure on \(Y\) is subset \(L C S(Y)\) such that:
\[
\begin{equation*}
b, c \in L \quad a \in S(Y) \quad a \leq b+c=\Rightarrow a \in L \text {. } \tag{12}
\end{equation*}
\]
\[
\begin{equation*}
\bigwedge_{a \in L} \bigcap_{b \in L} \bigwedge_{p, q, 0 \in Y} b(p, q)+b(q, 0) \geq a(p, 0) . \tag{Lu}
\end{equation*}
\]

A Lipsohitz space is a pair (Y, \(L(Y)\)), whore \(L(Y)\) is a Lipsoot ty structure on \(Y\). Let (\(X, L(X)\)), (\(Y, L(Y)\)) be two Lipschlitz spaces.
For \(T: X \rightarrow Y\) we define \(T^{\xi}: S(Y) \rightarrow S(X)\) by the formula: (34) \(\left(T^{f} b\right)(x, 0):=b(T x, T \in)\) for every \(b \in S(Y): x, 0 \in X\). A singlevalued map \(T: X \rightarrow Y\) is called a Lipsohtz operator Af \(T^{\S} L(Y)<L(X)\). It is olear that every Lipsohitz space (\(Y\), \(L(Y)\)) carries the uniform structure determined by the entourages:
\[
\begin{equation*}
\{(y, 0) \in Y \equiv Y: b(y, 0)<t\}, b \in L(Y), t>0 . \tag{35}
\end{equation*}
\]

Every Lipsohitz operator is a uniform morphizm.
Any function \(E: L(Y) \rightarrow L(X)\) is called a Lipechitz rank.

It is evident thet \(T: X \rightarrow Y\) is Wpeohits eperator iff thore exists a rank auoh that
(37) Ga TET :=\{ \(\left\{\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)<(X X X) \leq(Y X Y):\)
\[
\left.y_{1}=T\left(x_{1}\right), 1=1,2\right\}<\delta^{\xi}
\]

The author ia very obliged to Krzyaztof Przesiawski fer his very helpful oriticism and numerous ossential improvementa. REFFERENCES
[1] Mo Allister B. L., Hyperspaoes,ócarts and multifunotions, Nopali Math. Sci. Rop. 8:2 (1983), 45-68
[2] Antosiewioz H.A., Collina A., Continuous seleotions and differential relations, J. Differential Equations 19 (1975), 386-398
[3] Aubin J. P., Cellina A., Differential inolusions, set valued maps, Grundiohren 264, Sprincer 1984
[4] Brossan \(A_{0}\), on differential relations with lowor continuous right- hand side, J. Diff. Eq. 37 (1980), 89-97
[5] Carbone Li, Su uno criterio di selezione oontinua, Boll. U.M.I. \(12: 4\) (1975), 127-137
[6] Carbone L., Seleaioni oontinue in spasi non lineari e punti fisai, Rond. Ciro. Mat. di Palermo 25 (1976), 101-115 [7] Colleti Go, Continuous seleotions and multivalues differential equations, Riv. Mat. Univ. Parma 7:4 (1981), 361-366
[8] Fryszkowski A., Continuous seleotions for a olass of non--convex multivalued mappings, Studia Math. LXXVI, fasc. 2 (1983), 163-174

Graf S., A measurable selection theoren for compact- valued maps, Manusoripta Math. 27 (1979), 341-352
[10] Hasumi M., A continuous seleotion theorem for oompactvalued maps, Math. Ann. 179 (1969), 83-89
[11] Hermes \(H_{*}\), On continuous and measurable selections and the existence of solutions of generalized differential equations, Proo. AMS 29:3 (1971), 535-542
[12] Hermes H., Existence and properties of solutions of \(\bar{x} \in \mathbf{R}(t, x)\), Studies in Applied Mathematics 5 (1969),188--193, SIAM Publications
[13] Horvath C., Points fixes et coicidences pour les applications multivoques sans convexité, C.R. Aoad. Sci. Paris, 296, sérle I (1983), 403-406
[14] Klein E., Thompson A., Theory of correspondences, W1ley, NY 1984
[15] Maritz \(P_{\bullet}, A\) note on semicontinuous set-valued functions, Quaestiones Mathematicae 4 (1981), 325-330
[16] Mass-Colell A. , A selection theorem for open graph correspondences with star-sheaped values, Journal of Math. Analysis and Appl. 68 (1979), 273-275
[17] Michael E., Cozvex structures and continuous seleotions, Conadian J. Math. 11 (1959), 556-575
[18] Nadler S., Hyperspaces of sets, Dekker, NY 1978
[19] Sohwartz L., Kurs analizy matematycznej I, PWN, W-wa 1979
[20] Smithson R., Multifunctions, Nieuw Arch. Wisk. 20 (1972), 31-53
[21] Sleqzak W., Multifunctions of two variables with semicontinuous sections, Problemy Matematyczne 5/6 (1986), 83-96
[22] Jung C. \(\mathrm{K}_{\mathrm{o}}\), On generalized oomplete metrio spaces, Bull. AMS 75 (1969), 113-116
[23] Ko \(H_{0} M_{0}\), Fixed points theorems for'point to sot mapping and the set of fixed points, Pacific J. Math. 42 (1972) 369-379
[24] Wegryyk R., Fixed-points theoreme for multivaluad functions and their applications to functional equations, Dissertationes Math. CCI 1982 , 1-31
[25] Joseph J.E., Multifunctions and graphs, Paoifio J. of Math., 79 (1978), 509-529
[26] Smithson R.E., Compactness and conneotedness as composab1. properties, J. Austra1. Math. Soc. 18 (1974), 161-169
[27] Fraser R. \(\mathrm{B}_{\mathrm{A}}\), Axiom systems for LApschitz structures, Fundamenta Math. 66 (1969), 15-24

W SPRAWIE CIAGLYCH SELEKTOR'́'W DLA MULTIFUKCJI Z NIEWYPUKZ YMI Wartościami

\section*{Streszozenie}

Glównym rynikien tego artykulu jest dowód istnienis oiaglego selektora dla multifunkcji \(F: X \times Z \rightarrow Y\) o zwartych wartosciach spolniajqoej warunek Lipsohitza ze wzelęu na plerwsza zmiennq oraz półciagiej z góry ze wigledu na druga zmienna z osobna, przy czyn o przestrzeni \(Z\) zakiada sif, ze Jest ekstremalnie niespojna, a o proestrzeni \(X\), ze jest zwartym przodzialom prostoj rzeczywistej, podczas gdy wartósol sa podzbiorami dowolnej zupelnej przestrzeni metrycznej. Wymagalo to uogólnienia twierdzenia Hermesa z [11]. Dla kompletnośol
pryytoozono zaadaptowane z literatury praykiady, te pewne inne nasuwnjqce sie kierunki uogolnien skazane sq na niepowodzonie. Opracowang dla twierdzonia 5 motodq dowodu zastosowano nastepnie do przypadku multifunkcji, ktorej wartokoi sq zblorami skónczonymi tej samej mooy, przy ozym przestrzon \(X\) moze byt wtody jedynie silnie spójna wonsie Carbone, a lipschitzowskód ciéd zastapiona zostajo pólciaciościa z dolu。```

