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CONCERNING CONTINUOUS SELECTORS FOR MULTIFUNCTIONS DEFINED
ON PRODUCT SPACES

Let X be a topological space and (Y, d) a jnetrle spaoe.
A multlfunction Fi I ~ T 1is called almost lower semicontinu-
ous (of. ) if for each xqg€& X and eAoh £> 0O there is a
neighbourhood U of 1O such that:
) 0 Ek(F(X),£) - i~Uj / where
@) K(F(X).£ ) = [ycY :dist(y, F(X))*t}=

= [ytY: inf £d(y,a) : at. F(xX)}cen.

A multlfunction is called lower semicontinuous (shortly Isc )
(r9]) if
@A) FW =jxtX : F)nU i fi)
is open in X for erery open U in Y. Obviousty eaoh lower
semicontinuous multifunotion is almost lower semicontinuous,
but not conversely in generat. In accordance with a recent
work of de Bdasi and Myjak 2] a multlfunction F: X Y is
called weakly lower semicontinuous at point xq£ X 1if for
each 6> 0 and each open neighbourhood Y of xo there
exist an open neighbourhood U of XJC.\ and a point

X~E£ U such that:

) F(xM)E K (F(xX), t ) whenever x¢ U.

If F 1is weakly lower semicontinuous at each point x£.X, then



F i* aimiply called weakly loner samieontinuoua, Thare ar*
Isc miltifunctions vdthout being yealtly lac and rloe T»rsa,
Eacb wo&lcly Isc multifunction ia almost Isc (aee LgJ , lemma 1
in ooimection with [41 )» For the related notion of nearly
iower sescicontinui.ty the reader ia refered to [I?]»

If F 1ia single - valued, say F(X) = If(z)}tuen almost
"oyer aemicontinudty (and thus both Isc and wealcly Isc) all
reduoe to ordinary oontinuity of fi X Y » Amultlfunction
F: X T called oonpaot, if the image

o) F(X) = Ul FX) : xex]

is relatiirely compact in X. Paper [2] contains the following
aelection tbeoresi

THEOREM 1 (f2])» Let X be a paraeompact topologlcal space,

Y a Banach space and F : X Y a wealcly loner semiconti-
nuoua Bciltifimotion vith compact and convex values. Aesume
that F la a compaot in the aboTt sense [51 <Then F haa a
continuous sslsctor, i«e« a function ft X-=> Ysuch that
F(X)€EF(x) for all X.

REKARK 1j An inspection of the proof of theoren 1 shovs that
the spaoce X may be assumed to be K-paracompact only, where
K= eeight of X.

The aim of the presented paper is to shon how the methoda
developed in [151 oan be used to combining the above theorem 1
vitn faaous Kichael*a aelection theoren [10] in order to
obt&ining a new aelection theorem in the apirit of theorem U.4
fro® [15]

Let ui recall, that the multifunotion F: X <Y 1is Co(X, Y)-
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-stable (cf« fi53* def. 1«1) if the following tno conditions

tire satiafied:

) (E»y*: f(i)tF(x) for all x> nCo(x, Y)/ O

(i) for every r, r*¢-R= and every fe Cq(x, y) such that

FOOn K(F(x), r)/ 0 for all x£X, there exists a

function gt CQ(X, Y) suoh that g(x)e FOOnNK(F(X), r + r.Q

for all xtX, Her© the sign cO(x» Y) denote the Banach

space of all continuous, bounded mapa f: X Y eaguiped with

the uniform norm:

(6) mfm := sup { fF)I¥ > xax}

LEMMA 1, Let X be a paracompact topological space, Y a

Banach space and F: X Y a weakly lower semicontinuousi,

compact nrultifunction with oonvex and compact values. Let

f: X <Y be a continuous function such that F(x)n K(F(x),r)j40

for each x£ X, Then for each f> 0 there orists a number

@@= E) > 0 such that

@ KFX),u")d)n KGX),<c ) K(FGIn G), £ )

for each xfcX, where

@B G6(xX) = KEFX, r + rl1) for any fixed positive constant

r*« The sign K (F(X), r) denote the closed bali centered at

f(X) and with radius r.

PROOF; Suppose, by a way of a contradiction, that there erists

an £ > 0 such that for each CIn = 1/n , n€£EN there is an
X for which it is possible to construct a seguence (vn"t

v cY Ertne :

(4°)) w,t K ;{xn - 6'1* r X (G(xn)t5"u) and nsoreoyer

(10) dist (Wm v n)a G (xn))A- £ for all n = 1,2,.__.
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Let us consider a sec/uence (vn) of ""Botora of the space Y

such that;

(1) vn<€ F(xn)rtk (fF(xn), r) n£EN

Since all the sets TfT(xr) are non-void, compact and con\ex

and contained in the compact set cl co F(x), thus the sequen-

ces and (Ff(x )) have convergeat subseguencea,

Vithout any loss of generality we can assume, that F(xr.)

tenda to A in the Hau3dorff metric:

12) h(A,B):= max (inf sup d(a,b), sup inf d(b, a))
aeA beB be B ae a

For, let us recall thsit the hyperspace of closed and convex

subsets of the compact metric spaoe F(x) is a complete

metric space with ress?ot to the above metric h(cf. L3j)»

We cau also assume, that f(x*) -y p € cl (00 F(x)}4

irom the above mentiored completeness of the hyperspace of

sitiultaneously compact and convex subsets of F(x) we infer

mat our set A is not only compact, but also convex,

Lnalogously we roay without loss of generality assome that

v v and w (if n tends to infinity), in such

a lanner, tir.t

(13) vt K(p, r), vd Ao £(p,r + r*) (of, lemma 2 below)

Lot us consider the olosed segment lv, w], It is obviously

contained in the intersection AnK(p, r ™) and the bound

o K(p, r+rl) contains no more than one of the ends of that

segment (by lemma 2)
Tak® wE£€ [v, w) = fv, v]\ [w] for whioh iw » wE”™t/s 3,

We have wL Afi K (p, r+tr®). Now let 0 C v< €/3 satisfy
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the eondition

(a») Kw, 2%)C K, r+tr™).

Bearing in tnind that Ff(*n)->p fu*> +owe deduce the ezistenee
of an nQE N such that for the inclusion K(Ww,>; )”G(xr)
holds. On the other hana w£ A and F&xn)-> A for n-i +0 ,
From this it follows that there exists an n«> n such that
for every n~nl the intersection F(n)nK(w, % ) is nonerapty.
Take an arbitrary point w” belonging to this iIntersection
F(xii)h K(w, ,{<_>)- Obviously WXI*E F(XXX) 0 G(XXX). For n>n
sufficiently large, so that the ineguality Bwr - wl|<€ /7 3
holds, we have the following estimates:

(15) Hvn - wr BS Ivn - wi + qdw-wi  + 1w - wr)<e/ 3 +

1
+ £/3 + £><£.

Thus diet (e F(xQ)n G(X,,?) - il\n&x— w)'«uC£ , But this is in
contradiction with (10) so that the proof of lemma 1 is
completed,

LEMMA 2. Let F_. F be two nonempty bounded closed subsets

1 2
of the Banach space Y and let ri1, r2~ ° be given

constants. If hfF™ Fz)-2Z, I - rEln £2, then

16) h (K (FArn, K (F2, r2) < El +€2 »

where h is given by the formuta ti2],

PROOF: Ve need only to show that dist (y, K(f2» >><f, +r2
for every y belonging to K(F ,”~5 because of the symnetry.
Given any y C K(Fi»rl) and an arbitrary positive number I >0 .
there exist,s a point y~F” with Hy - y* 16 ™ + y 72,

a point y2 Fg with ily® - Y21-~1 + "/ 2 and a P°iRt Y3
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belonging to the segment co %y, y2e with iy* - y2 =
=min (2, by - y2)X). Clearly y™ £ K(F2» r27ne If Y " Y2 "r2

then o) =y and 1y - yr» = @ e 0*1 contrary if y - y2 "r2

then 3 - e and

A7) By - rji sy -y, B+ 19yl - y25<*® + 2/2 + -1+ /2 -
=ri+$ M
from hore we infer that

(18> y - YYyu=ly - y2 - JynN - y2 =r1 +i”N +* - r2 5

* -2 +el +7?7 e
Thus in either case dist (y, K(F2, r2))~i. +~2 +
which implies the assertion, sinoe o yhbhs arbitrary smali.
LEMMA 3. Under all assurapiions of the- lemau- the multifunot-

ion FOG: X -iY definod for all x& X by the formuta:

(19) (FAG(X) = FXxX)0GXx)

is weakly lower semicontinuous,

PROOF (cf.L2j, lemma 3 )% Let £ m0 be fixed and let us seloct
an =0'(6)> 0 as in the lemina 1, Let V be any open
neighbourhood of the point x0< Since the function

f: X =Y 1is continuous, hence there exists an open neighbour-

hood V<V of our point xgq such that:

(20) G(X) K (G (x), 5') for X, 5C v =

Boardng in mind that F is weakly lower semicontinuous we infer
the existenco of an open neighbourhood U<V of the point

and the existonce of a point x¢ U such that:

(@A) F(x")<r-K (FCr),n) whonevor x£0 ,

1
By (21), (20) and (7) we obtain the inclusions:
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22) FX")Ff>G(i")CK (fW.S" )AK (g(x),6")<K(F(x)oG(x),E )
~:henever xt-D, That completes the proof.
LEMMA k, Let X be a paracompact space ) Y a Banach space
and F: X 3Y a weakly lower semicontinuous compact multifunct-
ion with compact, convei values.
Then F is CQ(X, 19 - stable (cf. (i) and (iD)).
PROOF: The item (i) is an easy conseguenee of the theorem 1 and
of the fact, that any continuous function with compact range
is bounded. In order to prove the item (ii) observe, that by
lemma 3 the multlfunction

X3x & FCX) n K(F(xX), r + rl)c Y
is weakly lower semicontinuous. Although in all infinite-dimen-
sional Banach spaces the bali K (f(x), r + r”™) is never
compact, but the intersection FQ)FtK(F(x), r + rl1) is of
necessary compact as well as oonvex. Invoking once again the
theorem 1 we obtain a continuous mapping ge CQ(X, Y) being
a desired selectdér for the above intersection. Thus the proof
of CO(X, Y)- stability of F is finished.
Now, we are in a position to state and prove our main result:
THEOREM 2. Let T and X be two paracompact spaces and
(Y, I"E) a Banach space. Suppose that F: T x X =Y 1is a
nultifunction such that:
(a) the set F(t,x) is compact and convex for every (t,x)cTxX
(b) for everj x£X the urultifunction F(-, x)iS weakly
lower semiconfcinuc is and for each of its continuous selectors
S, cno has:

«z» lim sup dist (g(t), F(t,u)) =0
u =>x tb T
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Under such hypotheses there exists a continuous function

f: TxX Y such that f (t,i)¢éF (t,x) whenover (t,i) ¢TiX,
PROOFj Let Cqg (T, Y>:= C(T,y)n b(T,Y> be a Banach space
of bounded continuous funotions eguipped with the uniform
norm (6).

Pefine the multifunction H: X <« Co (T, y) by putting

2U) HE):= {gECO(T, Y): g(t>£ F(t, x) for each tETJ.
Tahing into account that the range F(T, x):= F(C , X) *T is
(for eaoh x£X) relatively compact in Y and hence bounded,
we infer from theorem 1 that all values of B are nonvoid.
If el» S2€ H(X) then for Of£a ¢ 1 » a=s™(*) + (@ “ a)g2(Of
£ F(x,t) because of the convexity of all F(tfx) . Thus
agl + (1-a) g2 belongs to H(X)so that R 1isconvex-valued.
Moreover if (g" ) is an uniformly oonvergent sequence
of continuous functions from T onto Y  such that
g (O£ F(,x) then g = IiAm AN H(X) as well and thus
H i3 closed valued«
Let us prove that the multlfunction H given by (2U) is
lower semicontinuous. To this end fix H(x) and r>0.
Ic is easily seen, that
(25)  H" (K (9Q, M) = ~x€X :h()aK (gQ, r) i 0} =
= [x¢EX : there exists gr€ cOCTi Y) and ™ r such
that g (t)€F (t,x) rt Ky(go(t), r - £ )for all
tC TF.
Fix snfo€ (O,r) and xQf tQT F (t, *) (K@), r- £¢)).

Since F(e, xQ) is, by lemma 3» stablo, it follows that there
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exists an gM £ Cc(Tf y) such that

(26) gl(t)€-F(t, xo)p K(Go(t), r - £0/2) for every t£T.

From this fact and froc (25) it ft. ows that:

@7 H'(K (@_, M) ORI CCRONED)
To observe that H~ (K(gQ,r)) is open in X, let us fix a
point

(28) xl.e W tn . F(t,. )— (K(gg(t), r —E))-

Therofore, the exists an £ £(of r) suoh that the intersection

F(t, x1)AK(gQ(t)fr - £/~ ~ 0 1is nonempty for every tCT.

Since the nrultifunotion T3t NFEO(E, xM)ce.Y is  C&(T, Y)-

stable there exists an g™M.Co(Tt Y) such that

g2(B)EF(t, xA) O K(go(t), r - £2) for every ti T, where
(, By (23) there exists a neighbourhood v(x.j)

of x1 such that dist (g-,(Y), F(t,x))< ~2/2 for every

XEV(x1), teéT

Fix x2 £ V(x1), t2€T. Let y2<EF(t2» x2) be such that

Ne2(*2) ~ y2 /7 4°1~2/° 2* Sinco ®«27M2™ So r “t2
we have Hj2 - gQ( ANY2 T R2NF2N ok Aent2n ~ KON 4
Nr —E£2 +7M2/2 =1 -£2/2 and so y2 belong to

F(t2 ,x2) n K(go(t2), r - £2/ 2). Thus we have proved that
the neighbourhood V(x.j) of x is contained in the set

u n F(t, « )"[K (eo(t), r - 2 )] whioh,
c&(0, r) t£T
thorefore, is open. Let hf£C(x, CO(T» Y)) bo a continuous

selector for H existing in complianee with celebrated Maehael s
selection theorem [93 . Define f: Tx X =Y by tho formuta

f(t,x) = h(x)(). Since all functions of the family
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(f(t, *) : t € t} ara equzcontinuous, it foliowa that

FEC(TI X, Y) (cf, ri],L8]). Obviously, the function F is
the claimed continuous selector for F. Nok, we are going to
roplace in Ricceri*s theorem ktk a aelection theorem from
[11j by the following comprehansive although somowhat corapli-
cated Michael,a result (y0I*im2J ):

THEOREM 3 (112]) Let X be a paracompaot space, Y a Banach
space, ZCX a subaet with 2-° C ™ X a countable
subset, and F; X Y a lower semicontinuous multifunction
such that F() is closed in Y for x</-C and FX) 1is
eonvex for x ™ Z, Then F has a continuous selector,

Note, that raecans that dim E 0 for every set
E~ z which is closed in X, where dim E denotes the
covering dimension of E and observe that, for normal spaces
X, dim™Z 5 0 1is valid if either dim Z50 or dim X-$0,
Thus theorem 3 incorporates several known results, as survayed
in fioj.-

A direct modifieation of the proof of theorem in L15]»
with theorem 3 1invoked in the place of the result from fllj
glves

THEOREM k. Let T and X be two paracompact topological
spaces and Y a Banach space. Let zZ™ T and 2zZ»<5 X be
two sets with dim™Z~5 0 and dim~Z”"5 O respectively and
let ST and C2c; X be two countable subsets. Supposa
that a multifunction F: TxY ®Y satisfies the following
conditions:

(A-1) the set F(t,x) is convex for every (t,x)eT x(X- Zg)
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F*(T-Z21)xX end closod for (t,x)tTx (X-C2) (T-Cl)x X ,

(B-1) for every r.CX the image F(T, x) = Fx(bt)is boundéd,

tha multifunction F* = F («, X): T Y ia lower

3emicontinuou3 and for each of ita continuous selectors

on has (23).
Under such hypotheses, for everyclosed set Dc X and every
continuous selector g": Tx D ~Yof the restriction
F ITx D such that the funotions of the family ~gn(t, *) : t¥t]
are eguicontinuous, there exists a continuous selector
f :Tx X Y for F suoh that:
(@ for every xfcX the Tfunction fX;;=F(.,x): T #&Y is
continuous,
(b) the functions of the family f (L, «): ttTj: are
equicontinuoust
(e) the restriction F [ Tx Dis equal to g"
REMARK 2: Recall a subset S of a topological space X is
discrete if it has no accumulation point in X, and that C

is sigma-discrete if C 1is a countable union of discrete sets

Snf n&WT. It is easy to checlc (cf. FI21, p. 8 )that theorem 3

(and thus also our theorem *) remain valid with essentially

the same proofs, if " countable " 1is weakened to 'sigma-

-discrete”

REMARK 3: Observe that theorem 3 cannot be directly applied

to obtain the exzstence of a continuous selector of a nrulti-

function F satisfying the hypotheses (A-1) and (B-1) of

theorem h. In fact, in theoreir h condition (B-1) implies

that F #3 jointly lower semicontinuous on the product space
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Tx X but, rs it is we.llsiTov.ii, this produot Tx X need not

be paracompact,

REMARK ki There eiists a urultifunction F: RxR «R ( R denotoa
a real lirie) with compact, eonvex values, havjng lover semicon-
tinuous all sections F(t, = ) , t&R and F(», x), itH but
without any measurable selector,

PROOF: Let h: R V Lo*11l be an arbitrary nonmoasurgbie

function, Then put
([h) } iff t =x

(29) F(t,x) = I _
v[o, 1]iff t ~x.

It is easilychecked that Fdefined by (29) fullfils all
requirements. See also L16 3 for further interestlng counterexaia-
ples.

Now we want to improve the theorem k,5 from fi5] in an
snalogous way. We say that a topological space X is extremally
disconnected, if the closureof every open sot is open, A multi~
function F:X & Y between topological spacosX and Y is
upper semicontinuous if the set
@G0 F+) = @0O™"Xi F(x)cul}= X - F” (Y-U)
is open in X for any open set U in Y, Following 16j F 1is
called closed, if the image F({d):= U(.F(X): x£D} (cf.C5j )
is closed in Y for every closed set D in X, A single-
-valued mapping ¥ from X into Y 1is called compact if the
fiber ¥°1(y) is compact in X for any yCY and 1is called
perfect, if it is continuous, closed and compact, Ther Hajsumi's
C6J main theorem reads as follows:

THEORLM 5 (L) , Lot X be an ertremally disconnectod



Hausdorff spaca, Y a regudtar Hausdorff space, and F an uppar
soll.continuous mapping l1lrcss X into tao family of all non-void
compact subsets of Y. Then there exi3ts a continuous selector
fs X =Y for F. Furthermore we have the following;
(a—1) IT tho set ™ d-X: y¢ F(x)j is oompaot in X for avery
y<EY then the selector f can be made compact
(a~2) If F 1is also closed, then f can be made closed and
compact, so that T 1is perfoct,
Combining theorem 5 with theorem 3 we obtain the following
analogue of Ricceri”s theorem k,5 from Tfi53 =
THEOREM 6. Let T be an extremally disconnected Hausdorff
topological space and let X, C, Z and Y be as in the
theorem 3, Suppose that the multifunction F: h X ~ Y has
the following properties:
(a-2) the set F(t,x) is compact for every (t,x)€.T x(X-C)
and eonvex for every (t,x)¢-T x (X-2)
(B-2) for every cfC the multifunction F°: T Y defined
by F°(t) := F(t,c) has a continuous selector,
(C-2) for every x0X the set F(TFf x) is bounded, the
multifunction F(Ct x): T Y is upper semicontinuous
and for each of its continuous selectors g on has 23)e-
Onder such hypothesos, the thesis of theorem k holds,
REMARK 5: In theorem 6, in generalt, the multifunction F
is neithor lower seiailcontinuous nor upper semicontinuous on
the produot space TxX, For rcore informations about such riulti-
functione with upper semicontinuous X-sections and lower

semicontinuous T-sections tho reader is roferod to [16J , where



a multivalued analogue of famous Kemoisty”s theorem is presen-
ted. Note, that many results about so-called Carathoodory,s
selectors (see ".73, CkI3 )may be improved by using the recent
Michael/s theorem 3,
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O CIAGLYCH SELEKTORACH DLA MULTIFUNKCJI OKRESLONYCH NA

PRZESTRZENIACH PRODUKTOWYCH

Streszczenie

Udowodniono istnienie ciggtego selektora dla multifunkcji
dwéch zmiennych, ktérej jedne ciecia sg stabo pédciggte z dotu
w sensie Myjaka i de Blasi, a drugie podciggte z dotu,i ktdéra
ponadto spednia pewien dodatkowy warunek, V dalszym ciggu
wskazano na mozliwosé wzmocnienia pewnyoh kryteridw Ricceriego
[15.] w efekcie uzycia ogb6lniejszego twierdzenia Michaela z [12j

w miejsce jego wczesniejszego wyniku !11J zastosowanego w dowo-

dach z Tf153-



