

WLODZIMIERZ SLEZAK
WSP w Bydgoszczy
CONCERNING CONTINUOUS SELECTORS FOR MULTIFUNCTIONS DEFINED ON PRODUCT SPACES

Lot X be a topological space and (I, d) metrio space. A multifunction $F: X+Y$ is called almost lover semicontinuous (of.[4]) if for each $x_{0} \in X$ and each $\varepsilon>0$ there is a noighbourhood U of x_{0} suoh that:
(1) $\cap\{\mathbb{K}(F(x), \varepsilon): x \in \mathbb{U}\} \neq \phi \quad$ where
(2) $K(F(x), \varepsilon):=\{J \in Y: \operatorname{dist}(Y, F(x))<\varepsilon\}=$

$$
=\{y \in Y: \quad \inf \{a(y, a): a \in F(x)\}<\varepsilon\} \text {. }
$$

A multifunction is called lover semicontimuous (shortly lso) ([9]) if
(3) $F^{-}(U):=\{x \in X: F(x) \cap U \neq \phi\}$

1s open in X for every open U in Y. Obviously each lower semicontinuous erultifunction is almost lower semicontinuous, but not conversely in general. In accordance with a recent work of de Blasi and Myjak [2] a multifunction $F: X \rightarrow Y$ is called veakiy lower semicontinuous at point $x_{0} \in X$ if for each $\varepsilon>0$ and each open neighbourhood V of x_{0} there exist an open neighbourhood U of $x_{0}, ~ U C V$ and a point $x_{1} \in U$ such that:
(4) $F\left(x_{1}\right) \subset K(F(x), \varepsilon)$ whenever $x \in U$.

If F is veakly lower semicontinuous at each point $x \in X$, then

F is eimply called veakly lover emicontinuous. There are Isc multifunctions without being weakly lsc and vice versa. Eech weakly lsc multifunction is almost lsc (see [z], lemma 1 In oonnection with [4]). For the related notion of nearly lover semicontinuity the reader 1s refered to $[17]$.

If F is siagle - valued, say $F(x)=\{\{(x)\}$ tian almost - over semicontinutty (and thus both lsc and weakiy 1sc) all reduoe to ordinary oontinuity of $r: X \rightarrow Y$. A multifunction $F: X \rightarrow Y$ oalled oompact, if tho image
(5) $P(x):=\bigcup\{F(x): x \in X\}$

1s relatively compact ix X. Paper [2] contains the follovirig election theorem:

THEOREM $1([2])$. Let X be a paracompact topological space, Y a Banach spaoe and $F: X \rightarrow Y$ a wakly lower semiconti-上uous mitifmotion with compact and convex Falues. Assume that F is a compaot in the abovesense [5]. Then F bas a continuous selsctor. i.e. function I : $X \Rightarrow Y$ sirch that $I(x) \in F(x)$ for $a 11 \quad x \in X_{\text {. }}$

REMARX 1: An inspection of the proof of theorem 1 shows that the spaoe X may be assumed to be K-faracompact only, where $\hbar=$ velght of x.

The atm of the presented paper is to show how the methods developed in!15] on be used to combining the above theorem 1 Wita famous Michael' selection theorer [10] in oseder to obtaining a new selection theorem in the spirit of theorem 4.4 from [15].

Let ue rocall, tiat tho mitifmotion $F: X \rightarrow Y$ is $C_{0}(X, Y)-$
-stable (cf. [15], def. 1.1) if the following tivo conditions are satisfied:
(i) $\left\{f \in Y^{X}: f(x) \in F(x)\right.$ for ail $\left.x \in X\right\} \cap C_{0}(X, Y) \neq \varnothing$
(11) for every $r, x_{1} \in R^{+}$and every $f \in C_{0}(X, Y)$ such that $F(x) \cap K(f(x), r) \neq \varnothing$ for all $x \in X$, there exists a
function $E \in C_{0}(X, Y)$ suoh that $g(x) \in F(x) \cap K\left(f(x), I+r_{1}\right)$ for all $x \in X$. Here the sign $C_{0}(X, Y)$ denote the Banach space of all continuous, bounded maps $f: X \Rightarrow Y$ equiped with the undform norm:
(6) $\|f\|:=\sup \{\|f(x)\| Y: x \in X\}$.

IEMMA 1. Let X be a paracompact topological space, Y a Banach space and $F: X \Rightarrow Y$ a weakly lower semicontinuous, compact multifunction with oonvex and compact values. int $I: X \rightarrow Y$ be a continuous function such that $F(x) \cap \bar{K}(f(x), r)$; $\varnothing \varnothing$ for each $x \in X$. Thon for each $\varepsilon>0$ there exists a number $\sigma=\sigma(\varepsilon)>0$ such that
(7) $K(F(x), \sigma) \cap K(G(x), \sigma) \subset K(F(x) \cap G(x), \varepsilon)$
for each $x \in X$, where
(8) $G(x):=\bar{K}\left(f(x), r+r_{1}\right)$ for any fixed positive constant r_{1}. The sign $\bar{K}(f(x), r)$ denote the closed ball centered at $f(x)$ and with radius r.

PROOF: Suppose, by a way of a contradiction, that there exists an $\varepsilon>0$ such that for each $\sigma_{n}:=1 / n, n \in N$ there is an $x_{n} \in X$ for which it is possible to construct a sequence (w_{n}),

(y) $w_{n}=\dot{h}_{1}\left(x_{1}, \quad \kappa\left(G\left(x_{n}\right), \xi_{n}\right)\right.$ and moreorer
(10) dist $\left(w_{n}, F\left(x_{n}\right) \cap G\left(x_{n}\right)\right) \geqslant \varepsilon$ for all $n=1,2, \ldots$.

Let us consider a sequence $\left(v_{n}\right)$ of vectors of the space Y such that:
(11) $\nabla_{n} \in F\left(x_{n}\right) \cap K \quad\left(f\left(x_{n}\right), r\right) \quad n \in N$ 。

Since all the sets $F\left(x_{n}\right)$ are non-void, compact and convex and contained in the compact set cl co $F(X)$, thus the sequines $\left(F\left(x_{n}\right)\right)$ and $\left(\sum_{21}\right)$) have convergent subsequences. Without any loss of generality we can assume, that $F\left(x_{n}\right)$ tends to A in the Hausdorff metric:
(12) $h(A, B):=\max$ (inf sup $d(a, b)$, sup inf $d(b, a))$ $a \in A \quad b \in B \quad b \in B \quad a \in A$

For, let us recall that the hyperspace of closed and convex subset of the compact metric space $F(X)$ is a complete metric space with respect to the above metric $h(c f .[3])$. We cav also assume, that $f\left(x_{n}\right) \Rightarrow p \in c l(00 F(X))$. from the above mentioned completeness of the hyperspace of sfirultaneously compact and convex subsets of $F(X)$ we infer bat our set A is not only compact, but also convex. analogously we may without loss of generality assume that $v_{n} \rightarrow v$ and $v_{n} \Rightarrow w$ (if n tends to infinity), in such a manner, then
(13) $v \in \bar{K}(p, r), w \in \mathcal{A} \bar{K}\left(p, r+r_{1}\right)$ (f f. lemma 2 below) Let us consider the closed segment [vow]. It is obviously contained in the intersection $A \cap K\left(p, r+r_{i}\right)$ and the bound D $\bar{K}\left(p, r+r_{1}\right)$ contains no more than one of the ends of that segment (by lemma 2)
Take $\tilde{w} \in[v, w):=[v, w] \backslash\{w\}$ for which $\|\tilde{w}-w\|<\varepsilon / 3$. We have $w^{2} \in A \cap K\left(p, r+r_{1}\right)$. Now let $0<r<\varepsilon / 3$ satisfy
the condition
(14) $K(N, 2 \eta) \subset K\left(p, r+r_{1}\right)$.

Bearing in mind that $f\left(x_{n}\right) \Rightarrow P, n \Rightarrow+\infty$ we deduce the existence of an $n_{0} \in N$ such that for $n \geqslant n_{0}$ the inclusion $K\left(\tilde{w}_{n} \eta\right)<G\left(x_{n}\right)$ holds. On the other hand $\tilde{v} \in A$ and $F\left(x_{n}\right) \rightarrow A$ for $n \rightarrow+\infty$. From this it follows that there exists an $n_{1} \geqslant n_{0}$ such that for every $n \geqslant n_{1}$ the intersection $F\left(x_{n}\right) \cap K(w, \eta)$ is none $t y$. Take an arbitrary point w_{n}^{\prime} belonging to this intersection $F\left(x_{\bar{L}}\right) \cap K(w, q)$. Obviously $w_{n}^{\prime} \in F\left(x_{n}\right) \cap G\left(x_{\bar{L}}\right)$. For $n_{1}>n_{1}$ sufficiently large, so that the inequality $\left\|w_{n}-w\right\|<\varepsilon / 3$ holds, we have the following estimates:
(15) $\left\|w_{n}-w_{n}^{\prime}\right\| \leq\left\|w_{n}-w\right\|+\|w-\tilde{w}\|+\left\|\tilde{w}-v_{n}^{\prime}\right\|<\varepsilon / 3+$

$$
+\varepsilon / 3+\eta<\varepsilon .
$$

Thus dist $\left(w_{n}, F\left(x_{n}\right) \cap G\left(x_{n}\right)\right) \leq\left\|w_{n}-w_{n}^{*}\right\|<\varepsilon$. But this is in contradiction with (10) so that the proof of lemma is completed.

LEMMA 2. Let F_{1}, F_{2} be two nonempty bounded closed subsecs of the Banach space Y and let $r_{1}, r_{2} \geqslant 0$ be given constants. If $h\left(F_{1}, F_{2}\right) \leqslant E_{1}$ and $\left|r_{1}-r_{2}\right| \leqslant E_{2}$, then

$$
\begin{equation*}
h\left(\bar{K}\left(F_{1}, r_{1}\right), \bar{K}\left(F_{2}, r_{2}\right)\right)<\varepsilon_{1}+\varepsilon_{2}, \tag{16}
\end{equation*}
$$

where b is given by the formula [12].
PROOF: We need only to show that dist $\left(y, \bar{K}\left(F_{2}, r_{2}\right)\right)<\varepsilon_{1}+\varepsilon_{2}$ for every y belonging to $\bar{K}\left(F_{1}, r_{1}\right)$ because of the symatry. Given any $y \in \bar{K}\left(F_{1}, r_{1}\right)$ and an arbitrary positive number $\geqslant 0$, there exists a point $y_{1} \in F_{1}$ with $\left\|y=y_{1}\right\| \leq r_{1}+$? $/ 2$, a point $y_{2} \in F_{2}$ with $\| y_{1}-y_{2} i \leq \varepsilon_{1}+\gamma / 2$ and a point y_{3}
belonging to the segment co iv, y_{2} with $y_{3}-y_{2}=$ $=\min \left(r_{2},\left\|y-y_{2}\right\|\right)$. Clearly $y_{3}, K\left(F_{2}, r_{2}\right)$. If $y-y_{2}=r_{2}$ then $y_{3}=y$ and $\| y=y_{3}=0$. On the contrary if $y-y_{2} r_{2}$ then $y_{3}-y_{2}=r_{2}$ and :
(17) $\| y-y_{2}!\left|\leq\left|y-y_{1} i+i y_{1}-y_{2}\right| \leq r_{1}+r / 2+i_{1}+/ 2=\right.$ $=r_{1}+\varepsilon_{1}+n$
from here we infer that

$$
\begin{align*}
& y-y_{3}=\left|y-y_{2}-\right| y_{3}-y_{2}=r_{1}+\varepsilon_{1}+\cdots-r_{2} \leq \tag{18}\\
& \leq \varepsilon_{2}+\varepsilon_{1}+n
\end{align*}
$$

Thus in either case dist $\left(y, K\left(F_{2}, r_{2}\right)\right)=\varepsilon_{1}+\varepsilon_{2}+$ which implies the assertion, since ? was arbitrary small.

LEMMA 3. Under all assumptions of tide lemme 1 , the anltifunotion $F \cap G: X \rightarrow Y$ defined for all $X \in X$ by the formula:
(19) $(F \cap G)(x):=F(x) \cap G(x)$
is weakly lower semicontinuous.
PROOF (of. 2 \}, lemma 3): Let $\leqslant>0$ be fixed and let us seloct an $\sigma=O^{-}(\varepsilon)>0$ as in the lemma 1 . Let V be any open neiginbourhosd of the point $x_{0} \in X$. Since the function $f: X \rightarrow V$ is continuous, hence there exists an open neighbourhood $\tilde{v}<v$ of our point x_{0} such that:

$$
\begin{equation*}
G(\bar{x})<K(G(\bar{x}), 5) \quad \text { for } \bar{x}, \tilde{X} \subset \tilde{V} \tag{20}
\end{equation*}
$$

Bearing in mind that F is weakly lower semi continuous we infer the existence of an open neighbourhood $U C V$ of the point x_{0} and the existence of a point $x^{\prime} \subset U$ such that:
(21) $F\left(x^{\circ}\right)<K(F(x), \tilde{0})$ whenever $x \in \mathbb{T}$.

By (21), (20) and (7) wo obtain the izelustons:

$$
\begin{equation*}
F\left(x^{\prime}\right) \cap G\left(x^{\prime}\right) \subset K(F(x), \sigma) \cap K(G(x), \sigma) \subset K(F(x) \cap G(x), \varepsilon) \tag{22}
\end{equation*}
$$

Whenover $x \in U$. That completes the proof.
LEMMA 4. Let X be a paracompact space, Y a Banach space and $F: X \Rightarrow Y$ a weakly lower semicontinuous compact multifunctIon with compact, convex values.
Then F is $C_{o}(X, Y)$ - stable (cf. (i) and (ii)).
PROOF: The iteri (i) is an easy consequence of the theorem 1 and of the fact, that any oontinuous function with compact range is bounded. In order to prove the item (11) observe, that by lemma 3 the multifunction

$$
X \ni x \mapsto F(x) \cap \bar{K}\left(f(x), x+r_{1}\right) \subset Y
$$

is weakly lower semicontinuous. Aithough in all infinite-dimensional Banach spaces the ball $\bar{K}\left(f(x), r+r_{1}\right)$ is never compact, but the intersection $F(x) \cap \bar{K}\left(f(x), x+x_{1}\right)$ is of necessary compact as well as oonvex. Invoking once again the theorem 1 we obtain a continuous mapping $g \in C_{0}(X, Y)$ being a desirad selector for the above intersection. Thus the proof of $C_{0}(X, Y)$ - stability of F is finishod. Now, we are in a position to state and prove our main result: THEOREM 2. Let T and X bo two paracompact spaces and $(X,\|\cdot\|)$ a Banach space. Suppose that $F: T X X \rightarrow Y$ is a pultifunction such that:
(A) the sot $F(t, x)$ is compact and convex for every $(t, x) \in T x X$ (B) for every $x \in X$ the multifunction $F(-, x)$ is weakiy 2ower staicontinuc is and for each of its continuous selectors fi, cno hes:
(23) $\quad \lim _{i \rightarrow x} \sup _{t \in T}$ dist $(g(t), F(t, u))=0$

Under such hypotheses there exists a continuous function $f: T x X \Rightarrow Y$ such that $f(t, x) \in F(t, x)$ whenever $(t, x) \in T x X$. PROOF: Let $C_{0}(T, Y):=C(T, Y) \cap B(T, Y)$ be a Banach space of bounded continuous functions equipped with the uniform no tm (6).

Define the multifunction $H: X \rightarrow C_{0}(T, Y)$ by putting (24) $H(x):=\left\{g \in C_{0}(T, Y): g(t) \in F(t, x)\right.$ for aah $\left.t \in T\right\}$. Taking into account that the range $F(T, x):=F(v, x) \geqslant T$ is (for each $X \in X$) relatively compact in Y and hence bounded, we infer from theorem 1 that all values of E are nonvoid. If $E_{1}, E_{2} \in R(x)$ then for $0 \leqslant a \leqslant i, a \cdot g_{1}(t)+(1-a) g_{2}(t) \in$ $\in F(x, t)$ because of the convexity of all $F(t, x)$. Thus $\mathrm{ag}_{1}+(1-a) \mathrm{E}_{2}$ belongs to $\mathrm{H}(\mathrm{x})$ so that H is convex-valued. Moreover if $\left(E_{n}\right)_{n=1}^{\infty}$ is an uniformly convergent sequence of continuous functions from T onto Y such that $s_{n}(t) \in F(t, x)$ then $E:=\lim G_{n} \in H(x)$ as well and thus H is closed valued.

Let us prove that the multifunction H given by (24) is lower semicontinuous. To this end $f i x \varepsilon_{0} \in H(X)$ and $r>0$. If is easily seen, that

$$
\begin{align*}
& H^{-}\left(K\left(E_{0}, r\right)\right):=\left\{x \in X: H(x) \cap K\left(g_{0}, r\right) \neq \emptyset\right\}= \tag{25}\\
& =\left\{x \in X: \text { there exists } g_{1} \in C_{0}(T, Y) \text { and } \varepsilon<r\right. \text { such } \\
& \text { that } g_{1}(t) \in F(t, x) \cap K_{Y}\left(g_{0}(t), r-\varepsilon\right) \text { for all } \\
& t \in T\} \text {. }
\end{align*}
$$

Fix $\varepsilon n \varepsilon_{0} \in(0, r)$ and $x_{0} \in \hat{t \in T} F(t, \cdot)^{-}\left(K\left(g_{0}(t), r-\varepsilon_{0}\right)\right)$. since $F\left(\cdot, x_{0}\right)$ is, by lemma 3, stable, it follows that there
exists an $g_{1} \in C_{0}(T, Y)$ such that :
(26) $E_{1}(t) \in F\left(t, x_{0}\right) \cap K\left(\mathcal{E}_{0}(t), x-\varepsilon_{0} / 2\right)$ for every $t \in T_{0}$ From this fact and froe (25) it ic ow s that:
(27) $H^{-}\left(K\left(E_{0}, r\right)\right)=\bigcup_{0<\varepsilon<r} \cap_{t \in T} F(t, \cdot)^{-}\left(K\left(g_{0}(t), r-\varepsilon\right)\right)$ To observe that $H^{-}\left(K\left(\mathcal{E}_{0}, r\right)\right)$ is open in X, let us fix a point

$$
\begin{equation*}
x_{1} \in \bigcup_{0<\varepsilon<x} \bigcap_{t \in T} F(t, \cdot)^{-}\left(K\left(E_{0}(t), r-\varepsilon\right)\right) . \tag{28}
\end{equation*}
$$

Therefore, the exists an $\varepsilon_{1} \epsilon(0, r)$ such that the intersection $F\left(t, x_{1}\right) \cap K\left(B_{0}(t), r-\varepsilon_{1}\right) \neq \varnothing$ is nonempty for every $t \in T$. Since the multifunction $T \ni t \mapsto r\left(t, x_{1}\right) \subset Y$ is $c_{0}(T, Y)$ stable there exists an $g_{2} \in C_{0}(T, Y)$ such that $E_{2}(t) \in F\left(t, x_{1}\right) \cap K\left(\varepsilon_{0}(t), x-\varepsilon_{2}\right)$ for every $t \in T$, where $\varepsilon_{2} \in\left(0, \varepsilon_{1}\right)$. By (23) there exists a neighbourhood $V\left(x_{1}\right)$ of x_{1} such that dist $\left(\varepsilon_{2}(t), F(t, x)\right)<\varepsilon_{2} / 2$ for every $x \in V\left(x_{1}\right), t \in T$.
Fix $x_{2} \in V\left(x_{1}\right), t_{2} \in T$. Let $y_{2} \in F\left(t_{2}, x_{2}\right)$ be such that $\left\|E_{2}\left(t_{2}\right)-y_{2}\right\|<\varepsilon_{2} / 2$. Since $\| E_{2}\left(t_{2}\right)$ - $g_{0}\left(t_{2}\right) \|<x-\varepsilon_{2}$ wo have $\left\|y_{2}-g_{0}\left(t_{2}\right)\right\| \leqslant\left\|y_{2}-g_{2}\left(t_{2}\right)\right\|+\| E_{2}\left(t_{2}\right)-g_{0}\left(t_{2}\right)<$ $<x-\varepsilon_{2}+\varepsilon_{2} / 2=r-\varepsilon_{2} / 2$ and so y_{2} belong to $F\left(t_{2}, x_{2}\right) \cap K\left(g_{0}\left(t_{2}\right), x-\varepsilon_{2} / 2\right)$. Thus we have proved that the neighbourhood $v\left(x_{1}\right)$ of x_{1} is contained in the set $\bigcup \cap F(t, \cdot)-\left[K\left(E_{0}(t), r-\varepsilon\right)\right]$ which,
$\varepsilon \in(0, r) \quad t \in T$
therefore, is open. Let $h \in C\left(x, C_{0}(T, Y)\right)$ be a continuous selector for H existing in compliance with celebrated Moline's selection theorem [9]. Define $f: T X X \rightarrow Y$ by the formula $f(t, x):=h(x)(t)$. Since all functions of the family
$\{f(t,-): t \in T\}$ are equicontinuous, it follows that $f \in C(T x X, Y)(c f .[1],[8]$). Obviously, the function f is tine claimed continuous selector for F. Now, we are going to replace in Ricceri's theorem 4.4 a selection thoorem from [11] by the following comprehensive although somowhat complicated Michael's result ([10], [12]):

THEOREM 3 ([12]) Lot X be a paracompaot space, Y a Banach space, $Z C X$ a subset with $\mathrm{dim}_{\mathrm{X}} \mathrm{Z} \leqslant 0, \quad C \subset X$ a countablo subset, and $F: X \rightarrow Y$ a lower semicontinuous multifunction such that $F(x)$ is closed in Y for $x \notin C$ and $F(x)$ is convex for $x \notin Z$. Then F has a continuous selector. Note, that $\mathrm{dim}_{\mathrm{x}} \mathrm{Z} \leq 0$ means that $\mathrm{dim} \mathrm{E} \leqslant 0$ for every set $E \subset Z$ which is closed in X, where dir E denotes the covering dimension of E and observe that, for normal spaces X, dim $X^{2} \leqslant 0$ is valid if either dim $Z \leqslant 0$ or dim $X \leqslant 0$. Thus theorem 3 incorporates several known results, as surveyed in [10].

A direct modification of the proof of theorem 4.4 in [15], with theorem 3 invoked in the place of the result from [11] gives :

THEOREM 4. Let T and X be two paracompact topological spaces and Y a Banach space. Let $Z_{1} \subset T$ and $Z_{2} \subset X$ be two sets with $\operatorname{dim}_{1} Z_{1} \leqslant 0$ and $\operatorname{dim}_{X} Z_{2} \leqslant 0$ respectively and let $C_{1} \subset T$ and $C_{2} \subset X$ be two countable subsets. Supposs that a multifunction $F: T \times Y \Rightarrow Y$ satisfies the following conditions:
($A=1$) the set $F(t, x)$ is convex for every $(t, x) \in T x\left(X-Z_{2}\right) \cup$

$U\left(T-Z_{1}\right) \times X$ and closod for $(t, x) \in T x\left(X-C_{2}\right) \cup\left(T-C_{1}\right) \times X$, (Bo1) for overy $=\subset X$ the image $F(T, X)=F^{x}(T)$ is boundod, the multifunction $F^{\mathrm{x}}:=\mathrm{F}(\cdot, \mathrm{x}): \mathrm{T} \rightarrow \mathrm{X}$ is lower semicontinuous and for ach of its continuous selectors on has (23).

Under such hypotheses, for every closed set $D C X$ and every continuous selector $g_{1}:$ TI $D \rightarrow Y$ of the restriction $F \mid T x D$ such that the functions of the family $\left\{g_{1}(t, \cdot): t \in T\right\}$ are equicontinuous, there exists a continuous selector $\mathrm{f}: \mathrm{Tx} \mathrm{X} \rightarrow \mathrm{Y}$ for F suoh that:
(a) for every $x \in X$ the function $f^{x}:=f(0, x): T \rightarrow Y$ is continuous,
(b) the functions of the family $\left\{f_{t}:=f(t, \cdot): t \in T\right\}$ are equicontinuous,
(a) the restriction $f \mid T X D$ is equal to E_{1}.

REMARK 2: Recall a subset S of a topological space X is discrete if it has no accumulation point in x, and thai C is sigma-discrete if C is a countable union of discrete sets $S_{n}, n \in N$. It is easy to check (cf. [12], p. 8) that theorem 3 (and thus also our theorem 4) rematn valid with essentially the same proofs, if " countable " is weakened to "sigma--discreten .

REMARK 3: Observe that theorem 3 cannot be directly applied to obtain the existence of a continuous selector of multifunction F satisfying the hypotheses ($A-1$) and ($B-1$) of theorem 4. In fact, in thenrer 4 condition ($B-1$) implies that F is jointly lower somicontinuous on the product space

Tx X but, ss it is nollmlnown, this projust Tx X need not oe paracompact.

REMARK 4: There oxists a mitifunction $F: ~ R x R \Leftrightarrow R$ (R denotos a real line) with compact, convex values, havine lover searicontinuous all sections $F(t, \cdots), t \in R$ and $F(, x), x$ (R but without any weasurable selector.
pROOF: Lot $h: R \rightarrow[0,1]$ be an arbitrary nomoasurable function. Then put
(29) $\quad F(t, x):=$

$$
\left\{\begin{array}{l}
\{\ln (x)\} \text { iff } t=x \\
{[0,1] \text { iff } t \neq x}
\end{array}\right.
$$

It is easily checked that F defined by (29) fulifils all sequirements. See also [16] for further interesting counterexayples.

Now wo want to improve the theorem 4.5 from $[15]$ in an enalogous way. We say that a topological space X is extremally disconnected, if the closure of every opon sot is open. A multifunction $F: X \rightarrow Y$ between topological spaces X and Y is
upper semicontinuous if the set
(30) $\quad \mathrm{F}^{+}(\mathrm{U}):=\{X \in X: \quad \mathrm{F}(\mathrm{s}) \subset \mathrm{U}\}=\mathrm{X}=\mathrm{F}^{-}(\mathrm{Y}-\mathrm{U})$
is open in X for any open set U in Y Folloring $[0] F$ is called closed, if the image $F(D):=U\{F(x): x \in D\}(c f .[5])$ is closed in Y for overy closed set D in X. A single--valued mapping f from X into X is called compact if the fiber $f^{-1}(y)$ is compact in X for any $y \in Y$ and is called perfect, if it is continuous, closed and compact. Then Hassumi's [6] main thoorom reads as follows:

THEOREM $5([6]$. Lot X be an extremally disconnectod

Hausdorff spaco, Y a regulネ Hausdoxff space, rad F an uppax goiscontinuous mapping Imex X into tino femily of all non-void compact subsets of Y. Then tinere exists a continuous selector $f: X \rightarrow Y$ for F. Furthermore wo have the following: (a-1) If tho sot $\{x \in X: y \in F(x)\}$ is compact in X for ovory YEY then the solector f can be made compact (a-2) If F is also closed, then f can be made closod axid compact, so that f is perfect.

Combining thoorem 5 with thoorom 3 wo obtain the following analogue of PAcceri"s theorem 4.5 from [15].

THEOREM 6. Lot T be an extremally disconnected Hausdorif topological space and let X, C, Z and Y be as in the theorem 3. Suppose that the multifunction $F: T x X \Rightarrow Y$ has the following properties:
$(A-2)$ the set $F(t, x)$ is compact for every $(t, x) \in T x(X-C)$ and convex for every $(t, x) \in T x(X-z)$
(B-2) for every $c \in C$ the multifunction $F^{c}: T \rightarrow Y$ defined by $F^{c}(t):=F(t, c)$ has a continuous selector,
(C-2) for every $x \in X$ the set $F(T, x)$ is bounded, the multifunction $F(\cdot, X): T \Rightarrow Y$ is upper semicontinuous and for each of its continuous selectors G on has (23). Under such hypotheses, the thesis of theorem 4 holds. REMARK 5: In theorem 6, In general, the multifunction F is neithor lower semicontinuous nor upper semicontinuous on the product swace TrX, For rore informations about such riulisfunctians rith unper scrionontinuous x-secticts and lower sericontinuous T-sections tho resder is rofered to $[16]$, where
a multivalued analosue of famous Kempisty's theorem is presented. Note, that many results about so-called Carathoodory's selectors (see [7], [14]) may be improved by using the recent Michael's thearem 3.

REFERENCES

[1] Arens R., A topology for spaces of transformations, Ann. or Math., 47 (1946), 480-496
[2] De Blasi F.S., Myjak J., Sur $1^{\text {'existence de séleotions }}$ continues, C.R. Acad. So. Paris, Série L, t. 296 (1983), 737-739
[3] Castaing C., Valadier Mo, Convex analysis and measurable multifunctions, Locture Notes in Math., vol. 580, Sprin-ger-Verlag 1977
[4] Deutsch F., Kenderov P., Continuous selections and approximate selections for setavalued mappings and application to metric projections, SIAM J. Math. Anal., 14 (1983), no 1, 185-194
「5! Hadzid 0. Cn almost continuous selection property, Math. Sem. Notes Kobe Univ. 10 (1982), no 1, 41-47
[6] Hasumi M., A continuous selection theorem for extremally disconnected spaces, Math. Ann., 179 (1969), 83-89
[7] Kucia A., On the existence of Caratheodory selectors, Bul1. of the Polish Academy of Sciences, Math., vol. 32, no 3-4 (1984), 233-241
[8] Kuratowski K., Sur la topologie des espaces fonctionnels, Ann. Soc. Polon. Math., 20 (1947), 314-327
[9] Michael E., Continuous selections I, Annals of Math., 63,
no 2 (1956), 361-382
「10] Michael E., Some old and some new results on continuous selections, Seminaire d'Initiation à I'analyse, G. Choquet, M. Rogalski, J. Saint-Raymond, 3 (19'78-79), 1-5
[11] Michael E., A unified theorem on continuous selections, Pacific J. Math., 87 (1980), 187-188
[12] Michael E., Continuous selections and countable sets, Fundamenta Math. CXI, 1 (1981), 1-10
[13] Nedev S.I., A selection theoreri, C. R. Acad. Bulgare Sci. 35, no 7 (1982), 873-876
[14] Ricceri B., Caratheodory's selections for multifunctions with non-separable range, Rend. Sem. Math. Univ. Padova, vol. 67 (1982), 185-190
[15] Ricceri B., Selections of maltifunctions of two varlable3, Rocky Mountain Journal of Math., vol. 14, no 3 (1984), 503-517
[16] Sięzak w., Nultifunctions of two variables with semicontinuous sections, Problemy matematyczne 5/6 (1983-84), 83-96
[17] Wilhelm M., Nearly lower semicontinuity and its applicatious; In: General topology and its relations to modern analysis and algebra V, Prague (1981), 692-698

- CIaglych selektorach dla multifunkcji okreŚlonych na przestrzeniach produktowych

Streszozente

Udowodniono ietnienie ciąfego selektora dla multifunkcji dwóch zmiennych, której jeche ciecła są słabo pólcią̧e z dolu w sensie Myjaka 1 de Blasi, a drugie póciąfie z dolu,i która ponadto spelnia pewien dodatkowy wamunek. W dalszyın ciąBu wskazano na mozliwote wzmocnienia pewnyoh kryteriów licceriego [15.) Wefokcie uzyola ogólniejazego twierdzenia Michaela z [12] w miejsce jego wczéniejszego wyniku [11] zastosowanego w dovodach z [15].

