ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGIC\%NEJ W EYD'MOSZCLY

```
Problewiv Metamutyczize 190́\sigma z. &
```

STANISY_AW SZYMAŃSKI
WSP w Bydgoszczy

ON FRAGMENTS OF THE METRIC GEOMETRY ON THE SPHERE
In my previous paper [5] some system of axioms of the cetric geometry on the sphere was presented. One should not conruse the metric geometry on the sphere with the ellipticei geometry.

It was proved, that such system of axioms has a fixed model. called a fundamental model \$。. In that nanner the proof 0 theorem I A from [5] has been completed. To prove that each model of our system of axioms is isomorphic with $\$_{0}$, a theory Luilt on the axioms 11 - A3 must be developed. In the present paper we want to realize such a program, while the catecoricalness of our system of axioms will be the subjeot of a later paper. We repeat our axioms for the later use:

$$
\begin{aligned}
& A 9[a \geqslant O \wedge b \geqslant 0 \wedge(|a-b| \leq A B \leq a+b) \wedge(a+b+A B \leq 2 \pi)] \Longleftrightarrow \\
& \Leftrightarrow V C(C A=a \wedge B C=b) \text {, } \\
& A 2[a>0 \wedge b>0 \wedge(|a-b|<A B<a+b) \wedge a+b+A B<2 \pi] \Rightarrow \\
& \Rightarrow V_{2} C_{i}\left(A C_{i}=2 \wedge B C_{i}=b, i=1,2\right), \\
& A 3[A \neq B \wedge A B+B C=A C \wedge \cos A B \cdot \operatorname{COB} B D=\cos A D] \Rightarrow \\
& \Rightarrow \cos C B \cdot \cos B D=\cos C D \\
& \text { In thos ariome the cipital letters donote glimays tho perin } \\
& \text { of the sphere, while the small letters derote the seal al...bers, } \\
& \text { and the sien } A B \text { denotes the distance betwoen points a niaci } B
\end{aligned}
$$

In this paper usual logical eyirbols wall be rppliod. The symbol like $V_{n X}$ moans: there is oxactly n polints x such that

Basing on these axioms Ai-A3 one can define all notations of the motric geomotry on the sphore and devalop easily all this eeometry. In the prosent paper wo confine ourselves to dovelop 1t unly to such a degree as is inuispensable to provo tho completness of the above system of axioms.

We shall use freely the results, notations and formulae rrom our previous paper [5].

Direotly from the axiom A1 result the following tinree

theorems:

$T 1 \quad A B \leqslant B C+C A$
$T 2 \quad A B+B C+C A \leqslant 2 \pi$
I3 $A B \geqslant 0$
$T 4 \quad A A=0$
MHOOF゙. From theorems T ? and $T 2$ results the inequality $0 \leqslant \Lambda A<(1 / 3)$. On the other hand, if we assume that $A A=a>0$ wha $0=a / 2$ thon by virtue of $A 2$ there oxists a point C such that $A C=a$ and simultaneously $A C=b$, hence $A C=a / 2=a$ which proves that $A A=a=0$. The axiom AO from the papar [5]. uqarantering the existence of two distinct points, whoso distance diffors from zero and at tho same timo differs from Ti, is dependent on the remaining ones. Indood, from A1 and $T 4$ we infer irmediately:
TO $V_{A, B} 0: A B \neq \pi$ Next, wo hnve :

$$
A B=B A
$$

YROUF. From 'TY we deduce the inequalities $A B \leq \Sigma A+A A$ eric $H A \leqslant A A+A B$. Mose inoqunlities are equivalont to $A B \leqslant B A$ and $B A \leq A B$ respeotively. Thus the clained equality $A B=I B A$ occurs.

In the sequel we shall use frequently the theorem 5 without Lavoking its number. Subsequently, we have:

T6
$A B \leq \pi$
PROOF. From $T 1$ we infer the inequality $A B \leq B A+A A$ and fror T2 the inequality $A B+B A+A A \leq 2 \pi$. Combining both inequalities we obtain the claimed assertion, that $A B \leq \pi$.

Collating the theorems $T 3$ and $T 6$ we get directly:
T7

$$
\begin{aligned}
& 0 \leqslant A B \leq ケ \\
& A B=0=\Rightarrow A=B
\end{aligned}
$$

T8
PROOF. Assume that $A B=0$ end $A \neq B$. Frow A1 reaulta the existence of 2 points C and D such that $A C=B C=B D=\pi / 6$, but, the mutual distance between those points equals $C D=\pi / 3$. Since

$$
\mathrm{AD} \leq \mathrm{DB}+\mathrm{BA} \quad \text { and } \quad \mathrm{DB} \leq \mathrm{BA}+A D \quad \text { then } \quad \mathrm{AD}=\pi / 6
$$

By the above considerations it followe, that all requirements of our axion A3 are fulfilled, viz.
$A \neq D, A B+B C=A C$ and $\operatorname{Cos} A B \cos B D=\cos A D$, but simultaneousiy we mave $\cos C B$ cos $B C \neq \cos A D$, in a marked contradiction with A3. Consequently points A 1 B cannot be distinct.

T9 A A V', $A * A A^{*}=Y_{1}^{-}$
PROOF. The existence of such a filint $A * i s$ assured by Al ard

T4. Assume, on the contraxy, tilat there exist tro iletinct moints A^{*} and A_{1}^{*} such that $A A^{*}=A A_{1}^{*}=T$. Then theoramis i8 and T 3 yiold the inequaiities $A^{*} A_{1}^{*}>0$ and $A_{1}^{*}+A_{1}^{*}+$ $+A_{1}^{*} A \geqslant 2 \pi$; that leads to a contradiction with T2, so that the point $A^{*}=A_{1}^{*}$ is unique and the proof of $T 9$ is complete. The validity of $T 9$ insures the corectness of the following ciefindtyon:
is $1 \quad<x(A)=A^{*} \quad \Leftrightarrow===\Rightarrow \quad A A^{*}=\pi$
The points \dot{A} and A from Df 1 are called antipodalo In the sequel a capital letter with the asterisk as an uppor亡ndex will be denote allawzys a point antipodal with respoct. to a point nasned by the same letter but without the asterisk. Directly frour the established definition Df 1 results:
$I 10 \quad \propto(A)=A^{*} \Leftrightarrow=\alpha\left(A^{*}\right)=A$
$\Gamma 11 \propto \infty(A)=A^{*}=\Rightarrow \wedge_{X} A X+X A^{*}=\pi$
एROOF As an imrediate corollary from Df 1 and $T 1$ we oistain the inequality $\bar{j} \leqslant A^{*} X+X A$. Simultaneousiy by virtue of Df 1 and $T 2$ we have the oposite inequality $\tilde{H} \geqslant A X+X A$. from here our assertion easily follows.
$D \Sigma$ 2. $w(A, B, C) \stackrel{d f}{=} \Rightarrow[A B=A C+C B \vee B C=B A+A C \vee A C=$

$$
=A B+B C V A B+B C+C A=2 \pi ?
$$

The relation $w(A, B, C)$ is called collinearity of points
A, B and C on the sphere. Directiy from the above definition Df 2 result

T 12 w $(A, B, C) \Leftrightarrow=\Rightarrow \quad$ w $(C, A, B) \Leftrightarrow=\Rightarrow(B, C, A)$
T 13 w (A, A, B)
In the futurity as in the case of $T 5$, the theorems $T 12$ and

T 13 will be invoked in our constierations without acj retrtioning of its tabels. As a corollary from tho iema L i?
(see $[5]$) and from $T 7$ wis eet the following:
$T 14 \quad W(A, B, C) \Leftrightarrow=Q(A B, A C, B C)=0$
Again, we have:
$T 15 \quad w\left(A_{1}, A_{2}, A_{3}\right)=\Rightarrow V_{B} \quad\left[A_{1} B=\pi / 2 \quad(1=1,2,3)\right]$
PROOI. We must consider only the case, when $A_{1} \neq A_{2} \wedge A_{1} \neq$
$\neq A_{3} A A_{2} \neq A_{3}$. One can omit the trivial cases, in which cir assertion follows immediately from A1. With regard to the Df 2 it becomes to take under considerations four possik:ij.. ties. Let us inquire in particular one of those possibilitian, namely $A_{1} A_{2}=A_{1} A_{3}+A_{3} A_{2}$. Then by virtue of $A 1$ and $T /$ thito is a point B such that $B A_{1}=A_{3} B=\pi / 2$. In turn, the essumption, that $A_{2} B \neq \pi / 2$ leads to a contradiction with the axion A3.

Analogously we treat the cases, where
$A_{2} A_{3}=A_{2} A_{1}+A_{1} A_{3}$ or $A_{1} A_{3}=A_{1} A_{2}+A_{2} A_{3}$.
If $A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{2}=2 \pi$, then bearing in mind $T 11$, tre infer the equality $A_{1} A_{2}=A_{1} A_{3}^{*}+A_{3} A_{2}$. Finally, from the above there exists a point B such that $A_{1} B=A_{2} B=A_{3} B=\pi / 2$. Since we have $A_{3}^{*} B=\pi / 2$, then by virtue of Til is $A_{3}^{B}=\mathrm{J} / 2$ Due to T 14, $D f 1$ and $L 2$ (from [5]) one can easily Frove the subsequent 2 theorems:
$T 10 \quad w(A, B, C)=\Rightarrow \quad w\left(A^{*}, B, C\right)$,
T $17 \wedge_{\lambda} \mathrm{w}^{\left(A, A^{*}, X_{2}\right)}$
As a direct consequance of $T 11$ and $T 10$ wo obtain the
equivallericy
$T 18 \quad \therefore H+B C=A C \nLeftarrow \quad B C+C A^{*}=E A^{*}$

provic In tine case whe *o the points in $(i=i, 2,3)$ aro rot
all distinets, the thusis follows from T 13.
If the points $A_{i}(i=1,2,3)$ are pairwise distinct anc if wo additionaly assume the followine inequalitios $A_{1} A_{2} \leq A_{2} i_{3}$, $A_{1} A_{2}+A_{2} A_{3} \leq \pi$ then applying on A_{1}, wo can find two pointiz C_{1} and C_{2} whese distance frem the foints A_{1} and A_{2} equals rospectively: $A_{1} C_{1}=A_{1} A_{2}+A_{2} A_{3} A_{2} C_{1}=A_{2} A_{3}, A_{1} C_{2}=$ $=A_{2} A_{3}-A_{1} A_{2}, A_{2} C_{2}=A_{2} A_{3}$. The latest four equalities yields:
(1) $\left(A_{1} A_{2}+A_{2} C_{1}=A_{1} C_{1} \wedge A_{2} A_{1}+A_{1} C_{2}=A_{2} C_{2}\right)$.

Supporting on A3, (1) and on the assumption of our T 19 we derimce tho equalities $H C_{i}=\pi / 2,1=1,2$. The distance brotween the points C_{1}, C_{2} and A_{3} and points A_{2}, 13 achicis resp. $A_{\gamma} A_{3}$ and $\pi / 2$. In turn, $A 2$ implies the oxisterice of oxactly two such points and, by this reason
(2)

$$
C_{1}=A_{3} \vee C_{2}=A_{3}
$$

Frou (1), (2) ant Df 2 it fcllows the claimod asser:ifi: In the oposito case, whon $A_{1} A_{2}+A_{2} A_{3}>S_{1}$, applyine tha tare orom M1, wneet $A_{1}^{*} A_{i}+A_{2} A_{3}^{*}<\pi$ and then the collinenrje ty of points h_{1}, A_{2} and A_{3} holds. It suffico to involce the $T 16$ for stipulation the collinonrity of poists $A_{1}, A_{\text {, }}$, and A_{3}. 'his complate the proot.

sxistence of certain point E such that $A E=B E=C E=\pi / 2$. In the presence of $T 9$ and 111 the equalities
$A E^{*}=B E^{*}=C E^{*}=\pi / 2$ alco bold. In virtue of $T 15$ and the assumption $w(A, B, D)$ thaze exists a pcir.t F such that $A^{F}=B F=D F=\pi / 2$. In that manner we obtain three points E, E^{t} and F whose distance from A and B equals $\pi / 2$. On the othex hand the axiom A2 permit to construct exactiy two such points. Thus the only possibility is either $F=E$ or $F=E^{*}$. From the above considerations by $T 19$ the
thesis of T 20 follows.

$$
\begin{aligned}
& T 21[0<A B<\pi \wedge a, b \in[0, \pi] \wedge 0(a, b, A B)=0] \Rightarrow V_{1 C}(A B=a \wedge B C=b) \\
& \quad \Rightarrow \quad
\end{aligned}
$$

PROOF. Under the above assumption, the existence of such a point C is a consoquenco of a lomma $L 13$ and ar axiom A1. Suppose, that there exist two distinct points C_{i} and C_{2} suoh that $A C_{1}=a$ and $B C_{1}=b$. Then by virtue of $T 14, T 20$ aid Df 2 the following relations holds:

$$
w\left(A, B, C_{1}\right), w\left(A, B, C_{2}\right), w\left(C_{1}, C_{2}, A\right) \text { and } w\left(C_{1}, C_{2}, B\right)
$$

Therafore, by L2 and L 13 a system of equations:
$1+2 \cos a \cos b \cos A B-\cos ^{2} a-\cos ^{2} b-\cos ^{2} A B=0$
$1+2 \cos ^{2} a \cos c_{1} c_{2}-2 \cos ^{2} a-\cos ^{2} c_{1} c_{2}=0$
$1+2 \cos ^{2} b \cos C_{1} C_{2}-2 \cos ^{2} b-\cos ^{2} c_{1} c_{2}=0$
must be satisfied. For $a \neq b$ and $a+b \neq \pi$ the above system has no solutions, so that the assumptions that $C_{1} \neq C_{2}$ is not true. Also a couple of solutions ($a=b ; A B=0$) and $(a+b=\pi$; $A B=\pi)$ is not conformatio with the assumption of $T 21$, since $0<A B<\pi$.

Now, we shall prove the uniqueress of the existence of a
point C in oase when $a=b$ and $A B=a+b$ Prufiting from the first part of our proof, we are able to construct in an unique way two points D_{1} and D_{2} in such a manner, that $A D_{i}=(2 / 3) a$ and $C_{1} D_{1}=(1 / 3)_{a}, 1=1,2$. By $T 1$ we infer the inequalities $A D_{1}+D_{i} B \geqslant A B$ and $D_{i} C_{i}+C_{i} B \geqslant D_{i} B$, from here under the assumptions $A B=2 a, C_{i} B=a$ it follows, that the equality $D_{1} B=(4 / 3) a$ occurs.

Since $A D_{1}+B D_{i}=A B$ and $A D_{1}=B D_{1}$ then by the preceding part of our theorem, we have $D_{1}=D_{2}=D_{\text {, Analogously }} C_{1}=C_{2}$. provided $D C_{1}+B C_{1}=B D$ and $D C_{1} \neq B C_{1}$.

A contradiction with the additional assumption yields the desired uniqueness of our point C.

The proof of uniqueness of C in the three remaining solutions $(a=b ; a+b+A B=2 T),(a+b=y ; a-b=A B)$ and $(a+b=\pi ; b-a=A B)$ is quite analogous and thus will be ommited. Indeed, by T11 and T9 those cases reduce to the already investigated ones. $122(0<A B<\pi \wedge 0<c<\pi) \Rightarrow V_{2 C_{i}}\left[A C_{1}=c \wedge v\left(A, B, C_{1}\right),(1=1,2)\right]$ PROOF. An equation $Q(x, C A B)=0$ under the constraint c, $A B \in(0, \pi)$ possess two distinct solutions x_{1} and x_{2}. In that case, in compliance with T2, there exist exactly two distinot points C_{1} and C_{2} such that $A C_{1}=c$ and $B C_{1}=x_{1}$. Since the distances between the points A, B and C fulfil the condition $Q\left(B C_{1}, A C_{1}, A B\right)=0$, therefore by $T 14$ these points are collinear, 1.e. $w\left(A, B, C_{1}\right)$ holds.

Lesides defining W we define one more tomary relation:
Df $3 \perp A B C \Leftrightarrow \cos A B \cos B C=\cos A C$.
The relation \perp ABC is called perpendicularity of points

A,B,C. Directly from the definition Df3 result:
$T 23 \perp A A B \wedge \perp A B B$
T $24 \perp \mathrm{ABC} \Leftrightarrow \perp \mathrm{CBA}$
$T 25(\perp A B C \wedge \perp A C B) \Rightarrow(B C=0 \vee B C=\pi \vee A B=A C=\pi / 2)$
Theorems T23-T25 will be used in the sequel without any
refering to its labels.
$T 26[(1) \cdot 0<A B<\pi \wedge(2) W(A, B, C) \wedge(3) \perp A B D] \Rightarrow \perp C L D$ PROOF. From (1) , T3, T4 and T8 it follows, that (4) A $\neq \mathrm{B}$ and by (3) and Df 3 we obtain (5) $\cos A B \cos B D=\cos A D$. From (2) results by Df 2 and (2) that
(6) $\mathrm{AC}=\mathrm{AB}+\mathrm{BC} \vee(7) \mathrm{AB}=\mathrm{AC}+\mathrm{CB} \vee(8) \mathrm{BC}=\mathrm{BA}+\mathrm{AC} \vee$ (9) $A B+B C+C A=2 \pi$. In the first case, namely when (6) occurs, taking under considerations formulae (4) and (5) we obtain the thesis from A3 and Df 3. The remaining cases may be treated in an analogous manner, hence we restrict ourselves to the oase when (7) occurs. From (7) and (5) by T11 we infer (10) $A^{*} B+B C=A^{*} C$ and (11) $\cos A^{*} B \cos B D=\cos A^{*} 1$. Since (1) holds then, bearing in mind T11 the inequality $0<A^{*} B<\pi$ holds. In view of $T 3, T 4$ and $T 8$ we infer from the above inequality that (12) A $\neq B$. Fommlae (12), (10 : (11) and $A 3$ attract $\cos C B \cos C D=\cos B D s o$, in view of $D E 3$ is equivalent to our assertion.

T $27 \quad\left[(1) \quad 0<A B<\pi \wedge(2) \perp \mathrm{ABC}_{1}(1=1,2)\right] \Rightarrow \mathrm{H}\left(B, C_{1}, C_{2}\right)$ PROOF. If the point B coincidence with point C_{1} and $C_{2} 0^{\circ}$ i one of those points C_{1}, C_{2} is antipodal with respect io B, then the thosis of our $T 27$ follows directiy from $T 13 \mathrm{u}$: resp. from T 17. Let us ruppose that (3) $0<\mathrm{BC}_{\mathrm{i}}<\pi$ and denote
(4) $\mathrm{BC}_{i}=\mathrm{o}_{i}$. From (3), (4) and $T 22$ it follows the existence of exactly two distinct points D_{1} and J_{2} such that (5) $B D_{i}=c_{2}$ and (6) $W\left(B, C_{1}, D_{1}\right.$! is verified, ADolying (3),(6), (2), T 26 and of 3 we obtain: (7) $\cos D_{i} B \cos A B=\cos \Gamma_{i} A$. From (2) and Dr 3 wo infer that: (8) $\cos A B \cos B C_{2}=\cos A C_{2}$. Next, from the conditions (4), (5), (7) and (8) by Ty it follows that (9) $\quad A D_{i}=A C_{2} \cdot$ Denoting $d=A C_{2}$ we infer from (1), (3) and (8) that (10) $c<d<\pi$. By virtue of (1), (3), (4), (10), (8) and $L 2$ we deduce that $Q\left(c_{2}, d, A B\right)=4^{-1} \sin ^{2} A B \sin ^{2} B C_{2}>0$. Using L 12, it is not hard to see, that the above inequality is equivalent to (11) $\left[\left(\left|d-c_{2}\right|<A B<d+c_{2}\right) \lambda d+o_{2}+A B<2 \pi\right]$. As a result of (3), (4) and (11) all assumptions of A2 are fulfilled. Therefore there exist exactly two points whose distance from A and B equals respectively d and c_{2}. From here taking into account (9), (5) and (4) two possibilities may happen: $C_{2}=D_{1}$ or $C_{2}=D_{2}$. Hence by (6) we obtain the desired thesis. To facilitate our computations, we shall work with the following functions ? : Dr 4. If $0<A B<\pi$, then put
$\eta_{A B}(c)=(\cos B C=\cos A B \cos A C)\left(\cos ^{2} A C+\cos ^{2} B C-2 \cos A B\right.$.

$$
\cdot \cos A C \cdot \cos B C)^{-1 / 2}
$$

shreover $\sum_{A B}(C)=0$ for $A C=B C=\pi / 2$.
From bf 4 result directly the two next theorems:
T $28 \wedge_{A B C}\left[0<A B<\pi \Rightarrow \forall 1 x=\Rightarrow V_{A B}(c)\right]$
T29 $0<A B<\pi \Rightarrow \eta_{A B}(C)=\eta_{A^{\prime}} B(C)=-\eta_{A B^{\prime}}(C)=$

$$
=-\eta_{\Delta B}\left(c^{*}\right)
$$

T $30 \quad 0<A B<\pi \Rightarrow\left|\eta_{A B}(C)\right| \leq \sin A C$

PROOF. From T1, T2 and T7 we obtain respectively:
$|A C-B C| \leqslant A B \leq A C+B C, A B+B C+C A \leq 2 \pi$ and $A C, B C \in[0, \pi]$.
It is not hard to see, that the assumptions of lemma 11 are satisfied and that $Q(A B, A C, B C) \geqslant 0$. The last inequality implies, by $L 2$, that $i+2 \cos A B \cos B C \cos A C-\cos ^{2} A E-\cos ^{2} D C$ - $\cos ^{2} \quad A C \geqslant 0$, from there after some easy algebraic transformations we can obtain the promised thesis. Now, we can establish: D f $50<A B<\pi \Rightarrow\left[\sin \xi_{A B}(C)=\eta_{A B}(C) \wedge \sin \cos \xi_{A B}(C)=\right.$ $\left.=\operatorname{sgn} \cos A C \wedge-\pi<\xi_{A B}(C) \leq \pi\right]$.
The number $\xi_{\mathrm{AB}}(\mathrm{C})$ is called the coordinate of the point C relative to points A and B. Directly from this definition D: 5
result: $310<A B<\pi \Rightarrow \xi_{A B}(C)=\left\{\begin{array}{l}\operatorname{arc} \sin \eta_{A B}(C) \text { if } A C \leq \pi, 2 \\ x \pi-\operatorname{arc} \sin \eta_{A B}(C) \text { if } A C>\pi / 2,\end{array}\right.$
where $k= \begin{cases}1 & \text { if } \hat{c A B}(c) \geqslant 0 \\ -1 & \text { else. }\end{cases}$
T $32 \wedge_{A B C}\left[0<A B<\pi==\Rightarrow V_{1 x} x=\xi_{A B}(c)\right.$.
As a corollary from theorems T 29, T 11, T 31, and bf 5 we
obtain the subsequent theorem:
T $330<A B<\pi \Rightarrow \xi_{A B}\left(C^{*}\right)=\xi_{A B}(C)-k \pi \quad$,
Where k attains the same values as in $T 31$.
f 34 (1) $0<A B<\pi \Rightarrow$ (2) $\left.x=\xi_{A B}(C) \wedge(3) w(A, B, C)\right] \leqslant=\Rightarrow$

$$
\Leftrightarrow[(4) \quad A C=|x| \wedge(5) \cos B C=\cos (A B-x)]\}
$$

PROOF. From $\uparrow 3$), T 4 and L 13 results the equality (6) $1+2 \cos A B \cos B C \cos A C=\cos ^{2} A B-\cos ^{2} A C-\cos ^{2} B C=0$. The left side of (6) may be described in the shape of:

$$
[\cos B C-\cos (A B+A C)][\cos B C-\cos (A B-A C)]=0
$$

Thus there $3 x i s t s$ a number e such that (7) $e^{2}=1$ and (8) $\cos B C=\cos (A B-e A C)$. By virtue of $(2), D f 5$ and $D f 4$ we have (9) $\sin x=[\cos B C=\cos A B-\cos A C]\left[\cos ^{2} A C+\right.$ $\left.+\cos ^{2} B C-2 \cos A B \cos A C \cos B C\right]^{-1 / 2}$ and (10) sgn $\cos A C=$ $=\operatorname{sgn} \cos x$. The conditions (9), (6), (1), (7) and (8) yield the oquality (11) sin $x=\sin e A C$ while (11), (10) and (8) entail (4) and (5). Finally, basing on the same definitions and theorems we can easily demonstrate the validity of (2) and (3) when (4) and (5) are assumed to be true. T $35 \wedge_{A, B, x}\{(0<A B<\bar{H} \wedge x \in(-\pi, \pi])=\Rightarrow$

$$
\left.\Rightarrow V_{1 C}\left[x=\xi_{A B}(C) \wedge w \quad(A, B, C)\right]\right\}
$$

PROOF. Fox numbers $\mid x$! , AB there exists the sole number $\mathrm{b} \in[0, \pi!$ such that (1) $\cos \mathrm{b}=\cos (A B-x)$. From (1) and L2 f.t follows the equality (2) $Q(A B,|x|, b)=0$. By virtue of assunptions of our theorem $T 35$ we deduce, taking into account the existence of a viniqu point C satisfying the relations (3) $A C=|r|$ and (4) $B C=b$. Now, the desired thesis is a consequence of (4), (1) and $T 34$.

The above assuies the correctness of the following Df 6 and the reasonableness of the consecutive T 36:
Df $60<A B<\pi \Rightarrow\left\{C=\sigma_{A B}(x) \stackrel{d f}{\underset{~ d f}{\Rightarrow}}\left[x=\xi_{A B}(C) \wedge w(A, B, C)\right]\right\}$
T $36 \quad 0<A B<\pi \Rightarrow-\widehat{\pi}^{-}<x \leq \pi \quad V_{1 C} C=\sigma_{A B}(x)$
We can also estabilsh :
Df $70<A B<\pi \Rightarrow \rho_{A B}(c)=\sigma_{A B}\left(\xi_{A B}(c)\right)$.
As inmediete corollailes from Df 7, T $32, T 36$ and $D\{6$ we obtain :
T $37 \quad 0<A B<\pi \Rightarrow \wedge_{C} \quad \vee_{1 C^{\prime}} C^{\prime}=S_{A B}(c)$

T 38

$$
\begin{aligned}
& {\left[0<A B<\pi \wedge C^{\prime}=\rho_{A B}(C)\right] \Rightarrow W\left(A, B, C^{\prime}\right)} \\
& \text { T } 39\left[0<A B<\pi \wedge C^{\prime}=S_{A B}(C)\right] \Rightarrow \xi_{A B}(C)=\xi_{A B}\left(C^{\prime}\right) \\
& T 40\left[0<A B<\pi \wedge x=\sum_{S A B}(C)\right] \Rightarrow \begin{cases}A C \geqslant|x| & \text { for } A C \leq \pi / 2 \\
A C \leqslant|x| & \text { for } A C \geqslant \pi / 2\end{cases}
\end{aligned}
$$

PROOF. In compliance with $T 30$ we infer that $\operatorname{l}_{\eta_{A B}}(C) \mid \leq \sin A C$, and taking into account Df 5 we obtain the double inequality $|\sin x| \leq \sin A C$. This inequality entails sin $|x| \leq \sin A C$. Since $A C,|x| \in[0, \pi]$ and since $\operatorname{sgn} \cos x=\operatorname{sgn} \cos A C$, then from the last inequality results the thesis of our theorem. $T 41\left[(1) 0<A B<\pi \wedge(2) w(A, B, C) \wedge(3) D^{\prime}=S_{A B}(D)\right] \Rightarrow C^{\prime} D$. PROOF. From (2) and $T 15$ results the existence of a point E such that (4) $\mathrm{AE}=\mathrm{BE}=\mathrm{CE}=\pi / 2$. Assume additionaly that (5) $D=E$. Now (4) and Df 3 entail the perpendicularity (6) 1 BAE while (1), (3) and $T 38$ entail the collinearity (7) $w\left(A, B, D^{\prime}\right)$ of points A, B and D^{\prime}. On the strength of (1), (3), T 39, (4), Df 4 and Df 5 we infer that the ooordinates of points D and D^{\prime} must vanish, namely $(8) \xi_{A B}(D)=\xi_{A B}\left(D^{\prime}\right)=0$. From (1), (7), (8) by T34 and T8 we deduce that the points A and D^{\prime} must coincide: $A=D^{\prime}$. Conditions (1), (2), (6) and $T 26$ yield the perpendicularity $(10) \perp C A E$, from here taking into considerations (9) and (5) we obtain the promised thesis. The proof of the case $D=E^{*}$ is quite analogous, as under assumption (5). Let a subsequent additional assumption be (11) $E \neq D \neq E^{*}$. By using the theorem T22 we construct a point D_{1} satisfying the condition (12) $E D_{1}=\pi / 2$ and (13)w(E, $\left.D_{1} D_{1}\right)$ The antipodal point D_{1}^{*} in accordance with T16 and T11 has also those properties. Without any loss of gererality we can assume that $0 \leq D D_{1} \leq \pi / 2$. Conditions $(12),(4)$ and $D f 3$ entail
 consecutive perpendicularity (17) $\perp \mathrm{CD}_{2} \mathrm{D}$ follows from (12), (15), (13) :inl T26. Applying (12), (13), (16), Df 3 and T26 we obtain:
(18) $000 \mathrm{AD}_{1} 205 \mathrm{DD}_{1}=\cos \mathrm{AD}$ and (19) $\cos \mathrm{BD}_{1} \cos \mathrm{DD}_{1}=$ $=$ cus Br, while from (13) and (14) wo infer (20) sen cos AD $D_{1}=$ $=3 \mathrm{~g}$ cos $A D$. The coordinates of points D and D_{1} by Virtue of (1), (18), (19), (20), Df 4 and Dr 5 must coinoide, so that (?1) $\xi_{i B}(D)=\xi_{A B}\left(D_{1}\right)$. Taking into account (1), (3) an ling we obtain the coincidence of coordinates of points D and D^{\prime} ioo, viz. (22) $\xi_{A B}(D)=\xi_{A B}\left(D^{4}\right)$. Since (4) and (12) noids, then in compiiance with T19 the relation (23) W ($1, \mathrm{E}, 1_{1}$) is valid. From (1), (7), (21), (22), (23) by T35 thine the identicy of poitets $D_{1}=D^{\prime}$. This identity is in (iso prosence of (17) uquivalent to the thesis and thus the Noof is completed.
$0+2[(1) \quad 0<A B<\pi \wedge(2) C D<\pi / 2 \wedge(3) w(A, B, C) \wedge$ $八(4) \perp A C D] \Rightarrow \rho_{A B}(D)=c$.
NiCOF. From (4) and Dr 3 we infer (5) $\cos A C \cos C D=\cos A D$. anat, frow (•), (5) and (4) by T 32 and Df 3 we obtain (b) cos DC wos $C N=20$: 3L. The theorem T32 end assumption (1) insures the existence of a urioue number x such that the Thality $(7) x=\xi_{A B}(D)$ holds. Hearing in mind (1), (2), (5) Wi (6) and anplying Di 4 we infer (8) $\eta_{A B}(D)=\eta_{A B}(c)$. Froa (5) aud (2) resuits also the equality (9) $\mathrm{sgn} \cos \mathrm{AD}=$ $=3 \mathcal{C l}^{n 1}$ cos AC. Conditions (1), (8), (9), (7) and Df 5 ontail the equality (10) $x=\xi_{A B}(c)$. From relations (1), (10), (3) and

עf 6 we conciude thet the equelity (11) $=5$ (x) holds. Finally as a consecuenco of $(1),(11),(7)$ and if 7 wo obtain the required equality $\quad r=\rho_{A B}(D)$.

KEFERENCES
[1] Borsuk K., Szmielew W., Poistawy geometrij, harszama 1970
[2] Dubikajtis Le, Geometria metryczna, Toruń 1971
[3] Nostowski A., Logika matematyczra, Warszawa-Wroclew 191.8
[4] Rozenfeld B.A. Nieewkildowy prostranstwa, Noslise $190 ́ n$
[5] Szymański S., Some axiomatics of thu melriv coometry on sphere, Problemy Matematyczne, 7 (1986), 63-70 Bydeoszcz

ELEMENTY GEOMETRII METRYCZNLJ NA SFERZE
Streszozenie
W artykule tym stanowiącym kontymuacje [5]w oparciu o aks ioraty A1, A2 1 A3 zdefiniowano podetawowe pojecia 1 udcwoaniono szereg twierdzeń geometrii metrycznoj nu sferze. Teorig rozwinifto W takim stcpniu, aby móc udowrinic izomorisam kazdeco modelu z modeleli porlstawowno $\because 0$ Nowud kateforycznóci tej teorii becizie przedmiotem nastepnego artykulu.

