ZESZYTY NAUKOWE WYŹSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyczne 1983/84 z.5/6

ANDRZEJ PRÓSZYNSKI
WSP Wydgoszczy
ON ORTHOGONAL DECOMPOSITION OF HIGHER DEGREE FORMS ${ }^{x}$)

1. What is a higher degree form ? At first we recall what is a quadratic forn over a commutative ring R. The most known definitions are following:
(1) Most essential : It is a homogeneous polymomial over R of degree 2 .
(2) Most oomfortable: It is a symotric bilinear mapping $B: M x M \rightarrow N$, for some \rightarrow modules M, N.
(3) Most general: It is a mapping of R-modules $Q: M \rightarrow N$ auch that
$1^{0} Q(r x)=r^{2} Q(x)$ for any $r \in R, \quad x \in M$, $2^{0} B(x, y):=Q(x+y)-Q(x)-Q(y)$ is R-bilinear.
The first definition is good if $M=R^{n}$ and $N=R$. The second is good if $2 \in U(R)$; then $Q(x)=B(x, x) / 2$.

A form of degree m is defined by the following evident Generalizations:
(1°) Most essential: It is a homogeneous polynomial over R of degree m.
(2^{\prime}) Most comfortable: It is a symmetric m-jinear mapping $P: M x \ldots \pi M H$ for some R-modules M, N. The first definition will be good in the free case, and the second in the case if m! $U(R)$. The simple generalization of (3) gives us so called mapplications (see the next paper), but that definition is not compatible with (1°)- higher degree forme are not mappings in generall Hence we must look for another ways to obtain the most general definition.

[^0]Recall the following fact contained in [1]:
Theorem e Lot $Q: M \rightarrow N$ be quadratic form over R. For any commutative R-algebra A there exists the unique quadratic form $Q_{A}=M \theta_{R^{A}} \rightarrow N A_{R^{A}}$ over A such that $Q_{A}(x \propto 1)=$ $=Q(x) \otimes 1, B_{Q_{A}}(x \propto 1, y \otimes 1)=B_{Q}(x, y) \otimes 1$.
For any R-algebra homomorphism $u: A \longrightarrow B$ the following diagram:

is commutative.
This allows us to introduce the following, contained in [5],
Definition. A polynomial law on (M, N) is a system $F=\left(F_{A}\right)$ of mappings $F_{A}: M \otimes A \rightarrow N \otimes A$ for any (commutative) R-algebra A, such that for any R-algebra homomorphism $u: A \rightarrow B$ the following diagram:

i. commutative. In other words, F is a natural transformation

Now the most general definition of a form of degree m on (N, N) is following:
(3°) It is a polynomial law $F: M \otimes \rightarrow N \otimes-$ such that $F_{A}(x a)=F_{A}(\underline{x})_{a}{ }^{m}$ for any $A, a \in A$ and $x \in M \cap A$. Corollary. Any form F of degree m on (M, N) has the following shape:

$$
\begin{aligned}
& F_{A}\left(x_{1} \otimes a_{1}+\ldots+x_{n} \otimes a_{n}\right)= \\
& =\sum_{m_{1}+\ldots+m_{n}=m} F_{m_{1}, \ldots, \underline{m}_{n}}\left(x_{1}, \ldots, x_{n}\right) \theta_{1}^{m_{1}} \ldots a_{n}^{m_{n}}
\end{aligned}
$$

where $F_{\mathrm{m}_{1}} \ldots \mathrm{~m}_{\mathrm{n}}: M^{n} \longrightarrow N$ are uniquely determined by F. In particular
a) $F_{R}=F_{m}: M \longrightarrow N$ is the mapping induced by F,
b) $\mathrm{PF}=\mathrm{F}_{1}, \ldots, 1^{\text {is }}$ the symmetric m-1inear form associated with F (we will assume that $m>0$).

It can be proved (see [5])that (3*) is compatible with $\left(1^{\circ}\right),\left(2^{\circ}\right)$ and (3) in the following way:
$\left(1^{\circ}\right)$: If $\left\{e_{1}, \ldots, \theta_{n}\right\}$ is a fixed basis of M then F corresponds to the ordinary form:
$F_{R\left[T_{1}, \ldots, T_{n}\right.}\left(\theta_{1} \otimes T_{1}+\ldots+\theta_{n} \otimes T_{n}\right)=$
$=\sum F_{m_{1}, \ldots, m_{n}}\left(\theta_{1}, \ldots, \theta_{n}\right) \theta T_{1}{ }^{1} \ldots T_{n}^{m}$
$\left(2^{\circ}\right)$: If $w i \in U(R)$ then $F_{m_{1}}, \ldots, m_{n}\left(x_{i}, \ldots, x_{11}\right)=$
$=\operatorname{PF}(\underbrace{x_{1}, \ldots, x_{1}}_{m_{1}}, \ldots, \underbrace{x_{n}, \ldots, x_{n}}_{m_{n}}) / m_{1} 1 \ldots m_{n}$!
(3): For $m=2 F$ is given by $Q=F_{2}$ and $B=F_{1,1}=Q_{Q}$.
2. Orthogonality. Let M be a fixed R-module. A module of degree
\underline{m} is a pair (X, F) where F is a form of degree m on (X, M).
We define the orthogonal product:
$(X, F) \perp(Y, G):=(X \oplus Y, F \perp G)$
where, in the natural way, $(F \perp G)_{A}(\underline{x}+\underline{y})=F_{A}(\underline{x})+G_{A}(X)$. In the case of $\left(1^{\prime}\right)$ this gives us the familiar operation:
$\left(F\left(T_{1}, \ldots, T_{n}\right), G\left(S_{1}, \ldots, S_{k}\right)\right) \longmapsto F\left(T_{1}, \ldots, T_{n}\right)+G\left(S_{1}, \ldots, S_{k}\right)$
$\in R\left[T_{1}, \ldots, T_{n}, S_{1}, \ldots, S_{k}\right]$.
For the work with the orthogonal decomposition we need a good orthogonality relation in any (X, F). The word "good" means that:
(i) The relation is symmetric.
(11) E^{\perp} is a submodule of X for any subset E of X.
(iii) If $X=Y \oplus Z$ then $X=Y \perp Z$ iff Y and Z are orthogonal.
(iv) For $m=2$ we obtain the usual orthogonality relation. The above properties are satisfied (for the proofs we refer
to [4])if we introduce the following
Definition. $x, y \in X$ are orthogonal (in (X, F)) iff the following equivalent conditions are satisfied:
(a) $F_{A}\left(x, a+y(b+\underline{x})=F_{A}(x Q a+\underline{x})+F_{A}(y \otimes b+\underline{x})-F_{A}(\underline{x})\right.$ for any $A, a, b \in A$ and $x \in X Q A$.
(b) $F_{m_{1}}, \ldots, m_{n}(x, y, x, \ldots, x)=0$ for $n \geqslant 2$ and $m_{i}, m_{2}>0$. (c) (If we assume that $m \geqslant 2$ and $(n-1) \notin Z(M)=$ the set of all zero divisors in M) $P F \mid x, y, X, \ldots . x,=O$.
Moreover, we define $\operatorname{rad}(X)=X^{\perp}$ and $\operatorname{ker}(X)=\operatorname{rad}(X) \cap\left\{x \in X ; F_{R}(x)=C\right.$ (X, F) is called non-degenerate iff rad $(X)=C$.
Renark. For a submodule Y of X we have in general only $Y^{\perp} \cap Y \subset \operatorname{rad}(Y)(=\operatorname{rad}(Y, F \mid Y))$, but the equality holds if Y is an orthogonal summand of X. Other elementary properties of 1 are the same as in the quadratic case (see [4]).

The following questions arise:
1° Description of indecomposable forms.
2^{0} The uniqueness of the orthogonal decomposition. For example, nonsingular quadratic spaces are indecomposable only in dimensions ≤ 2 and satisfy the Witt cancellation property, but the orthogonal decomposition is not unique in general (evon up to an isomorphism). It follows from the next two sections that the situation is quite different for $\geqslant \geqslant 3$.
3. Indecomposable forms. Many examples of indecomposable forms are given by the multiplication. The following results (see [4]) were first proved in [2] over such fields that the definition $\left(2^{\circ}\right)$ can be used.
Theorem. Let R be a domain, $F \in R\left[T_{1}, \ldots, T_{n}\right]_{m}$ and $m, n, k \geqslant 1$. If $\operatorname{ker}(F)=0$ then $F\left(T_{1}, \ldots, T_{n}\right) T_{n+1}^{k} \in R\left[T_{1}, \ldots, T_{n+1}\right]_{n+}$ is non-degenerate. Moreover, this form is indecomposable, if one of the following conditions is satisfied:
(a) F is non-degenerate (b) m>k or (c) $m>1$ and $k \neq 0$ in R_{0} Corollaryg Let R be a domain. For any $m \geqslant 3$ and $n \geqslant 2$ there exists a non-degenerate indecomposable form $F_{m n} \in R\left[T_{1}, \ldots, T_{n}\right]_{m}$. Proof. Define $F_{m n}$ for $m \geqslant 2$ and $n \geqslant 1$ in the following way:
$F_{11}=T_{1}, F_{2,2 k}$ is hyperbo110, $F_{2,2 k+1} E_{2,2 k+T_{2}^{2}}^{2 k+1}$ (all kernel are zero), $F_{n+1, n+1} F_{m} T_{n+1}$.
Next apply the above theorem.
Lot un consider the monomial $T_{1}^{m} \ldots T_{n}^{m} \in R\left[T_{1}, \ldots, T_{n}\right]$ where $w_{1}, \ldots \ln _{n}>0$. Which of then are decomposable? If $R=R_{1} \times R_{2}$ then the canonical decomposition $R^{n}=R_{1}^{n} \times R_{2}^{n}$ is orthogonal. Hence we can assume that R is connected.

Theorem. If R is connected then decomposable monomials over R can be only the following ones:

1) $T_{1} T_{2} \quad($ if $\quad 2 \in U(R))$
2) $T_{1}^{p^{n}} T_{2}^{p^{n}}$ where $p \neq 2$ is a rime (1IT char $\left.(R)=p\right)$.

They can be decomposed in the following ways
$T_{1}^{p^{n}} T_{2}^{p^{n}}=\left(S_{1}+S_{2}\right)^{p^{n}}\left(S_{1}-S_{2}\right)^{p^{n}}=s_{1}^{2 p^{n}}-s_{2}^{2 p^{n}}$.
4. The uniqueness of the decomposition. The following results were first proved in [3] for symmetric m-linear mappings and are true for forms of degree m $\geqslant 3$ is wo assume that ($m-1$)! $!j(M)$ (then the definition (C) can be used). Lorna. If $X=X, \perp \ldots \perp X_{n}$ then $E^{\perp}=\left(X_{1} \cap E^{\perp}\right) \perp \ldots \perp\left(X_{n} \cap E^{\perp}\right)$ for any $E \subset X$.
Proof. Let $x \in E^{\perp}$ and $x=y+z$ where $y \in Y=X_{i}$ and $z \in Z=X_{1} \perp \ldots \perp \hat{X}_{1} \perp \ldots \perp X_{n}$. We must prove that $y \in E^{\perp}$. For, let $e \in E$ and easy $+z^{\circ}$ as above. Then:
$\operatorname{PF}(y, \oplus, X, \ldots, X)=P F\left(y, y^{*}, Y, \ldots, Y\right)+\operatorname{PF}\left(0, z^{*}, Z, \ldots, z\right) \leqslant P F\left(y, y^{*}, Y, \ldots, Y\right)$ $+\operatorname{PF}\left(2,2^{\circ}, 0, \ldots, 0\right)=\operatorname{Pr}(x, 0, Y, \ldots, Y)=0$ 。
Theorem. Suppose that (X, F) is nonmdegenerate and $X=X_{1} \perp \ldots \perp X_{n}$ where X_{1} are indecomposable. Then any orthogonail summand Y of X has the form $Y=X_{i} \perp \ldots \perp X_{1}$, $i_{1}<\ldots<1$. In particular, $X=X_{1} \perp \cdots \perp_{n}$ is the unique decomposition with indeoomposable summand.
Proof. Let $X=Y \perp Z$. Then $X_{1}=\left(Y \cap X_{1}\right) \perp\left(Z \cap X_{1}\right)$ by the leman and hence $X_{i} \subset Y$ or $X_{i} \subset Z$.
If $X_{1} \ldots \ldots, X_{s} \subset Y$ and $X_{m+1} \ldots X_{n} \subset Z$ then $Y=X_{1} \perp \ldots \perp X_{1}$

Pomaris. The above is false if $m=2$ or ($m-1$)! $\mathcal{Z} Z(M)$. For example, let R be a field of characterietic p; 0,2 and $m=p^{n}+1$. Then $T_{1}^{m}+T_{2}^{m}$ is non-degenerate and 1 somorphic to $\left(S_{1}+S_{2}\right)^{m}+\left(S_{1}-S_{2}\right)^{m}=2 S_{1}^{m}+2 S_{2}^{m}$.

Let us consider only auch (X, F) that F is non-degenerate and X if finitely generated (resp. finitely generated and projective). Let R be noetherian (resp. $R=R_{1} \times \ldots x R_{s}$ where R_{1} are oonmected). Then for any (X,F)there exists the unique decomposition $X=X_{1} \perp \ldots 1 X_{n}$ with indecomposable sumands. In particular, the cancellation pinperty is satisfied.

REFERENCES

[1] BOURBAKI N., Algobre, Chap. 9, Parte 1959
[2] GILPIN M., Products of symetrio forms, J N Alebra 33(3), 1975, p. 430-434
[3] HARRISON D.K., A Grothendieck ring of higher degree fory. J. Mcebra 35, 1975, p. 123-138
[4] PRÓSZÝSKI A., On orthogonal deoomposition of homogeneous polynomiale, Pund. Math. XCVIII, 1978, p. 201-217
[5] ROBY N., Loí polynômen et lois formolies on théorie des modules, Ann.Ec.Norm. Sup. 80, 1963, P.213-348

- ROZK£ADZIE ORTOGONALNYM FORM WYŻSZYCH SIOPNI

Streszczonie

Praca tanowi tekst referatu wyelossonego w Montpelifer. Zewiera twierdaenia o rozkladzie ortogonalnym form wydezyoh stopni, zasadniozo rotne od faktów manyoh z teoril form kwadratowyoh.

[^0]: 玉)
 Lecture given in Montpelifer, October 1979

