ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyczne 1983/84 z.5/6

ANDRZEJ PRÓSZYŃSKI WSP w Bydgoszczy

HIGHER DEGREE FORMS AND m-APPLICATIONS X)

1. Generalities. We recall some definitions contained in [7], [1], and [2]. All rings and algebras will be commutative with 1.

A polynomial law on the pair (X,Y) of R-modules is a natural transformation $F=(F_A): X \otimes - \longrightarrow Y \otimes -$, where X 3 - , Y 2 -: R-Alg -- Set. It is called a form of degree m iff $F_A(xa)=F_A(x)a^m$ for any A, a \in A and $x \in$ X \otimes A. Then we denote $F\in \mathfrak{P}_R^m(X,Y)$. It is proved in [7] that $\mathcal{P}_{R}^{m}(R^{n},R) \simeq R[T_{1},\ldots,T_{n}]_{m}$. In the natural way we obtain the functor $\mathcal{P}_{R}^{m}: R-Mod^{o} \times R-Mod$ — R-Mod.

Any form $F \in \mathcal{P}_{p}^{m}(X,Y)$ has the following shape:

$$F_{A}(x_{1} \otimes a_{1} + \cdots + x_{n} \otimes a_{n}) = \sum_{\substack{m_{1} + \cdots + m_{n} = m \\ m_{1} + \cdots + m_{n} = m}} F_{m_{1}, \dots, m_{n}}(x_{1}, \dots, x_{n}) \otimes A_{n}$$

where F_{m_1,\dots,m_n} : $X^n \longrightarrow Y$ are uniquely determined by F. In particular $F_m = F_R$ and $F_1,\dots,1 = PF$ is m-linear and symmetric. (We will assume that m>0). PF can be obtained from F in the following way:

 $PF(x_1,...,x_n) = (\Delta^m F_R)(x_1,...,x_m) := \sum_{\pm_1 < \cdots < \pm_{k-1}} (-1)^{m-k} F_R(x_1,...,x_1)$ Hence we have the natural transformation $T_{p}^{m}: \mathcal{P}_{p}^{m}(X,Y) \longrightarrow Appl_{p}^{m}(X,Y), T_{p}^{m}(F) = F_{p},$ where $Appl_{p}^{m}(X,Y)$ is the module of all m-applications f: X --- Y, i.e. such mappings that Amf is m-linear and

 $f(r_X)=r^m f(x)$ for any $r \in \mathbb{R}$ and $x \in X$. In the free case T_p^m gives us the following well-known mapping:

x) Lecture given in Montpellier, October 1979, updated.

 $T^m: R[T_1, \ldots, T_n]_m \longrightarrow Appl_R^m(R^n, R), T^m(F)(x_1, \ldots, x_n) = F(x_1, \ldots, x_n)$ It is known that T^m_R is an isomorphism in the following cases:

(1) if $m \le 2$ (2) if $m! \in U(R)$ (3)if X=R.

In the general case we will investigate $\operatorname{Ker}(T_R^m) = \widetilde{\mathcal{T}}_R^m(X,Y)$ and $\operatorname{Im}(T_R^m) = \operatorname{Hom}_R^m(X,Y) \subset \operatorname{Appl}_R^m(X,Y)$.

2. Representability. Observe that the functors in the follows exact sequence:

 $0 \longrightarrow \mathcal{P}^{\mathbf{m}}(\mathbf{X}, -) \longrightarrow \mathcal{P}^{\mathbf{m}}(\mathbf{X}, -) \longrightarrow \operatorname{Appl}^{\mathbf{m}}(\mathbf{X}, -)$ are representable.

- (a) (see [7]) $\mathcal{P}^{m}(X, -)$ is represented by the m-th divided pover $\mathcal{P}^{m}(X)$ of X, and $\mathcal{F} \in \mathcal{P}^{m}(X, Y)$ corresponds to $\binom{m}{m}$ $\mathcal{F} \in \operatorname{Hom}(\mathcal{P}^{m}(X), Y)$ iff $\mathcal{F}_{m_{1}, \dots, m_{n}}$ $\binom{m}{n} \in \mathcal{F}^{m}(X, X, X_{n})$ and $\binom{m}{n} \in \mathcal{F}^{m}(X, X_{n})$ iff $\mathcal{F}_{m_{1}, \dots, m_{n}}$ $\binom{m}{n} \in \mathcal{F}^{m}(X, X_{n})$.
- (b) (see [1])Appl^m (X,-) is represented by the module $\Gamma_{m}(X)$ defined by the generators $\gamma_{m}(x)$ for $x \in X$ and the following relations:

1° $\gamma_m(\mathbf{r}\mathbf{x}) = \mathbf{r}^m \gamma_m(\mathbf{x})$ for any $\mathbf{r} \in \mathbb{R}$, $\mathbf{x} \in \mathbb{X}$ 2° $\Delta^m \gamma_m$ is m-linear. The correspondence is given by the following diagram:

- (c)(see [2]) T^m induces the natural homomorphism: h: $\Gamma_m(X) \longrightarrow \Gamma^m(X)$, $h(r_m(x)) = x^{(m)}$. Let $\Gamma^m(X) = Im(h) = R\{x^{(m)}; x \in X\}$. Since Hom is left exact it follows that $\mathfrak{P}^m(X, -)$ is represented by $\widetilde{\Gamma}^m(X) = Coker(h) = \Gamma^m(X)/\Gamma^m(X)$.
- (d)(see [2]) The functor $\operatorname{Hom}^{\mathbb{m}}(X,-)$ is representable exactly in the case when the exact sequence $0 \longrightarrow \bigcap^{\mathbb{m}}(X) \longrightarrow \bigcap^{\mathbb{m}}(X) \longrightarrow \bigcap^{\mathbb{m}}(X) \longrightarrow 0$ splits, and then it is represented by $\bigcap^{\mathbb{m}}(X)$. In the general case we have the exact sequences: $0 \longrightarrow \operatorname{Hom}^{\mathbb{m}}(X,-) \longrightarrow \operatorname{Hom}(\bigcap^{\mathbb{m}}(X),-) \longrightarrow \operatorname{Ext}^{1}(\bigcap^{\mathbb{m}}(X),-) \longrightarrow$

- \rightarrow Ext¹($\eta^{m}(X)$,=)(=0 if X is projective). Example. It can be proved that $\lceil \frac{3}{2}(2^2) = 2^4, \lceil \frac{3}{2}(2^2) = 2_2, \text{ and hence}$ $\operatorname{Hom}_{Z}^{3}(2^{2},-)$ is not representable. The exact sequence is following: $0 \longrightarrow \operatorname{Hem}_2^3(\mathbb{Z}^2, -) \longrightarrow \operatorname{Hom}_2(\Gamma_2^3(\mathbb{Z}^2), -) \longrightarrow \mathbb{Z}_2 \otimes - \longrightarrow 0.$ 3. The functor Pm. The fundamental properties of this functor, given in [2] and [3], are following:
- (1) $\prod_{R}^{m}(X) \bigotimes A \cong \prod_{A}^{m}(X \bigotimes A)$ for $A=R_{S}$, A=R/I (but not in the general case !)
- (2) Theorem. Let X be a finitely generated R-module. Then the following conditions are equivalent:

 $(\pm) \prod_{m} (x) = 0$

(ii) $\Gamma_{R/I}^{m}(X/IX)=0$ for any $I \in Max(R)$

(iii) for any $I \in Max(R)$ either $\dim_{R/T}(X/IX) \le 1$ or $m \le |R/I|$.

((i) is the Nakayama Lemma together with (1),

(H) (iii) is the case of a field).

Corollary. The following properties are equivalent :

(1) $\vec{p}_{R} = 0$ (11) $\vec{p}_{R}^{m}(R^{2})=0$

(iii) $m \leq d(R) := \inf\{|R/I|; I \in Max(R)\}.$

is noetherian and X is finitely generated,

- (3) Lemma . If P & Spec(R)-Max(R) then T M(X) p=0 for any R-module X. (R/P is infinite and hence $d(R_p) = \infty$. Next apply (1) and (2)). Corollary. If dim (R)>0 then $f_R^m(X)$ are torsion R-modules. (If non-zero, they are not free). It is proved in [5] that $\bigcap_{R}^{m}(X)$ is finite provided that R
- (4) Structural theorems. Let R be a noetherian ring. Then: $(A) \stackrel{\sim}{\Gamma}_{R}^{m}(X) \simeq \bigoplus_{P \in Max(R)} \stackrel{\oplus}{\Gamma}_{R_{p}}^{m}(X_{p})$
 - (B) $\bigcap_{n=1}^{\infty} (x) \simeq \bigcap_{n=1}^{\infty} (x \otimes R)$ if R is a local ring.
 - (C) Let X be a finitely generated R-module. Then $\Gamma_{R}^{m}(x) \simeq \bigoplus_{P \in Max(R)} \Gamma_{R/P}^{m}(P) (x/P^{k(P)}x)$ for all sufficiently large k(P). If m \(\preceq 5\) (or m \(\preceq 7\) and $2 \in U(R)$) then we can choose k(P)=1 and hence:

$$\tilde{\Gamma}_{R}^{m}(x) \simeq \bigoplus_{P \in Max(R)} \tilde{\Gamma}_{R/P}^{m}(x/Px)$$

for any R-module X. (Compare also [5], Corollary 5.10).

The above properties permit us to compute Ker(Tm) in some cases. The question of Coker (Tm) is much more complicated.

4. Coker (T^m) . Observe that $Hom^m(X,-) \subset Hom(\overline{\Gamma}^m(X),-) \subset Appl^m(X,-)$. If $Hom^{m}(X,-)$ is not representable (it is so very often), then the first two functors are different and hence Coker(Tm) is non-zero. It was conjectured by M. Ferrero that the last two functors are equal, or, more precisely, that $\Gamma_{m}(X)$ and $\overline{\rho}^{m}(X)$ are isomorphic by h. This means that $\operatorname{Hom}^{m}(X,Y)=$ = Appl^m(X,Y) for any injective Y; in particular, over a field K, that $Coker(T_K^m)$ is zero for any K-modules. Unfortunately, it is not true in general.

Example. Let $K=F_4$, $X=K^4$, Y=K and $f(x_1,x_2,x_3,x_4)=x_1^2x_2^2x_3^2x_4^2$. Observe that $f \in Appl_{K}^{5}(X,Y)$ because:

1° $f(rx)=r^8f(x)=r^5f(x)$ since $r^4=r$ in F_{ij} , 2° $f=g^2$ where $g(x_1,x_2,x_3,x_4)=x_1x_2x_3x_4$ and hence $\triangle^5f=(\triangle^5g)^2=0$ since () 2 is additive in K and g is of degree 4.

On the other hand, f is ,, reduced' (all powers in f are less than |K| and hence $f \notin \operatorname{Hom}_{K}^{m}(X,Y)$ for m < 8. (see [4]).

Coker(Tm) is completely described in [4] in the case of finite fields: any m-application is a polynomial mapping (but not necessarily of degree m - as in the example), and we can find the standard bases of Hom, Appl and Coker(T) for any K-modules. In particular, we have the following Theorem. Let K be an algebraic extension of 2 (for example a finite field of characteristic p). Then the following conditions are equivalent:

- (1) $Coker(T_K^m) = 0$ (for any K-modules)
- (2) $K=Z_{D}$ or m < 2p.

In particular, $Coker(T_K^m) = 0$ for $m \leq 4$.

Remark 1. If $K \neq \mathbb{Z}_p$ and $Coker(T_K^m) = 0$ then $m \leq 2p \leq |K|$ and hence Ker(TK)=0.

Remark 2. Using another methods we can prove that $\operatorname{Coker}(T_K^{m})=0$ over any field K for m=3, but the case of m=4 is unknown.

Example. Let K be an infinite algebraic extension of T_2 . Then K is a sum of finite fields and we define $f: K^4 \longrightarrow K$ in the following way: if $x_1, x_2, x_3, x_4 \in K \subset K$ and $|K'| = 2^5 \ge 4$

then $f(x_1,x_2,x_3,x_4) = x_1^2 x_2^2 x_3^2 x_4^2$.

As in the preceding example, it can be proved that f is a properly defined 5-application - but f is not a polynomial mapping.

Let us consider the homomorphism h: $\Gamma_m \longrightarrow \Gamma^m$ over rings. The problem of injectivity of h can be reduced to the local case, because Γ_m and $\overline{\Gamma}^m$ commute with localizations. Let (R,M) be a local ring. Then we have the following commutative diagram:

$$\begin{array}{cccc}
\Gamma_{\underline{m}}(x)/\underline{M} & \Gamma_{\underline{m}}(x) & \xrightarrow{\underline{h}} & \Gamma^{\underline{m}}(x)/\underline{M} & \overline{\Gamma}^{\underline{m}}(x) \\
\downarrow & & \downarrow & & \downarrow \\
\Gamma_{\underline{m}}(x/\underline{M}x) & \xrightarrow{\underline{h}} & \overline{\Gamma}^{\underline{m}}(x/\underline{M}x)
\end{array}$$

where the homomorphisms are defined in the natural way. They are all epi, but not iso in general (see [5]). Suppose that R/M is a proper algebraic extension of 2p and $2p < m \le |R/M|$. Then g is iso (since $r^m = r^m$), h' is not iso for some free R-module X, and hence h is not iso. Unfortunately, the diagram doesn't give positive examples for our problem.

It is known from [6] that h is injective for m=3 (over R) in the following cases:

- (1) for cyclic modules
- (2) if R is von Neumann regular
- (3) if no residue field of R is \mathbf{Z}_2
- (4) if R is a DVR with the prime element 2
- (5) if R is a Dedekind domain or R=Z[w] (for flat R-modules). Example. Let m=3. It follows from (3) and (4) that h is injective for R=Z. The ,,generic*, 3-applications over Z are x³, xy(x±y)/2 and xyz. If R=Z[T] then h is injec-

tive for flat, but not for all modules. If R=S[X,Y] and (3) is not satisfied then h is not injective - even for the key case of R^2 .

REFERENCES

- [1] FERRERO M., MICALI A., Sur les n-applications, Bull. Soc. Math. France, Mémoire 59, 1979, p. 33-53
- L2] PRÓSZYŃSKI A., Some functors related to polynomial theory, Fund. Math. XCVIII, 1978, p. 219-229
- [3] PRÓSZYŃSKI A., Some functors related to polynomial theory II, Bull.Soc.Math.France, Mémoire 59, 1979, p.125-129
- [4] PROSZYNSKI A., m-applications over finite fields, Fund. Math. CXII, 1981, p.205-214
- [5] PRÓSZYNSKI A., Forms and mappings. I: Generalities, Fund.Math. CXXII, 1984 p.219-235
- [6] PROSZYNSKI A., Forms and mappings. II: Degree 3, to appear in Commentationes Mathematicae
- [7] ROBY N., Lois polynômes et lois formelles en théorie des modules, Ann. Ec. Norm. Sup. 80, 1963, p.213-348

FORMY WYZSZYCH STOPNI I m-ODWZOROWANIA

Streszczenie

Praca stanowi tekst referatu wygłoszonego w Montpellier, poświęcona jest porównaniu dwóch definicji form wyższych stopni. W szczególności omówione zostały formy wytwarzające zerowe odwzorowania.