ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyczne 1983/84 z.5/6

ANDRZEJ NOWICKI UMK w Toruniu RYSZARD ŻUCHOWSKI WSP w Bydgoszczy

DERIVATIONS AND POLYNOMIAL RINGS

Let $d: R \rightarrow R$ be a derivation, where R is a commutative ring with identity. Then d will be called locally nilpotent if for every $r \in R$ there exists n such that $d^{n}(r) = 0$.

This paper contains two parts. In the first part, we prove (Theorem 2.11) that if R has locally nilpotent derivations and satisfies additional assumptions, then R is a polynomial ring. We also prove some properties of locally nilpotent derivations. In the second part, we study the ring of constants for some derivations of a polynomial ring over an arbitrary field K.

We prove the following theorem (Theorem 3.21):

Let $R = K[x_1, x_2, \dots, x_n]$, where char K = 0. If $d: R \rightarrow R$ is a derivation with d(K) = 0, $d \neq 0$, $d(x_1) \in K$, for $i=1,2,\dots,n$, then C(R,d) is a polynomial ring (over K) in n-1 variables.

We also give other examples of rings of constants. At the end of this paper, we propose two problems.

<u>1. Preliminary notions.</u> All rings are commutative and have identity. A differential ring is a pair (R,d), where R is a ring and $d:R \rightarrow R$ is a mapping. called derivation, satisfying the conditions: 1) d(a+b) = d(a) + d(b), 2) d(ab) = ad(b) + d(a)b, for arbitrary

a,bER.

If d_1 and d_2 are derivations of R, then d_1+d_2 is a derivation of R.

If d is a derivation of R and $r \in R$, then rd is a derivation of R.

Immediately from the definition we get:

(1) d(1) = 0

(2)
$$d(a^{n}) = na^{n-1}d(a)$$

(3)
$$d^{n}(ab) = \sum_{k=0}^{n} {\binom{n}{k}} d^{k}(a) d^{n-k}(b)$$

The formula (3) is known as Leibnitz formula (see [3]).

Let (R,d) be a differential ring and let $S=R[x_1, x_2, \dots, x_n]$ be a polynomial ring over R. The derivation d can be extended to S by setting for $d(x_1)$, $d(x_2)$, $d(x_3)$,..., $d(x_n)$ arbitrary polynomials belonging to S (see [1]).

If d:S \longrightarrow S is such derivation of S with d(R)=0, then for any f \in S, we have: (4) d(f)= $\sum_{n=1}^{n} d(x_k)$ (see [1]). If R contains the field Q of rational numbers, then a differential ring (R,d) is called a Ritt algebra ([2]). We denote by C(R,d) the set of all elements $r \in R$ such that d(r)= 0. Then C(R,d) is a subring of R called the ring of constants of the differential ring (R,d). If R is a field, then C(R,d) is a subfield of R called the subfield of constants. If (R,d), (R₁,d₁) are differential rings, then a ring homomorphism f:R \longrightarrow R₁ (of rings with identity) is called a <u>differential homomorphism</u> if the diagram

If in addition we assume that $f: \mathbb{R} \longrightarrow \mathbb{R}_1$ is a ring isomorphism, then we say that f is a <u>differential isomorphism</u>.

LEMMA 1.1 Let (R,d), (R_1,d_1) be differential rings and let $f:R \longrightarrow R_1$ be a homomorphism of rings, not necessary a differential homomorphism. Then $A = \{r \in R, fd(r) = d_1 f(r)\}$ is a subring of R.

PROOF: $1 \in A$ since $fd(1) = f(0) = 0 = d_1(1) = d_1f(1)$. If a, b $\in A$, then $fd(a-b) = fd(a) - fd(b) = d_1f(a) - d_1f(b) = d_1f(a-b)$, so $a-b \in A$ and $fd(ab) = f(ad(b) + d(a)b) = d_1f(a-b) =$

$$= f(a) f(d(b)) + f(d(a))f(b) = f(a)d(f(b)) + d(f(a)) f(b) =$$

= d(f(a)f(b)) = d(ab), so ab $\in A$.

LEMMA 1.2. Let (R,d), (R_1,d_1) be differential rings and let $f:R \longrightarrow R_1$ be a ring homomorphism. Moreover, let R be an R_0 -algebra and R is generated over R_0 by T. If $fd(a) = d_1 f(a)$, for $a \in R_0 \cup T$, then f is a homomorphism of differential rings.

PROOF: Let $A = \{r \in R, fd(r) = d_{1}f(r)\}$. Since $R_{0} \leq A$ and $T \leq A$, by Lemma 1.1 $R = R_{0}[T] \leq A$.

LEMMA 1.3. If $f:(R,d) \longrightarrow (R_1,d_1)$ is a differential isomorphism, then the rings C(R,d) and $C(R_1,d_1)$ are isomorphic.

Proof is obvious.

2. Locally nilpotent derivations. If (R,d) is a differential ring and n is natural, then by $C_n(R,d)$ we will denote the set $\{x \in R, d^n(x)=0\}$

The sets $C_n(R,d)$ are subgroups of the additive group of R. The following properties are obvious:

(1)
$$C(R,d) = C(R,d)$$

(2)
$$C_1(R,d) \leq C_2(R,d) \leq C_2(R,d) \leq \cdots$$

THEOREM 2.1. Let (R,d) be a Ritt algebra without nilpotent elements. If $C_n(R,d) = R$, for some n, then d = 0

PROOF: Let $d^n = 0$ and $d^{n-1} \neq 0$, for some $n \ge 2$. Hence, there exists an element a of R such that $d^{n-1}(a) \neq 0$. Consider the derivation $d:R[[t]] \longrightarrow R[[t]]$, (R[[t]]] is the formal power series ring) which is defined by the formula: $\overline{d}(\sum_{k=0}^{\infty} r_k t^k) = \sum_{k=0}^{\infty} d(r_k) t^k$ and consider the automorphism $e:R[[t]] \longrightarrow R[[t]]$ defined by $e(a) = a + \frac{\overline{d}(a)}{11} t + \frac{\overline{d}^2(a)}{21} t^2 + t + \frac{\overline{d}^3(a)}{31} t^3 + \dots$ (see [2]). For every $r \in R$, we have: $e(r) = r + \frac{d(r)}{1!} t + \frac{d^2(r)}{2!} t^2 + \dots + \frac{d^{n-1}(r)}{(n-1)!} t^{n-1}$ Since $e(a^n) = e(a)^n$, we get

$$a^{n} + \frac{d(a^{n})}{1!} t + \dots + \frac{d^{n-1}(a^{n})}{2!} t^{n-1} =$$

$$= (a + \frac{d(a)}{1!} t + \frac{d^{2}(a)}{2!} t^{2} + \dots + \frac{d^{n-1}(a)}{(n-1)!} t^{n-1})^{n}$$

If we compare coefficients at $t^{n(n-1)}$, we get $\left[\frac{d^{n-1}(a)}{(n-1)!}\right]^n = 0$. Hence, because R is Q-algebra without nilpotents, we have $d^{n-1}(a) = 0$

This contradicts to $d^{n-1}(a) \neq 0$. For a differential ring (R,d) we define $E(R,d) = \bigcup_{n=1}^{\infty} C_n(R,d)$

PROPOSITION 2.2. E(R,d) is a subring of R.

PROOF: Let E = E(R,d). Since d(1) = 0, $1 \in E$. Let $x, y \in E$. We shall show that $x-y \in E$ and $xy \in E$. If $d^{n}(x) = 0$, $d^{m}(y) = 0$ and $k = \max(n,m)$ then $d^{k}(x-y) = d^{k}(x) - d^{k}(y) = 0$, so $x - y \in E$. Further, $d^{n+m}(xy) = \sum_{i=0}^{n+m} {n+m \choose i} d^{i}(x) d^{n+m-i}(y) = 0$, because is of $i = 0, 1, \dots, n$, $d^{n+m-i}(y) = 0$, and for $i=n+1, n+2, \dots$, n+m, $d^{i}(x) = 0$. Finally $xy \in E$.

LEMMA 2.3. If there exists n such that $C_n(R,d) = C_{n+1}(R,d)$, then $E(R,d) = C_n(R,d)$.

PROOF: Let $C_m = C_m(R,d)$, for m=1,2,... We prove (by induction on s) that for any natural s we have $C_{n+s} = C_n$. Let $x \in C_{n+s}$. Then $0 = d^{n+s}(x) = d^{n+s-1}(d(x))$, so $d(x) \in C_{n+s-1}$ and by induction $d(x) \in C_n$. Hence $0 = d^n(d(x)) = d^{n+1}(x)$, and $x \in C_{n+1} = C_n$

DEFINITION 2.4. A derivation $d:\mathbb{R} \longrightarrow \mathbb{R}$ is said to be locally nilpotent iff $E(\mathbb{R},d)=\mathbb{R}$. In other words, a derivation d is locally nilpotent iff for any $r \in \mathbb{R}$, there exists n such that $d^{n}(r)=0$

EXAMPLE 2.5. Let C[x] be a polynomial ring in one variable x, with coefficients in a ring C. If $d:C[x] \longrightarrow C[x]$ is such derivation that d(C)=0, d(x)=1, then d is locally nilpotent. Indeed, for $f \in C[x]$ we have $d^{n+1}(f)=0$ where $n = \deg f$.

In some cases, we can prove the theorem inverse to the

result given in Example 2.5.

THEOREM 2.6. Let d be a locally nilpotent derivation of a Q-algebra R. If there exists an element $x \in R$ such that d(x) = 1, then R is isomorphic to the polynomial ring C[t], where C = C(R,d). Precisely, there exists a differential isomorphism $\Psi:(C[t], \frac{\partial}{\partial t}) \longrightarrow (R,d)$.

PROOF: Let C = C(R,d) and let $\varphi: C[t] \longrightarrow R$ be a ring homomorphism such that $\varphi(t) = x$, $\varphi|_C = 1_C$. Since $d \varphi(t) = d(x) = 1 = \frac{2}{2t} (t) = \varphi \frac{2}{2t} (t)$, by Lemma 1.2, we have that φ is a differential homomorphism from $(C[t], \frac{2}{2t})$ to (R,d). We show that φ is injective. Let $w = c_n t^n + \dots + c_1 t + c_0$, be an element of C[t] with $\varphi(w) = 0$. We get $0 = \varphi(c_n t^n + \dots + c_0) = c_n x^n + \dots + c_0$, and next $0 = d^n(c_n x^n + \dots + c_0) = n!c_n$. Since R is a Q-algebra, the equality $n!c_n = 0$ implies $c_n = 0$. In a similar manner, we get $c_n = c_{n-4} = \dots = c_1 = c_0$, hence w = 0. Now we show that φ is surjective. Let $r \in R$. Since R = E(R,d), there is n such that $r \in C_n(R,d)$. By induction on n we prove that $r \in Im \varphi$.

a) If n = 1, then d(r) = 0, and $r = \varphi(r)$.

b) Suppose $d^{n}(r)=0$. Then $d(r) \in C_{n-1}(R,d)$, and by induction $d(r)=\varphi(w)$, where $w \in C[t]$. Suppose $w = c, t^{k} + \dots + c, t + c_{0}$. Put $u = \frac{k}{k+1} \cdot t^{k+1} + \frac{c}{k} \frac{k-1}{k} \cdot t^{k} + \dots + \frac{c}{10} \cdot t$. Then $u \in C[t]$ and $\frac{c}{0t} u = w$. Since $d(r - \varphi(u)) = d(r) - d(\varphi(u)) = \varphi(w) - \varphi_{\frac{1}{2}}(u) = \varphi(w) - \varphi_{\frac{1}{2}}(u) = \varphi(w) - \varphi(w) = 0$, we get $r - \varphi(u) = c \in C$, and hence $r - \varphi(u) = \varphi(c)$. Finally $r = \varphi(u + c)$, where $u + c \in C[t]$, that means $r \in Im Q$.

REMARK. A different proof can be found (but for domains) in [4]. Now we give some generalizations of Theorem 2.6.

COROLLARY 2.7. Let d_1, d_2, \dots, d_n be commutative locally nilpotent derivations in a Q-algebra R. If in R there exist elements x_1, x_2, \dots, x_n such that $d_1(x_j) = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$, then R is isomorphic to the polynomial ring $C[t_1, t_2, \dots, t_n]$, where $C = \{r \in R, 0 = d_1(r) = d_2(r) = \dots = d_n(r)\}$. PROOF. Induction on n. For n = 1, the corollary coincides with Theorem 2.6. Suppose n>1, and put $\overline{C} = \{r \in R, d_2(r) = \dots = d_n(r) = 0\}$. Now by induction $R = \overline{C}[t_2, \dots, t_n]$. Notice that $d_1(\overline{C}) < \overline{C}$ Indeed, if $r \in \overline{C}$, then for $i = 1, 2, \dots, n$ we get $d_1 d_1(r) = d_1 d_1(r) = d_1(0) = 0$. Therefore d_1 is a (locally nilpotent) derivation in the Q-algebra \overline{C} . Since $x_1 \in \overline{C}$ and $d_1(x_1) = 1$, by Theorem 2.6, it follows that $\overline{C} \simeq \overline{C}[t_1]$ where $\overline{C} = \{a \in \overline{C}, d_1(a) = 0\}$. Notice that $\overline{C} = C$. Finally we have : $R \simeq \overline{C}[t_2, \dots, t_n] \simeq (\overline{C}[t_1])[t_2, \dots, t_n] \simeq \overline{C}[t_1, \dots, t_n]$ The following three lemmas will be needed in further generalizations of Theorem 2.6.

LEMMA 2.8. Let d_1 and d_2 be commutative derivations in a ring R. If d_1 and d_2 are locally nilpotent, then $d_1 + d_2$ is a locally nilpotent derivation too.

 $d_1 + d_2$ is a locally nilpotent derivation too. PROOF. If $d_1d_2 = d_2d_1$, then $(d_1 + d_2)^n = \sum_{k=0}^n {n \choose k} d_1^k d_2^{n-k}$ Now if for $r \in \mathbb{R}$ we have $d_1^n(r) = 0$, $d_2^m(r) = 0$, then $(d_1 + d_2)^{n+m}(r) = 0$.

LEMMA 2.9. If d is a locally nilpotent derivation of R and $a \in C(R,d)$, then ad is a locally nilpotent derivation of R.

PROOF. It follows from the formula : $(ad)^{n}(x) = a^{n}d^{n}(x)$.

LEMMA 2.10. Let d_1, d_2, \dots, d_n be derivations in a ring R, and let x_1, x_2, \dots, x_n be such elements of R that the matrix $[d_i(x_j)]$ is invertible. Then there exist derivations $\delta_1, \delta_2, \dots, \delta_n$ of R with $\delta_i(x_j) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$

PROOF. Let $[a_{ij}]$ be the matrix over R such that $[a_{ij}][d_{ij}(x)] = I$, where I is the identity. Take $\delta_i = a_{i1}d_1 + a_{i2}d_2 + \cdots + a_{in}d_n$, for $i=1,2,\ldots,n$. Then $\delta_1, \delta_2, \cdots, \delta_n$ are derivations of R such that $\delta_1(x_j) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$. THEOREM 2.11. Let d_1, d_2, \ldots, d_n be commutative locally nilpotent derivations of a Q-algebra R and let $x_1, x_2, x_3, \ldots, x_n$ be such elements in R that the matrix $A = [d_1(x_j)]$ is invertible. Moreover, let $C = \{r \in R, 0 = d_1(r) = d_2(r) = \ldots = d_n(r)\}$. If A^{-1} is the matrix with coefficients in C, then the ring R is isomorphic to a polynomial ring in n variables over a

subring R..

PROOF. By Lemma 2.10, there exist derivations $\delta_1, \delta_2, \ldots, \delta_n$ such that $\delta_i(\mathbf{x}_j) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$. By the construction of these derivations (see the proof of Lemma 2.10), and by Lemmas 2.8, 2.9 it follows that $\delta_1, \delta_2, \ldots, \delta_n$ are commutative locally nilpotent derivations. The result follows from Corollary 2.7. At the end of this part we note some properties of locally nilpotent derivations.

THEOREM 2.12. Let (R,d) be a Ritt algebra without nilpotent elements. If d is a nonzero derivation which is locally nilpotent, then $C_1(R,d) \not\subseteq C_2(R,d) \not\subseteq C_3(R,d) \not\in \ldots$.

PROOF. Suppose that for some integer n, $C_n(R,d) = C_{n+1}(R,d)$. Then, by Lemma 2.3, we have $R = E(R,d) = C_n(R,d)$. Whence, by Theorem 2.1, we get d = 0.

3. The ring of constants for some derivations in $K[x_1, x_2, ..., x_n]$ Now we shall describe the ring C(R,d) in the case $R = K[x_1, ..., x_n]$, where K is a field of characteristic zero, and d is a derivation of R with d(K) = 0, $d(x_1) \succeq K$, for i=1,2,...,n.

LEMMA 3.1. If R is a Q-algebra without zero divisors, and $d:R[x] \longrightarrow R[x]$ is a derivation with d(R)=0, $d(x)\neq 0$, then C(R[x],d)=R.

PROOF. Let C = C(R[x], d). Evidently $R \leq C$. Suppose $f \in C \setminus R$. Then deg $f = n \geq 1$. If $f = a_n x^n + \cdots + a_0$, where $a_n \neq 0$, then $0 = d(f) = (na_n x^{n-1} + \cdots + a_0)d(x)$. Hence it follows $na_n = 0$, and $a_n = 0$. This contradiction proves the Lemma.

THEOREM 3.2. Let K be a field of characteristic zero, and let $R = K[x_1, \dots, x_n]$. If d:R $\longrightarrow R$ is a derivation such that :

- a) d(K) = 0b) $d \neq 0$
- c) $d(x_1) \in K$, for i = 1, 2, ..., n

then C(R,d) is a polynomial ring over K in n-1 variables. PROOF. The case 1. Let $d(x_1) = 1$, $d(x_2) = \cdots = d(x_n) = 0$. Let $S = K[x_2, x_3, \cdots, x_n]$. Then $R = S[x_1]$, d(S) = 0 and by Lemma 3.1 we have $C(R,d) = S = K[x_2, x_3, \cdots, x_n]$.

<u>The case 2</u>. Let $d(x_1) = \cdots = d(x_s) = 1$, $d(x_{s+1}) = \cdots = d(x_n) = 0$ where $1 \le s \le n$. Consider a ring isomorphism $Y: K[y_1, \dots, y_n] \longrightarrow K[x_1, \dots, x_n]$ such that :

$$\begin{aligned} \varphi(\mathbf{y}_1) &= \mathbf{x}_1 \\ \varphi(\mathbf{y}_2) &= \mathbf{x}_1 - \mathbf{x}_2 \\ \varphi(\mathbf{y}_s) &= \mathbf{x}_1 - \mathbf{x}_s \\ \varphi(\mathbf{y}_{s+1}) &= \mathbf{x}_{s+1} \\ \varphi(\mathbf{y}_n) &= \mathbf{x}_n \end{aligned}$$

Let $\delta: K[y_1, \dots, y_n] \longrightarrow K[y_1, \dots, y_n]$ be a derivation such that $\delta(K) = 0$, $\delta(y_1) = 1$, $\delta(y_2) = \dots = \delta(y_n) = 0$. It is easy to verify that $d\varphi(y_1) = \varphi \delta(y_1)$, for $i = 1, 2, \dots, n$. By Lemma 1.2 φ is a differential isomorphism. Therefore C(R,d) is isomorphic to $C(K[y_1, \dots, y_n], \delta)$, and from the case 1 we get that C(R,d) is isomorphic to $K[y_2, \dots, y_n]$.

The case 3. (the general situation). Since $d\neq 0$, there is $i \in \{1, 2, ..., n\}$ such that $d(x_i) \neq 0$. Let $d(x_i) = 1$. Without loss of generality we can assume that $a_i \neq 0$, for i=1,2,...,s and $a_i = 0$, for i=s+1,...,n. Consider a ring isomorphism Q: $K[y_1,...,y_n] \longrightarrow K[x_1,...,x_n]$ which is defined by the following formulas :

 $\varphi(y_i) = a_i^{-1} x_i$, if i=1,2,...,s $q'(\mathbf{y}_{+}) = \mathbf{x}_{+}$, if $j=s+1,\ldots,n$ Let δ be a derivation in $K[y_1, \dots, y_n]$ such that $\delta(K) = 0$, $\delta(\mathbf{y}_{\mathbf{x}}) = \dots = \delta(\mathbf{y}_{\mathbf{x}}) = 1$ and $\delta(\mathbf{y}_{\mathbf{x}+1}) = \dots = \delta(\mathbf{y}_{\mathbf{x}}) = 0$. Notice that $d\Psi(y_i) = \Psi \delta(y_i)$, for i=1,...,n Indeed, if i=1,2,...,s, then $d\varphi(y_i) = d(a_i^{-1}x_i) = a_i^{-1} d(x_i) =$ $= a_{1}^{-1}a_{2} = 1$ $\varphi \delta(\mathbf{y}_{i}) = \varphi(1) = 1$ if j=s+1,...,n , then $d \varphi(\mathbf{y}_{i}) = d(\mathbf{x}_{i}) = \mathbf{a}_{i} = 0$ $\psi \delta(\mathbf{y}_i) = \Psi(\mathbf{0}) = \mathbf{0}.$

By Lamma 1,2 4 is a differential isomorphism. Thus by Lemma 1.3, we get $C(R,d) \approx C(K[y_1,\ldots,y_n], \delta)$, and the case 2, we get that C(R,d) is isomorphic to $K[y_2, \ldots, y_n]$. This ends the proof.

Now we give some remarks on the C(R,d) in the case $R = K[x_1, \dots, x_n]$ and if d is a derivation of R such that d(K) = 0 and $d(x_1) \notin K$, for some i.

PROPOSITION 3.3. Let $R = K[x_1, \dots, x_n]$ be a polynomial ring over a field K of characteristic zero. If d:R --- R is a derivation such that d(K) = 0 and $d(x_i) = x_i$, for i=1,2,...,n, then C(R,d) = K.

PROOF. If $u=x_1^{i_1} \cdots x_n^{i_n}$, where $i_1, i_2, \cdots, i_n \ge 0$, then $d(u) = (i_{1} + ... i_{n})u$ Assume that $F = \sum_{i_1,\ldots,i_n} x_{i_1}^{i_1} \ldots x_{n}^{i_n}$ (where $k_{i_1} \ldots i_n \neq 0$), is a polynomial belonging to C(R,d). Then $0 = d(F) = \sum (i_1 + \cdots + i_n) k_i \qquad x_i^{i_1} \cdots x_n^{i_n}$, and hence $i_1 + \cdots + i_n = 0$, that means $i_1 = i_2 = \cdots = i_n = 0$. and finally FEK.

PROPOSITION 3.4. Let $R = K[x_1, x_2, \dots, x_n]$ be a polynomial ring over a field K of characteristic p>0 and let d:R -->R be a derivation with d(K) = 0, $d(x_1) = x_1$, for i=1,2,...,n. Let $F = \sum k_1, ..., x_1^{i_1} \cdots x_n^{i_n}$ be an element of R. Then $F \in C(R,d)$ if and only if $p \mid (i_1 + \dots + i_n)$, for all sequences (i_1, \dots, i_n) such that $k_1 \neq 0$. PROOF. Analogous to the proof of Proposition 3.3.

40

PROPOSITION 3.5. Let R = K[x,y], char K = 0 and let $d: R \longrightarrow R$ be a nonzero derivation such that d(K) = 0, and

```
d(x) = Ax + By
```

d(y) = Cx + Dy, where A, B, C, D \in K.

If AD = BC = 0, then the ring C(R,d) is isomorphic to the polynomial ring over K in one variable .

PROOF. Since $d \neq 0$, one of A, B, C, D is not zero. Suppose $A \neq 0$. Then $Cx + Dy = A^{-1}(ACx + ADy) = A^{-1}(ACx+BCy) =$ $= A^{-1}C (Ax + By).$

Now we have d(x) = Ax + By

d(y) = k (Ax + By), where $Ax + By \neq 0$, $k \in K$. Let $\delta: \mathbb{R} \longrightarrow \mathbb{R}$ be a derivation such that $\delta(\mathbb{K}) = 0$, $\delta(\mathbf{x}) = 1$, $\mathcal{S}(\mathbf{y}) = \mathbf{k}$. Then $C(R,d) = C(R, (A\mathbf{x} + B\mathbf{y})\mathcal{S}) = C(R, \mathcal{S}) \approx K[t]$, where the last isomorphism we get by Theorem 3.2. A description of a ring of constants for derivations in a polynomial ring is a difficult problem. It is complicated, even in the case of two variables. Consider the examples below:

EXAMPLE 3.6. Let R = K[x,y], char K = 0 and d: $R \rightarrow R$ be a derivation

1) If d(x) = y, d(y) = -x, then $C(R,d) = K[x^2 + y^2]$.

2) If d(x) = x + y, d(y) = x, then C(R,d) = K.

3) If d(x) = x + n(n + 1)y, d(y) = x, then the element

 $(x - (n+1)y)^{n+1}(x+ny)^n$ belongs to C(R,d)4) If d(x) = xy, $d(y) = -x^2 - y^2$, then $x^4 + 2x^2y^2 \in C(R,d)$. 5) If $d(x) = 3x^2y - 1$, $d(y) = -4xy^2$, then $y(x^2y - 1)^2 \in C(R, d)$. Now we propose two problems.

PROBLEM 1. Let R = K[x, y], char K = 0 and let $d: R \rightarrow R$ be such a derivation that d(K) = 0, d(x) = Ax + By

d(y) = Cx + Dy, where A, B, C, D \in K.

a) Is C(R,d)a Noetherian ring ?

b) Is C(R,d)a finitely generated K-algebra ?

- c) Find necessary and sufficient conditions for C(R,d) = K.
- d) Find necessary and sufficient conditions for $C(R,d) \approx K[t]$.
- **PROBLEM 2.** Let d be a nonzero derivation in K[x,y] such

that d(K) = 0. Is there a situation for which $C(R,d) \neq K$ and $U(R,d) \neq K$ [t]?

REFERENCES

- [1] Bourbaki N., Elèments de Mathematique , Algèbre Commutative, Chapter I Hermann Paris, 1961
- [2] Kaplansky, An introduction to Differential Algebra, Hermann Paris, 1957
- [3] Seidenberg A., Differential ideals in rings of finitely generated type, American Journal of Math. 89 (1967) p. 22-42
- [4] Vasconcelos W.V., Derivations of Commutative Noetherian Rings, Math., Z. 112 (1969), 229-233.

DERYWACJE A PIERSCIENIE WIELOMIANÓW

Streszczenie

Derywację d:R \rightarrow R nazywamy lokalnie nilpotentną wtedy i tylko wtedy, gdy dⁿ(r)= 0, dla pewnego n \in N oraz dla każdego r \in R (R - pierścień przemienny).W pracy rozpatrujemy szereg własności derywacji lokalnie nilpotentnych. Dowodzimy między innymi (Tw. 2.11), że jeżeli R posiada derywacje lokalnie nilpotentne oraz spełnia dodatkowe założenia, to R jest pierścieniem wielomianów nad pewnym ciałem K.

W drugiej części pracy zajmujemy się badaniem pierściem stałych dla pewnych derywacji pierścieni wielomianów nad ciałem. Artykuł kończymy sformułowaniem dwóch otwartych problemów.