ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematyczne 1983/1984 z.5/6

ANDRZEJ NOWICKI UMK w Toruniu RYSZARD ŻUCHOWSKI WSP w Bydgoszczy

SOME REMARKS ON SYSTEMS OF IDEALS (II)

Systems of ideals in commutative rings have been investigated in [4],[5]. Recall that a pair (R,M) is said to be a system of ideals, if R is a commutative ring and M is a set of ideals of R satisfying the following conditions:

- A1. R is an element of M,
- A2. The intersection of any set of elements of M is an element of M,
- A3. The union of any non-empty set of elements of M, totally ordered by inclusion, is an element of M,
- A4. The null ideal belongs to M,
- A5. If A,B belong to M, then A+B belongs to M,
- A6. If A,B belong to M, then AB belongs to M,
- A7. If A,B belong to M, then (A:B)belongs to M,
- A8. If A belongs to M, and x is any element of R, then $A_{x} = \bigcup_{n=0}^{\infty} (A:x^{n}) \text{ belongs to M.}$

For any system of ideals (\hat{R},M) in R we have two natural operations $\#: I(R) \longrightarrow I(R)$ and $[\ \]: I(R) \longrightarrow I(R)$ on the set I(R) of all ideals of R such that, for A from I(R), A is the greatest M-ideal (an ideal from M) contained in A and A is the smallest M-ideal containing A. These operations are useful tools in the proofs of many theorems in the theory of differential rings ([1],[2],[3]) and in general theory of systems of ideals ([4],[5]).

In this note we define axiommatically two kinds of operations on ideals of rings, called the interior and closing operations, and show that there is a one-one correspondence between the set of all interior operations (resp. closing operations) of a fixed ring R and the set of ideal systems in R.

DEFINITION 1. A mapping $C: I(R) \longrightarrow I(R)$ is said to be an interior operation on ideals of R iff it satisfies the following conditions

W1.
$$\propto$$
 (A) \subset A
W2. \propto (\propto (A))= \propto (A)
W3. \propto (\cap A₁)= \cap \propto (A₁)
W4. \propto (R)= R
W5. \propto (AB)= \sim (A) \sim (B)
W6. \propto (A: \propto (B))=(\propto (A): \sim (B))
W7. \propto (\propto (\propto (A) \sim (A) \sim (B), for every \propto R.

DEFINITION 2. A mapping $\gamma:I(R)\to I$ (R) is said to be a closing operation on ideals of R iff it satisfies the following conditions

LEMMA 1. If (R,M) is a system of ideals, then # is an interior operation, and [] is a closing operation on ideals of R_{\bullet}

PROOF. Most of the conditions W1-W7, D1-D8 follows from the definitions. We verify the condition W6. First we check the icnlusion $(A:B)_{\#} \subset (A_{\#}:B_{\#})$. Since $B(A:B) \subset A$ and, by the condition W5, $B_{\#}(A:B)_{\#} \subset (B(A:B))_{\#}$, we have $(A:B)_{\#} \subset (A_{\#}:B_{\#})$. Hence, since $B_{\#} \in M$, $(A:B_{\#})_{\#} \subset (A_{\#}:(B)_{\#})_{\#}$ = $(A_{\#}:B_{\#})$. Conversely, the inclusion $(A_{\#}:B_{\#}) \subset (A:B_{\#})$ gives

- $(A_{#}:B_{#})_{#} \subset (A:B_{#})_{#}$ Finally, by A7, $(A_{#}:B_{#}) \in M$ and consequently $(A_{#}:B_{#})_{#} = (A_{#}:B_{#})$ and $(A_{#}:B_{#}) \subset (A:B_{#})_{#}$.

 THEOREM 1. Let R be a commutative ring with identity.
- a) There is a bijection between the set of all interior operations on ideals of R, and the set of all $M \subseteq I(R)$ such that (R,M) is a system of ideals.
- b) There is a bijection between the set of all closing operations on ideals of R, and the set of all $M \subseteq I(R)$ such that (R,M) is a system of ideals.

PROOF. Proofs of a)and b)are similar, so we prove only a). Let & be an interior operation on ideals of R. Let $M_{\infty} = \{ A \in I (R), \propto (A) = A \}$. We shall verify that M_{∞} satisfies the conditions A1-A8. The conditions A1, A2, A4, A7, A8 are obvious. We check the remaining conditions. A3. Let $\{A_i\}_{i \in I}$ be a subset of N, totally ordered by inclusion. Then by W1 and W3 $\alpha(UA_1) \subset UA_1 = U\alpha(A_1) \subset \alpha(UA_1)$, and $UA_1 \in M_{\alpha}$. A5, A6. If A, B & M ac, then, applying W1 and W3 again, we get α (A+B) α A+B = α (A)+ α (B) α (A+B) and α (AB) α AB = $\approx \alpha$ (A) α (B) $< \alpha$ (AB). Thus A+B, AB belong to M α . By Lemma 1, we know that every system of ideals in R has the form Moc. Indeed, if (R,M) is a system, then the operation $\#:I(R) \longrightarrow I(R)$ defined by this system is such interior operation on ideals of R that $M=M_{st}$. It remains to show that $M_{\infty}=M_{\beta}$, for operations α , β , implies $\alpha = \beta$. Let $A \in I(R)$. Then \propto (A) \in M $_{\alpha}$ = M $_{\beta}$, β (A) \in M $_{\beta}$ = M $_{\alpha}$, and consequently $\beta(\alpha(A)) = \alpha(A)$ and $\alpha\beta(A) = \beta(A)$. Hence by W3 $\alpha(A) = \beta\alpha(A) \in \beta(A)$ and $\beta(A)=\alpha\beta(A)<\alpha(A)$, that means $\alpha=\beta$

REFERENCES

- [1] Cohn R.M., Systems of ideals, Canadian Journal of Math. 21 (1969)
- -2 Kolchin E.R., Differential Algebra and Algebraic Groups, Academic Press, New York, London, 1973
- [3] Nowicki A., Prime ideal structure in additive conservative systems (to appear)
- [4] Nowicki A., Zuchowski R., Some remarks on systems of

- ideals (I), (to appear in Problemy Matematyczne WSP in Bydgoszcz, nr. 4)
- [5] Zuchowski R., Systems of ideals in commutative rings (to appear in Commentations Mathematicae)

PEWNE UWAGI DOTYCZACE SYSTEMOW IDEALOW (II)

Streszczenie

W teorii pierścieni różniczkowych jak również w teorii systemów ideałów ważną rolę odgrywają dwie operacje #, []: I(R) — I (R) zadane na zbiorze I(R) wszystkich ideałów danego pierścienia R (patrz [1],[2],[3]). W niniejszej pracy wprowadzamy aksjomatycznie dwa rodzaje operacji na ideałach pierścienia R, nazywane operacjami wnętrza i domknięcia. Dowodzimy twierdzenie, które głosi, że operacje te tworzą zbiory, które są izomorficzne z rodziną wszystkich systemów ideałów pierścienia R.