ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY Problemy Matematycane 1983/84 z.5/6

TOMASZ NATKANIEC WSP w Bydgoszczy

ON IDEALS OF THE SETS ON THE REAL LINE WHICH CONTAIN THE IDEAL OF THE SETS OF POWER $< 2\omega_c$

Let X denotes a set. If $A \subseteq X^2$ then $A_x = \{y \in X; (x,y) \in A\}$ for each x of X and let $A^{Y} = \{x \in X: (x,y) \in A\}$ for each y of X. W. Sierpiński showed in [2] that the following statements are equivalent :

- (i) the Continuum Hypothesis (CH),
- (ii) there exists a partition $A,B \subseteq R^2$ (by R is always denoted the real line) such that $\forall x \in \mathbb{R}(|A_x| \le \omega_x \lambda |B^x| \le \omega_x)$

In this paper we generalize Sierpiński's result. It is shown in Theorem 0 that if |X|= g is a regular cardinal number and $I \leq P(X)$ is a proper ideal then the following statements are equivalent :

- (i) $\forall A \subseteq X$ ($|A| < R \implies A \in I$), (ii) there exists a partition $A,B \subseteq X^2$ such VXEX (BICR & AKEI).

We use standart set theoretical notation and therminology.

A cardinal number w is identified with the first ordinal number of a power K.

If X is a topological space then the sign P(X) denotes the family of all subsets of X and the sign 3(X) denotes the family of the Borel sets of X. An ideal $I \subseteq P(X)$ is called a 6'-ideal iff the union of countable many members of I always belongs to I.

An ideal $I \subseteq P(X)$ is called proper iff $X \not\in I$. A proper ideal $I \subseteq P(X)$ is called R -semicomplete iff $\forall \alpha' \in \mathbb{R} (\{A_{\xi}^{i}; \xi < \alpha \} \leq I \Longrightarrow \cup \{A_{\xi}^{i}; \xi < \alpha \} \neq X).$

If $I \subseteq P(X)$ is an ideal then $B^{I}(X)$ denotes the family

 $\{A \subseteq X : \exists B \in \beta(X) \quad A \triangle B \in I\}, (A \triangle B = (A-B) \cup (B-A)),$ Clearly $\beta^{I}(X)$ is a field and $\beta(X) \cup I \subseteq \beta^{I}(X).$ An ideal $\beta \in P(X^{2})$ is a second power of an ideal $I \subseteq P(X)$ iff

- (i) $\forall A \in X^2 \{A \in \mathcal{J} \implies \exists B_1, B_2 \in I \quad \{\forall x \in X B_1(A_x \in I) \& \forall x \in X \setminus B_2(A^x \in I)\} \}$
- (11) $\forall A \subseteq X^2 [A \in B^{\overline{J}}(X^2) \overline{J} \Longrightarrow] x, y \in X (A_x \in B^{\overline{J}}(X) \setminus I \& A^y \in B^{\overline{J}}(X) \setminus I)].$

For every set X such as $|X| > \omega_0 K(X)$ denotes the ideal of the sets of power < |X|.

Theorem 0.

Suppose, that |X|=R, where R is a regular cardinal number. If $I\subseteq P(X)$ is a proper ideal then following statements are equivalent:

- (i) $K(X) \leq I$,
- (11) there exists a partition $A,B \subseteq X^2$ such that

$$\forall x \in X \ (B_x \in K(X) \& A^x \in I)$$

Proof. (i) \Longrightarrow (ii). Let $(a_{\infty})_{\infty \in \mathbb{R}}$ be an enumeration of X and $A_{\infty} = \{a_{\beta} : \beta \le \alpha\}$ for $\infty < \mathbb{R}$.

A, B are defined as follows:

 $A = \bigcup_{\alpha \in \mathcal{L}} A_{\alpha x} \{ a_{\alpha x} \}, \quad B = X^2 \setminus A.$ Clearly, if $x = a_{\alpha x}$ then $A^X = A_{\alpha x} \in I$ and $B_X \subseteq A_{\alpha x}$.
Hence $|B_X| < R$.

(ii) \longrightarrow (i). If $C \subseteq X$ and $C \in K(X)$ then $C \subseteq A$ for some $y \in X$. Really, suppose as there exists $C \in K(X)$ such that

$$\forall y \in X \quad C \times \{y\} \not \in A$$
.

Then $\forall y \in X \exists x \in C \langle x, y \rangle \in B$.

Since $C \in K(X)$ and R is a regular cardinal number then there exists $x \in C$ such that

a contradiction with (ii).

Let $C \in K(X)$, then there exists $y \in X$ such that $C \subseteq A^{\circ}$. Since $A \in I$ then $C \in I$.

Remark O.

Consider the implication (ii) = (i).

The assumption that R is regular is essential.

Proof. Suppose that $|X| = 2^{\omega_0} = \omega_{\omega_1}$. Let $(a_{\omega})_{\alpha \in \omega_{\omega_1}}$ be an enumeration of X. Let for $\xi \in \omega_1$

 $C_{\xi} = \{a_{\infty} : \omega_{\xi} \leq \infty < \omega_{\xi+1}\}.$ Notice that $X = \bigcup_{\xi \in \mathcal{C}_{\xi}} C_{\xi}$. Let I be the σ -ideal generated by family $\{C_{\xi} : \xi < \omega_{\xi}\}$. Notice that I is proper.

 $I = \{A \subseteq X : A \subseteq \bigcup_{t \in T} C_t, \quad T \subseteq \omega_1, \mid T \mid \leq \omega_0 \}.$ Define the sets A, B \(\le X^2 : \)

 $B = \bigcup_{X \in \mathcal{X}} \bigcup_{X \in \mathcal{X}} C_X , \quad A = X^2 - B.$ If $x \in X$ then there exists $x \in \mathcal{C}_X$, such that $x \in C_X$.

Consequently $B_X = \bigcup_{X \in \mathcal{X}} C_X$, $|x| \leq \omega_X$, $|C_X| \leq \omega_X$ and cofinality of ω_{ω_1} is ω_1 , so $|B_X| \leq \omega_{\omega_1}$ and cofinality of ω_{ω_1} is ω_1 , so $|B_X| \leq \omega_{\omega_1}$.

Similarly, $A^X \subseteq \bigcup_{X \in X \in \mathcal{X}} C_X$ and $|x+1| = \omega_c$. Hence $A^X \in I$.

Let D be a selector for $\{C_X : Y \in \omega_1\}$. Then $|D| = \omega_1 \leq \omega_{\omega_1}$ and $D \notin I$ and therefore $K(X) \notin I$.

Theorem 1

Accepting the assumptions of the theorem 0 we suppose furthermore that I is a K-semicomplete ideal. Then the following statements are equivalent:

(1) $K(X) \subseteq I$.

(iii) there exists a partition $A,B \subseteq X^2$ such that

 $\forall x \in X$ $(A^X \cup B_X \in I)$.

Proof. Clearly (i) \Longrightarrow (iii)

Now, suppose that the statement (iii)holds.

Assume, as there exists $C \in K(X)$ such that $C \notin I$.

Let $C = \{c_{\frac{1}{2}}: \frac{1}{2} < \infty\}$ for some $\alpha \neq \infty$.

Since

 $\forall x \in X$ $C \notin B_{x}$ then $\forall x \in X$ $\exists y \in C$ $\langle x, y \rangle \in A$

Let $C_{\xi} = \{x \in X : \langle x, c_{\xi} \rangle \in A_{\xi}$.

Since $C \subseteq A^{\frac{C}{2}}$ then $C_{\frac{1}{2}} \in I$ for every $\frac{1}{2} < c < \frac{1}{2}$ and

X = U{C; ; } < \inf .

But I is semicomplete - a contradiction.

Remark 1. (7 CH)

Consider the implication (iii) => (i)

The assumption that I is n-semicomplete is essential.

Proof. Suppose that $|X| = 2^{\omega_0} \omega_1$. Let $\{C_{\frac{1}{2}}: \frac{1}{2} \omega_1\}$ be a partition of X. Let I be the 6-ideal generated by this family. Notice that I is proper. Define the sets A, $B \subseteq X^2$:

 $B = \bigcup_{1 \leq \omega_1} \bigcup_{1 \leq z} C_{\xi} \times C_{\xi} , \quad A = X^2 - B .$ If $x \in X$ then there exists $\xi < \omega_1$ such that $x \in C_{\xi}$. Then $B_{x} = \bigcup_{1 \leq z} C_{\xi}, \quad A^{x} = \bigcup_{1 \leq z} C_{\xi}, \quad |\xi| \leq \omega \text{ and } C_{\xi} \in I. \text{ Hence}$ $B_{x} \in I \text{ and } A \in I . \text{ Let } D \text{ be a selector for } \{C_{\xi} : \xi < \omega_{\xi}\}.$ Clearly $D \in K(X) - I$.

Corollary 0. (Sierpiński)

If I is the ideal of countable subsets of R then the following statements are equivalent:

- (1) CH,
- (11) there exists a partition $A,B \subseteq \mathbb{R}^2$ such that $\forall x \in \mathbb{R} \ (|A^x| \leq \omega_o \& |B_x| \leq \omega_o).$

Corollary 1.

If I is the ideal of the Lebesgue measure 0 sets on the real line then the following statements are equivalent:

- (1) $\forall A \subseteq R (|A| < 2^{\omega_0} \Rightarrow A \in I)$,
- (ii) there exists a partition A, B \subseteq R² such that $\forall x \in R \ (A^x \in I + |B_x| < 2^{\omega_0}).$

Corollary 2.

If I is the ideal of the first category sets on the real

line then the following statements are equivalent:

- (i) $\forall A \in R(|A| < 2^{\omega_0} \longrightarrow A \in I)$,
- (ii) there exists a partition $A,B \subseteq R^2$ such that $\forall x \in R \ (A^x \in I \& |B_x| < 2^{\omega_0}).$

Remark 2.

Consider the implication (ii) (i).

The assumption that a is regular is essential.

Proof. It is consistent with ZFC that $2\omega_{-}=\omega_{\omega_{1}}$, the real line is the union of ω_{1} many sets of the first category and $K(R) \notin I$ (comp. [3]).

Then the condition (ii) holds.

In fact, let $R = \bigcup \{C_{\xi}: \xi < \omega_1\}$ and $C_{\xi} \in I$ for every $\xi < \omega_1$. Suppose that the sets C_{ξ} are pairwise disjoint (if they are not then we define

 $C_{\frac{1}{3}} = C_{\frac{1}{3}} - \bigcup_{1 \leq i \leq n} C_{i}$ for $\frac{1}{3} \leq \omega_{i}$ and $C_{\frac{1}{3}} \leq \omega_{i+1}$ for every $\frac{1}{3} \leq \omega_{i+1}$

Indeed, let $(a_{\alpha})_{\alpha < \omega_{\alpha}}$ be an enumeration of R. Define

 $C_{\frac{1}{2}} = C_{\frac{1}{2}} \cap \left\{ a_{\infty} : \mathcal{A}(\omega_{\frac{1}{2}+1}) \cup \bigcup_{\substack{1 \le i \le 1 \\ 7 \le \frac{1}{2} \\ 1 \le i \le 1}} C_{\frac{1}{2}} \cap \left\{ a_{\infty} : \omega_{\frac{1}{2}} \in \mathcal{A}(\omega_{\frac{1}{2}+1}) \right\}.$ Notice that $C_{\frac{1}{2}} \in I$, $|C_{\frac{1}{2}}| \le \omega_{\frac{1}{2}+1}$ and $|C_{\frac{1}{2}}| \in U$ $C_{\frac{1}{2}} = R$.
Define

 $B = \bigcup_{X \in \mathcal{X}} \bigcup_{X \in \mathcal{X}} C_X \text{ and } A = R^2 - B.$ Let $x \in R$ then $x \in C_X$ for some $X \in \mathcal{U}_X$. Therefore $B_X = \bigcup_{X \in \mathcal{X}} C_X$, $B_X \mid X \in \mathcal{U}_X$ and $A^X = \bigcup_{X \in \mathcal{X}} C_X \in I$.

Similarly, if I is the ideal of the Lebesgue measure 0 sets. If it is consistent with ZFC that $2^{\omega_0} = \omega_{\omega_A}$, the real line is the union of ω_A many sets of I and $K(R) \not\in I$ (which the author belives in), then the condition (ii) holds for I.

Corollary 3.

If I is the ideal of the Lebesgue measure 0 sets of R (of the first category sets of R) and I is 2^{ω_c} -semicom-

plete then the following statements are equivalent:

- (i) $\forall A \subseteq R \quad (|A| < 2^{\omega_0} \Longrightarrow A \in I),$
- (ii) there exists a partition $A,B \subseteq R^2$ such that VXER (AXEI & BEI).

Remark 3.

Let I be the ideal of the Lebesgue measure 0 sets of (of the first category sets of R). Consider the implication $(ii)\Longrightarrow (i).$

The assumption that I is $2\omega_{\pi}$ -semicomplete is essential.

Proof. It is consistent with ZFC $2^{\omega_o} = \omega_2$, I is not 2 200-semicomplete and K(R)\$I (comp. [3]). Then (ii)

Indeed, let {C; ; [ca] be a partition of real line such that Cre I for every .

Define $B = \bigcup_{i \neq j} \bigcup_{i \neq j} C_i \times C_i$, $A = R^2 - B$. It is clear that the partition A,B satisfies the condition (ii).

Remark 4. (ZFC)

Suppose that I is a proper ideal such that $K(X) \cap B^{I}(X) \subseteq I$, J is a second power of I and A,B satisfy the condition (ii). Then $A,B \notin \mathcal{B}^{J}(x^2)$.

Proof. Let A,B be a partition of X2 such that

 $\forall x \in X \ (B_x \in K(X) & A^x \in I).$ Suppose that $A \in \mathcal{B}^J(X^2)$. Since $A^x \in I$ for every $x \in X$, then $A \in J$. Since $A \in \mathcal{B}^{J}(x^{2})$, then $B \in \mathcal{B}^{J}(x^{2})$. Consequently B ∈ J. In fact, if B ≠ J then there exists x such that $B \in \mathcal{B}^{I}(X)$ - I, but $B \in K(X)$ - a contradiction with $K(X) \cap \mathcal{B}^{1}(X) \leq I$.

Thus $A, B \in J$, $X^2 = A \cup B \in J$ and $X \in I - a$ contradiction, because I is proper.

Remark 5. (ZFC)

If I is a proper ideal, J is a second power of I A,B satisfy the condition (iii) then A,B \notin B^J(x^2). It is clear.

Corollary 5. (ZFC)

If I is the ideal of the Lebesgue measure 0 sets of R, J is the ideal of the Lebesgue measure 0 sets of R^2 , and A, B satisfy the cendition (ii) or (iii) then A, B $\notin \mathcal{B}^J(R^2)$. Corollary 6. (ZFC)

If I is the ideal of the first category sets of R, J is the ideal of the first category sets of R^2 and A,B satisfy the condition (ii) or (iii) then A,B $\notin \mathcal{B}^J(R^2)$.

REFERENCES

- [1] Kuratowski K., Mostowski A., Teoria mnogości, PWN, Warszawa 1978
- [2] Sierpiński W., L'hypothèse du continu, Monogr. Mat. 4, Warszawa 1934
- [3] Miller A.W., Some properties of measure and category, Transactions of the Amer. Math. Soc., 226 Nr 1, 1981

O IDEALACH NA PROSTEJ ZAWIERĄJACYCH IDEAL PODZBIORÓW MOCY(200

Streszczenie

- W. Sierpiński udowodnił równoważność następujących Warunków:
- (i) Hipoteza Continuum,
- (ii) istnieje podział płaszczyzny na dwa zbiory, z których
 jeden ma wszystkie cięcia poziome przeliczalne, zaś
 drugi wszystkie cięcia pionowe przeliczalne.
 W pracy niniejszej rozważa się możliwość zastąpienia
 w twierdzeniu Sierpińskiego idealu zbiorów przeliczalnych
 przez inne idealy (zawierające ideal zbiorów mocy mniejszej niż
 continuum).