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SOME CONTRIBUTIONS TO THE THEORY OF BOREL °C SELECTORS

Let X and Y be topological spaces and let F be a
map from X to the hyperspace of all nonempty subsets of
Y. A continuous function f from X to Y is said to be a
centinuous selection for F if f(j)CF(x) for every x e X.
The notion of continuous seleotion was introduced and studied
in detail by E. Michael, cf. [I*»-16] and the references there,
Seleotion theorems are in obvious way generalizations of
extension theorems. An extension problem is a selection
problem in which F(x) is for every xe X either a singleton
or the whole space Y. In the introduction of (1»3 Michael
pointed out that the main result of his selection theory
is the fact that most of the known extension theorems can be
slightly changed and essentially generalized to suitable
seleotion theorems. Let oc be any countable ordinal number.
Recall that a multifunction F X —Y is said to be of
lower class or if F~(v):= [IEXs F(xX)nV / O} is a Borel
set In X of additive class oc for each open set V in Y
(of. Til]). In [io] the following general problem is formula-
ted : Under what assumptions can theorems known for o= O be
extended to arbitrary oCc SL?

Paper I*»] , see also 33 , contains some finite-dimensional
Borel °C analogue of Michael's famous theorem 3.1'‘’ , see

P« 373 and 368 . The aim of this work is to improve
this theorem via so-called Gastaing representation of F.

We give also some rather trivial modifications of the results
known in the case of measurable selectors (cf. flj,r2y 8}
[20]) and we include some facts from my recent works [18 - 193«



Following Rockafellar fl7] we say t.*" o) ***} a
Castaing representation of F if each fA is a selector for
F, and ~f~Ax), f2(x),..»] Is dense in F(x) for x¢ X.
Representations of this kind are exhibited by Castaing fl]
for the case where the measurable structure on X is that of
a Radon measure on locally compact space, and by Uimmelberg
Cel in the general situation where X is an abstraot measu-
rable space. The Castaing representation for multifunction
of lower class oc also exists by virtue of [13] = Since the
theorem k in r33 is stated asa corrolary tosome rather
complicated results, we give here the direct proof of this
theorem. Moreover, our theorem 1 gives the existence of
denumerable sequence of selections provided that X is a
perfectly normal topological spaoe, while in flI3] X s
assumed to be a metric space. Let us recall that a normal
topological space in which each closed set is a Gjis called
perfectly normal. The ordinal space To, $2} with topology
generated by all sets of the form £x : x>«c} and £x:x<p} is
an example of paracompact, hence also normal, topological
space that is not perfectly normal. Namely the closed set

is not a Gj . For, if (G» 1=1,2,...} is any
countable collection of open sets containing £2 , then because

the sets (<*,8 ) are a basis, for each isl1,2,... there
exists an ordinal such that £o0én,.!j2] is contained in
Ga» Being countable, the collection £<2i 1=1,2,...}. has an
upper bound 3<SI, m £}Q Gt e Clearly fo,£2.]
is paracompact. Indeed, let £ , i ¢ 1} be any open covering.
Since the sets (1,p ) form a basis, define fs [0,J2]—% fO,JL]
by associating with each 0a f(B)<RB such that(f(B),R]
is contained in some U~”, and setting f(o)= 0. By induction,
construet a sequence (3Q =J2. (3, = f(ft),...,BR k = f((3k-1),...
then > B )>eee and, since every descending sequence

of ordinals is finite, this terminates with some .

Because the proceschannot be continued, R =0, and so (O,SL~j
‘'n

is contained in ((3k_1»(lk3 . Choosing a containing
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each ( Rfc] and eome 39 N0}, we have a finite sub-

covering {Ut , UA , ..., UAA~™° of (U* * » » whioh is
o] 1 n
consequently an open neighbourhood-finite refinement. Conver-

sely the reader can verify that the subspace [0,JL) is perfect-
ly normal, but it is not paracompact: the open covering by
sets [0, 0¢), O <oc < Sh , has no open neighbourhood-finite

refinement.

THEOREM 1. Let X be a perfectly .normal topological space
and let Z be a Polish spaoe. Suppose that f:X —? Z is a
multifunction with closed values* Then the following conditions
are equivalent:

a) F is of lower class oc , oc> 0

b) there exist Borel functions z *1=1,2,...
such that fdr each x £ X wehaveF(x)= CI[fA(x): i=1,2,...j
Proof: (a) b. Fix acomplete metrio d on Z. It

suffices to show that for every £ > 0 there exist Borel oC
selectors SnsX — Z for F such that £gn(x):n=1,2,..*}

is an £ -net in F(x) for each xfcX . Once this is done,
we can put together the functions {glg( n,k=1,2,...% , to
get the desired result, where ¢ are Borel oC selectors

for F such that [g'r? (x): nzl,AZ,.‘..’\ is a k”'-net in
F(x) for each xé X. Since Z is separable, hence it is
possible to cover Z by open balls K(zn~, £/2), 1=1,2,,..
Put Xt:= {x£ X: F(x)n K(zA, £/2)/ 0] ,1=1,2,....

Note that each X~ is of Borel additive class or , in virtue
of the properties of F. Fix a Borel or selector h:X —aZ
for F. The existence of such a seleotor is ensured by
famous theorem of Kuratowski and Ryll-Nardzewski, cf. F3],

theorems 3 and 11 . Suppose that X~ is nonempty, and

define "#* 2 bY formula FA(x)= CIfF(x)oK(zA, £/2)J.
Notioe that if G is open in Z, then

F~(g):= Xt: Fa(x)aG 4 ¢} ={x£ X: CIfF(x)nK (z., £/2) n

nG/ 0}=(x&X: F(j)o Gi\K(zn, £/2 O leis of Borel additive
class or in X. Since X~ is also of Borel additive class
in X, hence Fa(g) is of Borel additive class oc of X»
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with the Induced topology. Ve can therefore appeal once again
to the Kuratowski and Ryll-Nardzewski theorem to get a Borel

of eeleotor h™: X» Z for F~, There exist sets
i,jcl1,2,... , which are simultaneously of additive class
less than oC and of the multiplicative class Ie%é than ot ,
such that for each id ,2,... we have XN = .
For jd,2,... define h~ IX —y Z as follows

on XA j

on X - XAJ

If X~ is empty, set h~j=h for every Jd,2,... .In either

case, as is easy to check, the functions h+J9 p are
Borel OC selectors for F« To conclude the proof of this Item,

we olaim that for each x¢X , (h™j(x); i,JdJd ,2,...J is an

l1-net in F(x). For , if z «€wuF(x), we can find an iQ such

that z£K(z~ , £/2), hence F(x)nK(zA ,£,/2) is nonempty

and xt X ,°So there is an Jo such tRat ztX”" ; T |

follows that ht ; (x)=hz (x)éFi (x)cCl K (z+ , 1/S ).

Consequently, d£z,°h. . (x))i d(z°z. )+ d (z. »°h. , (x))".€.
00 o o 0o

Thus U T={h~; 1i.j=1,2.. .. k=1,2,. . un, . J

is as required. b a. Let G be an open set in Z and

U=*(fltf2,...i . Then F~(z)s= {x s F (x)n GO 0} =

=(x sITCLUX)J NO/ ft] ={x : n(x)nG 0O 0} =
a

= \x : u™xJfeG for some u” u}= [X: un(x)«G} =
= nA=i nu~1(g) is of Borel additive class °C , so that F s

of lower class oC.

Now, let Z be a linear space. The oonvex hull and closed
convex hull of a set BC Z are denoted by conv B and CI
conv B, respectively. The following theorem is an easy genera-

lization of theorem from fl13 » section 6

THEOREM 2. Let X be a perfeotly normal topological space
and let Z be a separable Frechet space and F:X —>Z a
multifunction of lower olass <X with closed values. Then the
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multifunotions c¢»nT F , Cl oonv F defined by x i— eenv F(x),
X (-¢ Cl fconv F(x)jare alao of lover olasi oC « Moreover, Z
need only be a separable vetrio looally oonvex space, |If eaob

F(x) Is assumed to be oomplete.

Proof : By theorem 1 there is a oountable collection

U X Ilu”™,« ef Borel =C seleotors for F such
that F(x)e CI U (x) for all xtX . Let Q be the set of all
sequenoes (g™ ,q2,.-e- eee) of non-negative rationaj numbers

suoh that all but finitely many 42* are 0 and n gisl,

The set™ Q is clearly countable and so is

V IBI!~A1 gn *Un! (qi1*42 4n)EQi *

V is a oountable”eolleotion of Borel oc functions such that
Cl V(x):s 4n 'un/N*ANT (4 1xq2>*>* )tQ .}= CI conv U(x)e
= oonv U(x) for all x £ X. Hence, again applying Theorem 1,

conv F and CI conv F are of lover class «- .

THEOREM 3. Let X be a perfeotly normal topological space
and Z a separable Banaoh apace. Let f : X —»Z be a
Borel «" map and r:X —m R a Borel oc function with nonnega-
tive real values. Then the multifunction defined by formula

F(x)s K (f(x), r(x):=1[z¢éZ i l[f(x)- >4 *"(xX)$

is of lover dass aC.
Proof. Let (ZzjfZg,...) be a dense sequence in the unit
ball of Z. Put un(x)sa f(x)+ r(x)-*n , nsl1l,2,... . Then

each un is clearly of Borel class oC and ve have an equality
F(x):= K (f(x), r(x))= ClI {un(x); ns1,2,..}

By theorem 1, F is of lover dass cC ,

Using theorem 1 ve are able to prove the folloving superposi-
tion theorem for multifunctiona of lover class of

THEOREM U. Let X,Y and Z be separable metric spaces and
f:X x Y —> Z a continuous function. Let f:X —2Y be a

multifunction of lover class or> 0 vith complete values. The
the multifunction G:X Z defined by formula

C (x)= f(Ix} x F(x)) is also of lover class of.



Proof |j Applying the Castaing's representation, let U
be a countable set of Borel cXTselectors for F such that

Cl U(x)= F(x) for each x&X. Let B be an open subset of Z.
Then we have g¢g”"(b)= (x t f ({x} x F(x)) 1B /7 0} ?

e [x : f(U}x CI U(@)filIB / =

| X3i ; f(x,y)tB for some ytCIl U (x)~=
{x : f(x,u (x))¢B for some u€.U”s {* * f(x,u(x))eB}.
So it remains to show that ~x: f(x,u(x) )feB is a member of

Borel additive olass of . By separability of X x Y the map
bu: X —> X x Y defined by h~(x)= (x, u(x') is olearly of
Borel olass oc . Then £x : «(*)¢ BN = b"H(f**+(B))
belongs to Borel additive olass of , g0 that G is of lower
olass oc

Now, let Z be a Frechet space. If K is a closed,
convex subset of Z, then a supporting set of K s, by
definition, (see [Ik] ), a closed, convex, proper subset S
of K (s may even be a singleton) such that if an interior
point of a segment in K belongs to S, then the whole
segment is contained in S. The set I(k) of all elements of
K which are not in any supporting set of K will be called
the inside of K. The family

D(Z)= [bCZ : B s oonv B and B31 (Cl B)}
introduced in is seemingly the adequate range space for
the Ceder-Levi theorem. The reader is refered to the exeellent
monograph (63 for the study of properties of oonvex sets.
Proposition 1. ( Every convex subset K of Frechet space
Z which is either olosed, or has an interior point or is
finite-dimensional, belongs to D(z).

Pr oof. If K is closed, this is obvious. If K has an
interior point, and if z€ (Cl K)- K (complement of K in

Cl K) then the Hahn-Banach theorem guarantees the existence of
closed hyperplane HC Z which supports CI K at 1z, but
does not oontain CIl K; clearly HRNCI K is a supporting set
of CI K and hence z belongs no to I(ci K). Finally, if

K is finite dimensional, then K has an interior point
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with respect to the smallest linear variety zZ~"Z containing
K. Hence Ktu(Z1)CD(z).
Proposition 2. (I'tU}) If (tift2,...d ia a donee subset of a
nonempty, closed, convex, separable subset K of a Freohet
space Z, and if

*i " 41 /

Zi =S + -ax (1, dftjt )) =12y — 00
where d is an invariant netrio on Z, then z:= 2 Jz™

belongs to the Inside 1(k) of K.

Proof. Suppose z4 i(k). Then there exists a supporting

set SC k such that ztS, Nov for every i=1,2,...,z is

either an interior point of a segment in K one of whose end

points is z™, or else zsz”™. In either case we must have
S. But, for every 1=1,2,... the point 2z~ ia either

an interior point of the segment

[t~t~r = (té Z: t = atl + (l-a)tA ; Oi"a”™IlJd or else

z~A=t™ , so in either oase we must have t~é S. But

{*1**2"***~n js dense in K, and since S is closed, this
finally implies that SsK, which is impossible.

Ve arm now in a position to state and prove our main seleotion
theorem:

THEOREM 5. Let X be a perfeotly normal topological space
and Z a separable Freohuit space. If F:X —aZ is a multi-
function of lower class or, or ~ 0 , whosevalues are in
D(z), then F has a Borel oC selector.

REMARK 1. In case oc =0 we must observe that X is eountably
paracompact.

Proof. Define ClI F:X —mZ by formula (Cl F)(x)= CI[f(x)]j
what we must find is a Borel oc selector f:X — Z such

that f(*)é I(ci F (x)) for every x€ X. Obviously C1F is

also of lower class °C, in virtue of our theorem 2 < Thus,

in virtue of the theorem 1, CI F has a Castaing represen-
tation | fj,f2,*..~.
Now, let
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fAQO- T, 00

gn(x)= f,(x) + u - . » 1=1»2,,
(i, d (Fx(x), f,(x))

where d denote an Invariant metric on Z.
oo y

] \

Put f(x)m 21 2 g~fx). By Proposition 2 we have
j=1 J

f(x)él (Cl F (x))e-F(x) since F(x) belongs to D(z). On the
other hand, sinoe gj , j=1,2,... are of Borel class ou and
since the series defining f : X —»Z converges almost
uniformly on X, it follows that £ is also of Borel class
oC , and thus has all the required propertiie.
REMARK 2« Some particular values of F may fail to be convex,

of. T15]
REMARK 3. It seems to be possible to formulate the above

theorem 5 In the samegeneral framework as the one in which
the selection theorem of Magerl fl2j is formulated, i.e.

in the framework of (k,a)-paracompact paved spaces and
a-convex hull-operators on k-bounded uniform spaces.

REMARK ke Ve may ask whether or not the algebraic structure on
Z is essential in Ceder-Levy theorem. Ve give to formulate
some open problem in this direction (cf. fl9])

Let Y be an arbitrary topological space. A subset Be.Y s
said to be relatively quasiclosed, if B~AInt ¢ B Cl B,
where Intci B denotes interior operation with respect
to the topology induced on subspace ClI B of the space Y.
The following maybe apromising program:

Problem: 1let X be aperfectly normal space and let Y be a
Polish space. Assume that F:X Y is a multifunction of
lower class oc, of >0, with relatively quasiclosed values.
Is it true, that this multifunction possesses always a Borel
oc- selector ?

REMARK 5. (about relative topology) In "Topology" by

J. Dungundji, p. 77g and also in "Introduction to topology"
by H. Patkowska, p. 2120 the following false formula is
errorously stated: IntgA = BN1Int A

THEOREM 6. let X be any metric spaoe having nonmeasurable



7

(In Berel cense) subset A CXand let Y be an arbitrary
Infinite-dimensional Banaoh space* Then there exists a lover
semloontinuous multifunction F : X -«»Y with convex and
disjoint values but with no Borel measurable selector.

Proof : Let («*,1 ¢1) be some Hamel basis for Y. Fix
some Index :Ib and putH := Jgjr Span e.JVWhere
Jal - » and Span denote here linear hull operator. Hext

observe that H is a dense linear subspace of Y, and thus is
oonvex. Let us define F:X —Y by formula

if x4, A
+en if x££ X- A.
o

It is easy to check that F:X ~ Y is lower semicontinuous.
Indeed, for each open ball B(y,r)= y + B(0, r) we have

F” (B(y,r))= X in virtue of density of values of F, both H
and H + e~ . Let fsX —mY be an arbitrary selector for
our multifunction F. Ve have ( f)*1 (R-£0})=X-A

while R- 20} is open. Since X-X is not Borel measurable,
hence the above equality means, that f is not weakly Borel
measurable and thus it is not strongly Borel measurable.
Obviously we have H + e~ - conv (H + e ) and we observe
that the intersection (H°+ e )n H is empty. Thus our

theorem is proved.

REMARK 6. In the case when ourBanach space Y is also
separable the values of F in the above theorem may be
choosen to be an kg -sets. Indeed, let H in formula Z/£j

be a dense subspace of Y spanned by a countable familly

c (08
* Since H=n" H1' where H1l:= Span e ,

I—|n = Hn-l V__.Span & and each HrI is closed as a finite-

-dimensional subspace of Y, hence we obtain that H belongs
to the paving of ~.-subsets of Y. A modification of this
construction were used in my paper (i8] to solving some open
problem posed by J. Ceder and S. Levi in in connection

with his finite-dimensional version of our theorem 5. Note



alio, that our multifunction F glvon by formula /£/ io
not of the fora F s g”' for some singlevalued function
gt F(x)— whore the image F(x) ie defined in obvious way
ae F(x)ts U F(x).
XE X

REMARK 7» There existe a noneeparable prahilbert space Y and
a multifunction F fron the real line R to the one-dinen-
sional open oonvex subsets of Y euch that F is in lower

class 1t but having no any Borel measurable selector. Indeed,

define
Y 1={h i R— R i supp h 1={x Jh(x)* 0} is finite}.
then < glh> := JZ g(x)*h(x) is a scalar product in Y.

x c R
Decompose R into 2 disjoint nonneasurable subsets

R = AOB and put

£Y : g(t)>0 and supp g X if t£ A

ie 6Y : g(t)<0 and supp g * {t}} if tfcB.
See exampl 2 of flI8J for the proof, that F is as required.
Paper [6J contains many others interesting counterexamples.

THEOREM 7, Let C denote the spaoe of complex numbers, and

R the spaoe of real numbers. There exists a lower semicontini
ous multifunction F : R —>C with arowise connected values,
but having no any Borel measurable selector.

Proof : Let S1 denote the unit circle in the complex
plane. Since the class of all Borel measurable functions
from R to S has the 3am cardinality as R it is clear
that we can choose a function g : R —>S such that the
graph of f intersects the graph of each Borel measurable
function from R to S”, Put F(x):= s' - j g(x)} and observi
that F~(u) is empty or the whole space R whenever U is
open in C, Thus F is lower semicontimious. Obviously the
values of F ara open arosa. We prove that F is without
any Borel seleotor. Assume ad absurdum that ft R —> S is
some Borel selector for F, There is a point xo<cR suoh
that f(xo)= B(x0) hence I(xo0) not belongs to F(xo0)ss

= S1 "{g (x Q)}= S1 -tf(xo0)Jd. This contradiction finish our
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ergUMNTt,

THEOREM 8, There exista a lower semicontinuous multifunction

F from the real line R to the complex plane C with open
arcs as values and G graph but with no Borel 1 selector.
Proof : (cf* 183 ex. k) Recently Z. Grande exhibited a
Berel 2 function g :fo, 2 0,21 which intersects

each Borel 1 function from fo,21T) into Tro0,21l), see [7] *
His construction based upon Kantorowicz universal function K
for Borel 1 functions, namely g(x):= K(x,x). By lifting
theorem, we may assert that x fy g(x):= exp i* g (x')=

a 00s g(x)+ i sin gfxjes"1l is a funotion from (o, 2T ) into
the unit circle S1 , intersecting each Borel 1 function

f Mo,27r) —~ S1 . Let us define our multifunction F:R —@C
by formula F(x)i* S1 " {e([*3 H * where fxj is the class
of X6R in the quotient group R / 21TZ = fo,2IT) . It is
easy to eheok as in theorem 7 that F is lower semioontinuous
with open arcs as values but admitting no Borel 1 selector.
Moreover, since 6 belongs also to the second Borel class

and thus Gr g iss((x,y): vy = g(x)} is a Fg» subset of the

cylinder
[0,2)x S1, henoe Gr F :=j(x,y): yéF(Xx)™ =J[o,2fi)x S1 - Gr ¢
is a subset of this oylinder and thus of the whole

product space R x S1. This completes our argument.

From theorems 7 and8 it follows that the range space in
our theorem 5 cannot be generalized in various ways. Another
interesting questions is whether of not the polishness of Z
is essential in theorem 1. Ve use the example 5 of fI8j to
answer the above problem,

THEOREM 9« Assuming the continuum hypothesis, there exist
metric spaces X and Z and a multifunction F: X —=Z
with nonempty closed values such that F is in first lower
olass, but F has no Borel selector.

Proof: (of. [9J, rs3 ) Let ST denote the smallest
countable ordinal. Let Z =70C:o0¢< St Jdenote the set of all
countable ordinals with the discrete topology, while the real
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lin* R=:X is inquired together with usual euclidean topology.
Arrange all points of X in a tranefinite sequence of type
50 and define the multifunction F:X — Z by formula

X 3 xn I B :fi £ oc} fer <*< 1 -

Evidently F is of first lower olass. Let f:X — Z be any
seleotor for F. Since f(X«)"=" for everyco< Sl , each
fiber f_1(C)* 3~*n countable. Since the fibers are
pairwise disjoint and since the family of all subsets of all
fibers has cardinality greater than the sef of all Borel sets,

it follows that there exists some subsets i, of Z so that

f_1(z )= U ie cot B-measurable. Since Z is both
Q ja ; °

open and clSsed in the discrete space Z, this oompletea the

argument.
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PRZYCZYNEK DO TEORII SELEKTOROW BORELOWSKIEJ KLASY ALFA

Streszczenia

Gtéwnym wynikiem pracy jest nastepujace uogélnienie
twierdzenia Cedera i Leviego: kazda multifurikcja F:X — Z,
gdzie X jest doskonale normalng przestrzenig topologicznag,

a Z osrodkowag przestrzenig Frecheta, przyjmujaca swoje
wartosci z okres$lonej rodziny D/Z/ i bedaca dolnej klasy alfa,
posiada borelowski selektor klasy alfa. Liczne kontr-przyktady
zamieszczone w pracy wskazuja, ze przyjete ograniczenia na

wartosci F nie mogag by¢ ostabione.



