hLodzimitrz Slgzak

VSP * Bydgoszozy

MULTIFUNCTIONS OF TWO VARIABLES WITH SEMICONTINUOUS SECTIONS

A multifunction $F: T \rightarrow Z$ is fuction whoe value $F(t)$ for $t \in T$ is a non-empty subset of Z. Given topological structures on T and Z (or even oonversence tructures) It is possible to define continuity of F in various ways (see 0.8. $[1,12,19]$).

Dofinition 1. Wo say F that is upper emicontinuoue at point $t_{0} \in T$ if for each open set G containing $F\left(t_{0}\right)$ the eet

$$
F^{+}(G):=\{t \in T: F(T)<G\}
$$

1s open. Dually, wo say that F is lower semicostinuous at point $t_{0} \in T$ if for any opon set G whioh meets $F\left(t_{0}\right)$ the set

$$
F^{-}(G)_{:}=\{t \in T: F(t) \cap G \neq \phi\}=T-F^{+}(Z-G)
$$

is opon in T, F is called continuous at point $t_{0} \in T$ if it $1 s$ both upper and lower semicontinuous at t_{0}. Fis called upper (reep. lower) aomicontinuous if it is upper (resp. lower) semicontinuous at each point of T. When F is ooppaot-values and lover semicontinuous then the set of all points of upper semicontinuity of F is the complement of the union of any countable family of nowhere dense closed sets. If F is closed-valued and upper semicontinuous then the set of its points of lower semicontinuity is the complement of some countable union of nowhere dense closed sets (see [18]). We way ask the following problem related to the Shih Shu-Chung [18] results:
Problen 1. Let X be a Baire space, i.e. the interseotion of each countable family of open dense sets in X is dense. Let A and B be two disjoint $F_{\sigma-s e t s}$ of the first category
in X. Does there exist function f from X into R ith positive values such that f is lower semicontinuous exactly on $X-A$, upper semicontinuous exactly on $X-B$ and continuous on $X-A-B$. In some paxticular cases the answer is affirmativo in virtue of some recent works of Z. Grande [8] and T. Natkniec. If such a function f exists, then the multifunction $F: X \rightarrow R$ defined by formula $F(x)=[-f(x) ; f(x)]$ is upper semicontinuous exactly on $X-B$, lower semicontinuous exactly on a preassigned subset $X-A \subset X$, and has oompact, oonvex values.
Let $T=X x Y$ with the oartesian product topoloey, i.e. the anallest topology for which all projections are continuous. If S is any abset of $X x Y$ and X is any point of X, wo shall call the set $S_{x}:=\{y:(x, y) \in S\}$ a section of S, or, more precisely, the section deterined by x. At times when it is important to call attontion not so meh to the particular point which deternines the section as merely to the faot that the section is determined by some point of the space X wo hall use the phrase X-section. The main point is to distinguiah suoh a section fron a Y-saction determined by a point y in Y; the latter is defined, of course, as the set $S^{y}:=\{x:(x, y) \in S\}$. We omphasize that a section of a set in a product saoe is not a set in that product space but a subset of one of tho component spaces. If F is any multifunction defined on a subset S of the product apace $X \times Y$ and X is any point of X, wo shall call the wultifunction F_{x}, defined on the section S_{x} by formula $F_{x}(y)=F(x, y)$, a section of F, or, more preoisely an X-eeotion of F, or, etill more precisely, the seotion determined by x. The concept of a Y-section of F, determined by a point y in Y is defined similarly by $F^{Y}(x)=F(x, y)$. Notioe, that every section of a lower (resp, upper)semioontimuous multifunction is a lower (resp. upper)eemicontinuous Eultifunction. Multifunctions of two variables have been thdied by C. Castaing [2,3], A. Cellina [4] ; A. Fryszkowski [6], T. Neubrunn [14], and B. Ricceri [15,16].

The purpose of this paper is to obtain some multivalued analogue of the renowned Kenpisty theorem (see [9]). We start with the following lean:
Lome 1. Lot $\left(X, d_{X}\right)$ and (Y, d_{Y}) be a metric spaces, Z an arbitrary topologioal space and $F: X Y Y \rightarrow Z$ a multifunotion with lower semicontinuous Y-sootions, not necessarily closed--valued. Then for each real constant $r>0$, the multifunction $F_{\mathcal{E}}: X G Y \rightarrow Z$ defined by formula
$/ \S / X x Y \partial\left(x_{0}, y_{0}\right) \mapsto F_{r}\left(x_{0}, y_{0}\right)=\underbrace{}_{y \in K\left(y_{0}, r\right)} F\left(x_{0}, y\right)<z$
iss lower semicontinuous on the whole space $X X Y$.
$K\left(y_{0}, r\right):=\left\{y \in Y: d_{Y}\left(y, y_{0}\right)<r\right\}$ moans here the $d_{Y}-b a l l$ of radius r and center y_{0}.
Proof. Lot $\left(x_{0}, y_{0}\right) \in X X Y$ be an arbitrary point. We shall show that the multifunction F_{F} is lover semicontinous at point $\left(x_{0}, y_{0}\right)$. Let $G \subset Z$ be an open sot for which $F_{r}\left(x_{0}, y_{0}\right) \cap G \notin \varnothing$. By $/ \delta /$ there exist a point $y_{1} \in K\left(y_{0}, F_{1}\right)$ such that $F\left(x_{0}, y_{1}\right) \cap G$ is nonempty. Since the section F^{1} is lower seaicontinuous on X, hence there exists a radius $r_{1}>0$ such that for each $x \in K\left(x_{0}, r_{1}\right)$ the intersection $F\left(x, y_{1}\right) \cap G$ is nonempty. Since $d_{Y}\left(y_{0}, y_{1}\right)<r$, there exists a $r_{2}>0$ such that $d_{Y}\left(y_{0}, y_{1}\right)=r-r_{2}$. By a triangle inequality, we have $d_{Y}\left(y_{1}, y\right) \leqslant d_{Y}\left(y_{1}, y_{0}\right)+d_{Y}\left(y_{0}, y\right)<\left(r-r_{2}\right)+r_{2}=r$ for each $y \in K\left(y_{0}, r\right)$. Thu: Y_{1} belongs to the ball $K(y, r)$ for every $y \in K\left(y_{0}, r_{2}\right)$. Consequently the inclusion

$$
F\left(x, y_{1}\right) \subset \underbrace{}_{y_{3} \in K(y, x)} F\left(x, y_{3}\right)=F_{x}(x, y)
$$

is valid whenever $y \in K\left(y_{0}, x_{2}\right)$ and $x \in K\left(x_{0}, x_{1}\right)$. But $F\left(x, y_{1}\right) \cap G \neq \varnothing$ so $F_{r}(x, y) \cap G$ is nonempty too, whenever $(x, y) \in K\left(x_{0}, r_{1}\right) x K\left(y_{0}, r_{2}\right)$. The set $V\left(x_{0}, y_{0}\right)=K\left(x_{0}, r_{1}\right) x K\left(y_{0}, r_{2}\right)$ is an open neighbourhood of an $\left(x_{0}, y_{0}\right) \in X X Y$. The lover somicontinuity of F_{F} at $\left(x_{0}, y_{0}\right)$ is thu e proved. The following two leones are generally known, but they are included for the sake of completeness.

Lonna 2, Let X, Y and Z be as before, and let $H: X x Y \rightarrow Z$ be lower semicontinuous multifunction with arbitrary values. Then the multifunction $\bar{H}: X X Y \rightarrow Z$, defined by $\bar{H}(x, y):=\bar{H}(x, y)$ 1. also lower sondcontinuous. The dash stands here for the closure operation in Z.
P roo f. Let $\left(x_{0}, Y_{0}\right)$ be an arbitrary point of $X X Y$, and let $G C Z$ be an open set for which $\bar{H}\left(x_{0}, y_{0}\right) n G$ is nonempty. Since $H\left(x_{0}, y_{0}\right)$ is dense in $\bar{H}\left(z_{0}, y_{0}\right)$, so also $H\left(x_{0}, y_{0}\right) \cap G$ is nonempty. By lower semi continuity of the multifunction G there exists a neighbourhood $V\left(x_{0}, Y_{0}\right) \subset X x Y$ such that $H(x, y) \cap G$ le nonempty whenever $(x, y) \in V\left(x_{0}, y_{0}\right)$. By inclusion $H(x, y) \subset \bar{H}(x, y)$ the intersection $\bar{H}(x, y) \cap G$ is nonempty too. Thus \bar{H} is lower semicontinuous at (x_{0}, y_{0}).. Leman 3. Let X, Y be as before and let Z be a regular space, 1.e. each point $z \in Z$ and each closed set $D C Z$ not containing z, have disjoint neighborhoods. If a multifunction $\mathrm{F}: X X Y \rightarrow Z$ with closed values has upper semicontinuous X-section then the inequality
holds whenever $\left(x_{0}, y_{0}\right) \in X X Y$.
Proof. $D: L o t z=b e l o n g s$ to $Z-F\left(x_{0}, y_{0}\right)$. Then there exist an open set $G \supset P\left(x_{0}, y_{0}\right)$ and an open neighborhood $W(z) \subset z$ of a z such that $W(z) \cap G=\phi$.
The section F_{x} being upper semicontinuous at the point $y_{0} \in Y$, by definition there exists a radius $r_{3}>0$ such that $y \in K\left(y_{0}, r_{3}\right)$ implies $F\left(x_{0}, y\right) \subset G$. Thus $W(z) \cap F\left(x_{0}, y\right)$ is empty for $y \in K\left(y_{0}, r_{j}\right)$. Then the intersection $W(z) \cap F_{r_{3}}\left(x_{0}, y_{0}\right)$ is empty, too. This means that z is no cluster point of $F_{r_{3}}\left(r_{0}, y_{0}\right)$, and thereby the intersection $\bar{F}_{r_{3}}\left(x_{0}, y_{0}\right) \cap W(z)$
$1 z^{3}$.
Therefore $z \notin 11$ 品 $\sup _{0} F\left(x, y_{0}\right)<\bar{F}_{x_{3}}\left(x_{0}, y_{0}\right)$ and
$11 m \quad \sup F\left(x, y_{0}\right) \subset F\left(x_{0}, y_{0}\right)$.
$x \rightarrow x_{0}$
C. If $z \in F\left(x_{0}, y_{0}\right)$ then for each radius $r>0$, a point z
belonge to $F_{F}\left(x_{0}, y_{0}\right) \supset F\left(x_{0}, y_{0}\right)$. Consequently $=\in \underset{x \rightarrow x}{l i n}$ up $F\left(x, y_{0}\right)$ and thereby $F\left(x_{0}, y_{0}\right) \subset \underset{x \rightarrow x_{0}}{\lim F\left(x, y_{0}\right) \text {. }}$ The proor ie cenplete.
REMARK 1. This proof is very aimilar to the proof of propesition 1.4. in [12]. Notice, that [12] oontains a typographical error in 14412°
We are now in a position to etate and prove our main theorea. Recall that multifunction $F: T \rightarrow Z$ is of upper clase \propto if $F^{+}(G)$ is a Borel sot in T or additive olass \propto for each open set G in Z Dually, we say F that is of lower class \propto if the inverse imace $F^{-}(G)$ of each set G open in Z is a Borel sot of additive class de in T. THEOREM 1. Let $F: X x Y \rightarrow Z$ where X and Y are metric spaces and Z is a compact metrianble sace. If F is closed--valued multifunction with lowor soricontinuous Y-sectione and uppar semioontinuous X-sections, then F is of upper clase 1.

Proo fs Lomas 1,2 and 3 imply immediately that F is oountable intersection of family $\left\{\bar{F}_{r}: r=1,2^{-1}, 3^{-1}, \ldots\right\}$ of lowor sonicontinuous multirunctions with olosed values. Eaoh F_{r} is of uppor class 1 , in fact it is of first Baire olass as function of XXY into the hyperspace of all olosed nonompty subsets of Z with exponential (Vietoris)topology. This follows from thoorems 1 and 2 of reforence [11]. But if \bar{F}_{T} is in upper class \propto for $r=1,2^{-1}, 3^{-1}, \ldots$, then so is $\overline{\mathbf{F}}_{1} \cap \overline{\mathbf{F}}_{2^{-1}} \cap \overline{\mathrm{~F}}_{3}-1 \cap \ldots$ (see $[11], t h .4$ and $[10]$ for the proof). Hence F is also in rpper class 1 and our theoren 1 is proved.
REMARK 2. Let R denote the real line, and let E, $h: X X Y \rightarrow R \cup\{-\infty,+\infty\}$ be two extended real-valued funotions, such that $f(x, y) \leqslant h(x, y)$ for every (x, y) in $X x Y$. Define $F: X x Y \rightarrow R$ by $F(x, y)=\{z \in R: G(x, y) \leqslant z \leqslant h(x, y)\}$. F is of lower (resp. uppor) class \propto if and only if E is of upper (resp. lower) class α and h is of lower (resp. upper) class \propto in the sense of $W_{0} H_{\text {. Young. Thus our }}$
theoren 1 oan be deduoed from the famous Kompiety theorom [9] in the oase $Z=R$. Somowhat convoreely wo may aak the follewing opon problom:
Problea 2. Do thore oxist motric apaces X, Y and Z and a multifunction $F i X x Y \rightarrow Z$ with closed values, lower somioontinuous Y-sections and upper semicontinuous X-aectione such that F is not in lower class $1 ?^{x}$) In the sequel ve illustrate some bad bohaviour of mitifunctions whose X -seotions and Y -sections are imitancously lowor somicontimuous or upper somicontimuous.

THEOREM 2. Thore exista a multifunction $F: P \mathrm{~Pa} R \rightarrow \mathrm{R}$ with compaot convox values, whose X-seotions and Y-sections are lover somicontinuous and fails to be oontinuous at no more that one point, but F is not in any upper or lower Borel clase.
Example: Lot S be nonmeasurable Sierpihaki sot whose X-sections and Y-sections are singletons (soe [17] for the construction) Define $F(x, y)=[-1 ; 1]$ if $(x, y) \in S$ and $F(x ; y)=[-3 ; 3]$ othorwise. Cloarly $F_{x}(y)=[-1 ; 1]$ if $S_{x}=i y_{i}^{j}$ and $F_{x}(y)=[-3 ; 3]$ if $S_{x} \neq\{y\}$. Obviously each section $F_{\mathrm{F}}: R \rightarrow R$ i: lower eonionntinuous, since $F_{x}^{-}((a, b))$ is -mpty or whole plane R^{2} for open intervals (a, b). symatrionly each $F^{\mathbf{Y}}$ is lovor semicontinuous. Tho velues of F are cleariy oonvex and oompact. But the inverse imace of the open interval $(2 ; 4)$ and of the olosed sot $\{3\}$ undor F is not Borel :

$$
F^{-}((2 ; 4))=F^{-}(\{3\})=R^{2}-S
$$

REMARK 3. The ebove example also show, that there oxiste a multifunction $F\{R x R \rightarrow R$ with convex compact values, whose X-sections are of lower class 1 and Y-sections are of upper class 1, but F is not in upper class 2. Then the theorem 1
x) This problem has a negative answer in case where Z is soparable . Proof will appear in a later paper.
cannot be generalized for higher classes.
REMARK 4. Somewhat surprisingly, theorem 2 also show, that Carathéodory's condition, i.e. lower semioontinuity of X-sections and measurability of Y-sections is not surficient that the multifunction $F: X X Y \rightarrow Z$ be measurable nor weakly masurable (see dofinition 3 bolow)

THEOREM 3. There exist a nonmeasurable multifunction $F: R^{2} \rightarrow R$ weth compact, convex values and upper semicontinuous all sections.
Exaple: Put $F(x, y)=[-3 ; 3]$ if $(x, y) \in S$ and $F(x, y)=[-1 ; 1]$ otherwise. It is easy to check, that F is as required.
THEOREM 4. There exists a nonmeasurable (nor weakly measurable) multifunction $F: R X R \rightarrow R^{\prime}$ whose values are G convex sets, whose X-sections are lower semicontinuous and Y-sections are continuous (1.e. semicontinuous in both sensesd.
Example: Lot CCR be a dense, border, nonmeasurable set, whose inner density at each point is 0 , and outer donsity at each point is 1. Put $F(x, y)=[0 ; 1]$ if $y \in C$ and $F(x, y)=[0 ; 1)$ otherwise. It is easy to check, that F 1s as required.
Definition 2 (cf.[8]) Let T be seoond oountable topological space and Z a metric sace. Assume that $F: T \rightarrow Z$ has closed values. We say, that F is strongly lower semicontinuous at point $t_{0} \in T$ if it is lower somicontinuous at this point and, moreover, there exists an open set $U C T$ such that $t_{0} \in \bar{U}$ and we have $\lim _{U S t \rightarrow t}(t)=F\left(t_{0}\right)$, where the limit is assumed wath respect to the Rausdorff metric $h\left(K_{1}, K_{2}\right)=a r c t \in \max \left[\sup _{i} d i s t\left(z_{1}, K_{2}\right)\right.$, sup $\left.d i s t\left(z_{2}, K_{1}\right)\right]$ where dist $\left(z_{0}, K\right):=\operatorname{Inf}\left\{d\left(z_{0}, z\right): z \in K\right\}$ and d^{2} denote the motrio in Z.

REMARK 5. In the above definttion we may also used another metrio on the familly of all olosed non-empty subsets of Z. Let p be a fixed point of Z. The metric h_{p} is defined
by formula

$$
\mathbf{h}_{p}\left(K_{1}, K_{2}\right):=\sup _{z \in Z}\left\{\mid \operatorname{dist}\left(z_{2}, K_{1}\right)-\text { dist }\left(z, K_{2}\right) \mid \cdot \exp [-d(p, z)]\right\}
$$

Definition 3. Let (T, S,) be a measurable space and Z a topological space. We say, that a multifunction $F: T \rightarrow Z$ is weakly measurable if the set $F^{-}(G)$ is m-measurable for each open sot G in Z.

THEOREM 5. Let X and Y be two locally compact topological spaces, with Radon measures ${ }^{m} X{ }^{\prime m} Y$ respectively. Let Z be a locally compact metric space and let $F: X x Y, \rightarrow Z$ be a multifunction with closed values, such that all X-sections are strongly lower semicontinuous and all Y-sections are lower somicontinuous in common sense. Then F is $\mathrm{m}^{(@ m}{ }^{\mathrm{m}}$ - weak il measurable.

Proof: We argue by contradiction. Assume that F is not $\mathrm{m}_{\mathrm{X}} \mathrm{m}_{\mathrm{Y}}$-weakly measurable. Then there exists an open set G in 2 such that $F^{\prime \prime}(G)$ is not $m:=\mathrm{m}^{8} \mathrm{~m}_{\mathrm{Y}}$-measurable. Hence there is a momeasurable subset $A \subset F^{-}(G)$ such that the difference $F^{-}(G)-A$ is simultaneously of interior measure m null and of exterior measure m positive :

$$
w^{*}\left[F^{-}(G)-A\right]=0 \wedge m^{*}\left[F^{-}(G)-A\right]>0
$$

By virtue of locally compactness of Z there is a increasing family $G_{1} \subset \bar{G}_{1} \subset G_{2} \subset \bar{G}_{2} \subset \ldots \ldots \subset{ }_{\infty}$ of open sets in Z such that $F^{-}(G)=F^{-}\left(\bigcup_{i=1}^{\infty} G_{i}\right)=\bigcup_{i=1}^{\infty} F^{-}\left(G_{i}\right)$ Ye can select a suitable index i_{0} such that $\mathrm{m}^{*}\left[F^{-}\left(G_{i}\right)\right.$ - $\left.A\right]>0$ Define $B:=F^{-}\left(G_{i}\right)$ - A and observe that for every subset $S \subset X X Y$ such thai $m^{*}(S \cap B)>0$ we have also $\mathrm{m}^{*}\left(S_{n} \cap F^{+}(Z-G)\right)>0$. Since all Y-sections are lower semicontinuous, hence for every point $(x, y) \in B C X \times Y$ there correspond a basic open set $U(x, y)$ in X such that $x \in U(x, y)$ and $F(p, q) \cap G_{i}$ is nonempty whenever $p \in U(x, y)$. Since X satisfies the second axiom of countability and since $m^{\prime \prime}(B)$ is positive, it follows that there is a basic open set $U_{0} \subset X$ such that the exterior measure of the set

$$
C:=\left\{(x, y) \in B: U(x, y)=U_{0}\right\}
$$

is positive , m" (c) >0. Define
$D:=\{y \in Y$: there is a point $x \in X$ such that $(x, y) \in C\}$ $=*\left[D \cap \bar{A}_{i}^{q}\right]$
and $B:=\left\{q \in Y: \lim _{i \rightarrow \infty} \frac{\left[\bar{A}_{i}^{q}\right]}{i \rightarrow \infty}=1\right\}$
when $A^{q}=\left\{A_{1}{ }^{q}, A_{2}{ }^{q}, \ldots\right\}$ is a suitable open filterbase (of differentiation) in Y convergent to singleton q.
Then the exterior measure $m_{Y}^{*}(D)=X_{X}^{A}(D \cap E)$ is positive and the set E is ${ }^{m} Y^{-m e a s u r a b l e}$ in Y. Fix a point $y_{0} \in D \cap E$ and observe that $r\left(p, y_{0}\right) \cap G_{i}$ is nonempty for each $p \in U_{0}$. Since all X-sections of F ire strongly lower semicontinuous, hence for each point

$$
(x, y) \in\left[U_{0} x\left(E \cap A_{i}^{y_{0}}\right)\right] \cap F^{+}(z-G)
$$

there correspond a basic open set $V(x, y) \subset A_{1}{ }^{y_{0}}<Y$ such that the inclusion $F(x, q) \subset z-\bar{G}_{1_{0}+2}$ holds whenever $q \in V(x, y)$ Since Y satisfies the second axiom of countability and since the set $K_{0}=\left[U_{0} x\left(E \cap A_{i}^{y}\right)\right] \cap F^{+}(Z-C)$ is of the positive exterior measure m, there is a basic open set $V_{1} \subset Y$ such that the set $K_{1}=\left\{(x, y) \in K_{0}: v(x, y)=v_{1}\right\}$ has positive exterior measure $\mathrm{m}^{\star}\left(\mathrm{K}_{1}\right)>0$, too.
Define $M_{1}=\{x \in X$: there is a point $y \in Y$ such that (x, y) belongs to $\left.K_{1}\right\}$ and $H_{1}=\bar{M}_{1}$ (closure with respect to X). Let us observe that $\mathrm{m}_{\chi}^{*}\left(G_{1}\right)>0$ and $F(x, y) \subset Z-G_{i_{0}+2}$ for each point $(x, y) \in H_{1} x V_{1}$, in virtue of the lower segicontinuity of the Y-sections.
So far, we proceed by induction. For each point $(x, y) \in\left[H_{1} x\left(E \cap A_{2} y_{0}\right)\right] \cap F^{+}(z-G)$ there exist a basic open set $V(x, y) \subset A_{2}^{Y_{0}} \subset Y$ such that $F(x, q) \subset Z-G_{i_{0}+2}$ whenever $q \in V(x, y)$. Consequently there is a basic open set $V_{2} \subset A_{2}{ }^{y_{o}} \subset Y$ such that the set

$$
K_{2}=\left\{(x, y) \in\left[H_{1} x\left(E \cap A_{2}^{y_{0}}\right)\right] \cap F^{+}(z-G): v(x, y)=v_{2}\right\}
$$

is of the positive exterior measure $m_{2}^{\dagger}\left(K_{2}\right) \geq 0$. Define $M_{2}=\left\{x \in X\right.$: there is a $y \in Y$ such that $\left.(x, y) \in K_{2}\right\}$ and $H_{2}=\frac{M_{2}}{M_{2}}$ and observe that $F(x, y) \subset z-G_{i_{0}+2}$ for each point $(x, y) \in H_{2} \times V_{2}$. Moroover $m_{x}^{\prime}\left(M_{2}\right)>0, H_{2}^{0} \subset H_{1}$ et $\mathrm{m}_{\mathrm{X}}^{*}\left(\mathrm{H}_{2}\right)>0$. Proceeding inductively, in the n-th steep we have a closed set $H_{n} C H_{n-1}$ of positive measure ${ }^{m} X$ and a basic open set $V_{n} \subset A_{n}^{n} y_{0} \subset Y$ such that $F(x, y) \subset z-G_{i_{0}+2}$ whenever $(x, y) \in H_{n} \times V_{n}$.
Let x_{0} belongs to $n_{n=1} H_{n}$. Since $x_{0} \in U_{0}$, hence we have
$F\left(x_{0}, y_{0}\right) \cap G_{i} \neq \varnothing$. On the other hand $\bigcup_{0} y_{0}$ belongs to $V_{n=1} V_{n}$
and $F\left(x_{0}, y\right) \subset Z-G_{1}+2$ whenever $y \in \bigcup_{n=1}^{0} V_{n}$. It rollows that $F_{x_{0}}$ is not (strongly) lower semicontinuous at the point y_{0}, completing the proof. Recall that a function $f: T \rightarrow Z$ is said to be a selector for $F: T \rightarrow Z$ if $f(t)$ is a member of the set $F(t)$ for each $t \in T$. Based on the above definition we present a theorem inspired by papers [6] and [15-16]:

THEOREM 6. Let F be a multifunction from $X \times Y$ where X and Y are the separable locally compact metric spaces, onto closed and convex subsets of separable Banach space Z. We assume that all Y-sections of F are lower semicontinuous and that all X-sections of F are upper semicontinuous. Then there is a Borel 1 selector $f: X \times Y \rightarrow Z$ of F with continuous $\mathrm{Y}-\mathrm{sec} t i o n s$ and having X -sections of the first Baire class. Proof: Let $C(X, Z)$ denote the space of all continuous maps by X into Z. The compact-open topology in $C(X, Z)$ is that having as subbasis all sets $\{f \in C(X, Z): f(K)<G\}$, where $K \subset X$ is compact and $G \subset Z$ is open. It is known, that under the ansumption of theorem $6, C(x, z)$ is separable, locally convex linear topological space. Define the aritifunction $P: Y \rightarrow C(X, Z)$ by formula $P(y)=\{f \in C(x, z): \quad f(x) \in F(x, y)$ for each $x \in X\}$.
We prove that P is upper semicontinuous multifunction from Y into closed and convex subsets of linear topological
space $C(X, Z)$. In fact, it suffices to prove that $P^{-}(D) \in F_{6}(Y)$ where D is closed set of the form

$$
D:=D\left(f_{0}, \mathcal{E}, K\right):=\left\{f \in C(X, z): \sup _{x \in K}\left\|f(x)-f_{0}(x)\right\|<\in\right\}
$$

Where K is compact in X, f_{0} belongs to $C(X, Z)$ and $\varepsilon>0$ is positive real. Denote by $\bar{K}\left(f_{0}(x), \varepsilon_{i}\right)$ the closed ball In Z centered at $f_{0}(x)$ and of radius \mathcal{E}. Then by celebrated Michael selection theorem [13] we have

$$
\begin{aligned}
& P^{-}(D)=\left\{y: P(y) \cap D\left(f_{0}, \varepsilon, K\right) \neq \varnothing\right\}= \\
= & \left\{y: \bar{K}\left(f_{0}(x), \dot{\varepsilon}\right) \cap F(x, y) \neq \phi \text { for each } x \in K\right\}
\end{aligned}
$$

Since X-sections of F are upper semicontinuous, ie. $F_{X}^{-}(B)$ is closed for each $B=\vec{B} C Z$, we have that the set

$$
\left\{y: F(x, y) \cap \bar{K}\left(f_{0}(x), \in\right) \neq \phi\right.
$$

is closed for each $x \in K$. Therefore
$P^{-}(D)=\bigcap_{x \in K}\left\{y: F(x, y) \cap \bar{K}\left(f_{0}(x), \varepsilon\right) \neq \phi\right\}=\bigcap_{X \in K} F_{X}^{-}\left(\bar{K}\left(f_{0}(x), E\right)\right)$
Is closed in Y, and consequently P is upper semicontinuous.
Let us recall that locally compact separable metric space X Is also σ-compact, ie. it can be expressed as the $u n i o n$ of at most countably many compact spaces. Write $X=\bigcup_{i=1} U_{i}$ where the U_{1} are open, $\bar{U}_{1} \subset U_{1+1}$ and U_{1} is relatively compact for each 1. For all $f_{1}, f_{2} \in C(X, Z)$ and each $n=1,2, \ldots$ define
$x_{n}\left(f_{1}, f_{2}\right):=\min \left(n^{-1}, \sup \hat{i}_{i} f_{1}(x)-f_{2}(x)\right.$ if $\left.\left.; x \in \bar{U}_{n}\right\}\right)$
Then $d\left(f_{1}, f_{2}\right):=\sup \left\{r_{n}\left(f_{1}, f_{2}\right) ; n=1,2, \ldots\right\}$ setrizes the compact-open topology in $C(X, Z)$, but there is no metric d_{1} in Z such that $d^{+}\left(f_{1}, f_{2}\right):=\sup \left\{d_{1}\left(f_{1}(x), f_{2}(x)\right): x \in X\right\}$ metrizes this topology.
Thus $C(X, Z)$ is a Polish space and hence there exists a Bored 1 selector p for our multifunction $P: Y \rightarrow C(X, Z)$ (see [5]).
Put $f(x, y)=p(y)(x)$. By $[7]$ a map $f: X \kappa Y \rightarrow Z$ is in the first Baire class and thereby has the Baire 1 X-sections.

Moreover all Y-sections are clearly continuous, which completes the proof of our theorem 6.

REMARK 6. In [6] p. 4319 , A. Fryazkowski errorously treat $C(x, z)$ as a Banach space. Honce his proof of lema in p. 43 is not correct. But this proof oan be easily improved using the above technique.

REMARK 7. Some particular values of the multifunction F in theorem 6 may fail to be convex (aee [15]). Namely, if there exists a subset E of X, with diw $X^{E} \leq 0$ such that $F(x, y)$ Le convex for each $(x, y) \in(X-E) \times Y$ only, then the theorem 6 is also true. The aign dim $X^{E} \leq 0$ meane here that dim $B \leq 0$ for each $B C E$ which is closed in X, where dim B denoted the oovering dimension of T.

I am indebted to Z. Grande for his constant willingness to discuss some details. His imaglnative and penetrating criticiama and auggeations have let to many improvements.

REFERENCES

[1] Berge C., Eapaces Topologiques-Fonctions Multivoques, Dunod, Paris 1959
[2] Castaing C., Sur 1'existence des sections separement measurables et seperement continues d un multiapplication. Exposé no 14 ; Seminaire d'Analyse Convexe, Montpellier 1975
[3] Castaing C., A propos de 1° existence des sections sóparóment measurable et separoment continues d'une multiapplication séparóment measurable ot séparément somi-continue inferieurement, Expos' no 6; Seminaire d'Analyse Convexe, Montpellier 1976
[4] Cellina A., A selection theorem, Rend. Sem. Mat. Univ. Padova, vol. 55 (1976), 143-149
[5] Engelking R., Selectors of the First Baire Class for Somicontinuous Set-valued Functions, Bull. de I° Acad. Polon. des Sciences, Ser. des sci. math., astr., phys., Vo1. XVI, no 4 (1968), 277-282.
[6] Fryszkowski A., Carathéodory type Selectors of Set-valued

Maps of Two Variables, Ibid., vol. XXV, no 1 (1977)41-46
[7] Grande Z., Sur un probleme de Ricceri, Colloquiun Math.
[8] Grende Z_{0}, Quelques remarques sur la semi-contimuitó superieure, Fundamenta Math. CXXV no 1 (1985), 1-13
[9] Kempiety S., Sur les fonctions somi-continues par rapo port á chaoune de deux variables, Fund. Math. 14 (1929) 237-241.
[10] Kuratowski K., Los fonctions somi-continues dans 1° espace des ensembles fermés . Pund. Math. 18 (1932), 148-159
[11] Kuratowski K., Some remarics on the relation of classical set-valued mappings to the Baire olassifioation, Colloquium Math. XLII (1979), 295-300
[12] Lechicki A., On continuous and measurable multifunotione, Comentations Math., 21 (1979), 141-156
[13] Michel E., Continuous selections I, II, Ann. of Math. 64 (1965), 375-390, 562-580
[14] Neubrunn T., On quasicontinuity of multifunctions, Math. Slovaca 32, no 2, (1982), 147-154
[15] Riooeri B., Cerethéodory's Selections for Miltifunctions with Non-Separable Range, Rend. Sem. Mat. Univ. Padova, vol. 67 (1982) 185-190
[16] Rdooeri B., Selections of multifunctions of two variables, Rocky Mountain Journal of Math., vol. 14 no 3 (1984), 503-517
[17] Sierphriski W_{0}, Sur un probleme conoernant les onsonbles measurables superficielleaent, Fund. Math. 1,(1920), 112--115
[18] Shih Shu-Chung, Semi-continuitó génerique de multiapplication, Comptes Rendus Acad.Sc.Paris, sér. 1, 293, no 1 (1981), 27-29
[19] Strother W.L., Continuous multi-valued functions, Boll. da Soo. de Mat. de Sao Paolo, 10 (1955), 87-120

MULTIFUNECJE DYOCH ZMENNYCH O PÓLCIAĊLYCH CIfCIACH

Streszozenie

Praedeioten toj praey sa multifunkeje $F: X \propto Y \longrightarrow Z, g d z i e$ $X 1 Y$ aq przestrzeniami metryoznyai, a Z jest przestrzenia motryozna ofrodkową. Glowny wynik dotyozy przymaleznofci do obrnej klasy 1 multirunkejı F, której wartokci saf domkniete, a aipcia odpowiednio dolnie i górnie polciagle. Ziluatrowano tet patologiczne zachowanie aie multifunkgi, których wazyatkie cipcia ba dolnie pblciagie 1 wprowadzono koncepoje silnej dolnej polciagiotci. W końcowed czefci pracy podane 8 a warunki dostateczne iatnienia selektorbw badanych multifunkeji - okredionych z gory wiasnodolach.

