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On compact stochastic perturbations 
of mappings of the unit interval

W ojciech Bartoszek

Let <pn be continuous mappins o f a com pact metric space X  and 
3? be some fixed com pact Markov operator on C ( X ) .  We study the 
asym ptotic (n — * oo) behavior o f invariant probability measure of 
the com positions (TVnR )*, where <pn — * ip uniformly. W e apply our 
generał results to the investigation o f the difference eąuation X n+\ — 
<p(Xn) +  W , where W  is a fixed random variable independent o f n and 
X n and <p are continuous maps from [0 ,1] into [0 ,1].

It is shown that for a wide class o f mappings <p this Markov process 
admits the uniąue (stationary) invai'iant measure p(<p) and the mapping 
(p — > p(<p) is continuous.

Let (X , p ) be a com pact metric space. W e denote by C ( X )  the 
Banach lattice o f all continuous functions on X , and by P ( X )  the set 
o f all Borel probability measures on X .  The smallest, closed set o f all 
fuli measure p € P ( X )  is denoted by supp p (the support o f p). A 
linear operator T  : C ( X )  — * C ( X )  is said to be Markov if T l  =  1, 
and /  >  0 =>• T f  >  0. It is well known that for every Markov operator 
T  on C ( X )  there exits a uniąue family of probability measures P ( x , •), 
on X  such that

(a ) for every Borel set A  the mapping x  — > P ( x , A )  is Borel measur- 
able

(b )  for every /  €  C { X ) ,  T f ( x )  =  f  f ( y ) P ( x ,d y ) .
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In fact, we have P (x , - )  =  T*8X(-). By B ( X ) we denote the set o f 
bounded Borel functions on X .  Using property (b ) the Markov operator 
T  can be canonically extended to an operator T  : B ( X )  — * B { X ) .  We 
say that a closed set A  C X  is T-invariant (or simply, invariant if T  is 
fixed) if for every x  £ A  we have P ( x , A )  =  1 (equivalentely T\A >  1^)-

Now, let fi be the product space II^Lo %n where X n =  X .  W e eąuip 
fi with its natural topology and product cr—field. Let i]n be the natural 
projection r]n : fi — > X n. It is well known (e.g. [3] Proposition 2.10 
p.18) that given any initial distribution probability /z on X  there is a 
probability V M defined on fi with

Vli{r)ke A k :k = 0, l , . . . ,n} = J  1 AoT(lAl... (:T\An).. .)dfi.
Moreover, the seąuence ’ s a homogenous Markov chain with
transition probability P ( •,•) and starting measure /j,. It is called the 
canonical Markov chain with transition probability P.

Let P j ( X )  denote the set of all T*-invariant measures. Clearly, it 
is nonempty, convex and iu*-com pact subset o f P { X ) ,  and for every /z 
belonging to Pt {X)  the canonical Markov chain {//;-} is stationary with 
respect to 7?M.

In the sequel we will need some informations on com pact Markov 
operators. Recall that a linear operator T  : C ( X ) — >• C ( X ) is com pact 
if and only if the mapping x  — > T*8X is norm continuous, so every com ­
pact Markov operator is strong Feller ( T B ( X )  C C ( X )  see [3] Proposi­
tion 5.8 p.37 ). The Cesaro means A nf  =  n - 1( / + T / - ) - . .  . +  71'1-1/ )  o f a 
com pact Markov operator T  converge uniformly to a finite-dimensional 
projection, ex Pt ( X )  (it means the set o f extremal measures) is fi- 
nite and supp flsupp/Z2 =  0 for each distinct extremal T*-invariant 
measures /Xi, /tj (see [2] and [4] for detailes). Observe that every contin­
uous mapping 9? : X  — > X  defines a Markov (determ inistic) operator
Tvf  =  f  o (p.

Now let M  denote the convex, sem itopological semigroup o f all 
Markov operators on C ( X ) .  For an operator R € N  the mapping 
M  3 T  — > T o R  is denoted by R .  Observe that if T'v is a de­
terministic Markov operator induced by some transformation p  then 
K { T „ ) f { x )  =  Tv  o R f ( x )  =  R f( ip (x ))  =  f  f (y )R (< p (x ) ,d y ) .  If for ev- 
ery x  6  X  the transition measure R (x , - )  is concentrated on the bali
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B ( x , r ) =  {y  G X  : p ( x , y ) <  r } ,  then our operator 7^(7^) can be
recognized as an r-perturbation o f the dynamical system (X ,  ip). In 
the seąuel we will consider only com pact perturbations (thus 7Z(T) is 
a com pact for every T  G M ).  Clearly, 7Z(Tn) 7Z(T) whenever
Tn T  (here s.o.t. means strong operator topology). Using the 
compactness o f the operator R  we get the following.

L e m m a  1 Let the seguence (Tn) o f  Markov operators on C ( X )  con- 
verge in the strong operator topology to T  and R be a fixed compact 
Markou operator on C ( X ) .  Then 7Z(Tn) — * 7Z(T) in the operator
norm and every limit measure p  =  w* — lirn, >oc p n is 7Z(T)* inuari-
ant (here p n G Pn(Tn) ( X ) ) .  Moreouer, in this case || p — pUj ||— > 0 , 
where || • || is the uariation.

P r o o f .  By the compactness o f R  we can chose a finite, £-dense subset 
f i i  - , fm o f R ( K i ) ,  where 7\i denotes the unit bali o f C ( X ) .  Since
Tn T  thus there exists no such that for n >  no we have || Tnf j  —
T f j  ||< £ for every j  =  1 , . . .  ,m . So, for every /  G C ( X ) ,  || /  ||< 1 
we get

|| R ( T „ ) /  -  K(T)f||<|| -  || +  

+  II K ( r „ ) / ,  -  7 Z(T)fiII +  II ~  ||< 3£ 

if the index j  is suitable. Thus,

|| 7 l(T n) -  7Ł(T) ||= sup \\TL{Tn) f - T l [ T ) f \ \  
l l / l l< i

tends to 0 .
Now assume that p — w* — lim^ ,00 pU] for some p Uj € Pn(Tni) {X ) -

For every /  G C ( X )  we have

\ J f d p -  j n ( T ) f d p \ < \  J  f d p -  j  f d p nj | +

| J  7 ^ (T )/ dpnj -  J  7Z(Tnj) f  dpnj | +  | J  7Z [T ) f  dpU] -  J  K ( T ) f  dp \ .

Since the com ponents o f the right side o f the previous ineąuality con- 
verge to 0, thus p is 7Z(T)* invariant probability. Next

II P -  Pn, ||= sup | I f  dp -  I f  dpnj =  
l l / l l< i  J J
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sup | [  K ( T ) f  dp -  [  H (T nj) f  dpnj |<
|/||<i J J

sup I f  7Z ( T ) f  dp -  [  7Z (T ) f  dpnj | +
||/||<i 7 J

| J  7 l ( T ) f  dpU] -  J  7Z(Tnj) f  dpUj \<

sup | [  1 l ( T ) f  dp -  /  7 ^ (T )/ dpnj | +  || K ( T )  -  K (T nj) ||< 
ll/ll<i 7 7

sup {| f  T R f  dp -  [  T fidp  | +  | /  T fi  dp -  [  T fid p Uj \ +
||/||<i 7 J J J

I /  T fi  dpnj -  J  K ( T ) T f d p nj |}+ || K ( T )  -  K (T nj) ||< 

sup | f  T fi  dp -  [  Tfidpn, | +  || K { T )  -  K (T nj) || + 2 e
1 < i < n J *7

(here { / i , . . . ,  f m}  is an e-dense subset of R (K i ) ) .  Since e can be taken 
arbitrarily smali, then || p  — p n. ||— > 0 .

The following corollary strengthens some results from [lj.

C o r o lla r y  1 I f  the Markov operator 7Z(T)  has exactly one invariant 
probability measure p (i.e. it is uniquely ergodic )  and Tn T  then 
|| p n — p ||—> 0 (here pn G Pv.(Tn) ( X ) ) .  In particular there exists n0 
such that fo r  n >  no the operators 7Z(Tn) are uniquely ergodic.

Now, let ip be a continuous mapping from the unit interval [0,1] into 
itself. Consider the stochastic difference eąuation X n+i =  <p{Xn) +  W ,  
where W  is a smali random variable possessing the probability density 
function g : [—a, a] — > [0 , oo), where a is smali and g >  0 , / “a g d\ =  1 
for the Lebesgue measure A (i.e. P ro b . (W  E A )  =  f A g (x )d x  for every 
Borel set A  C [—a, a] ). We assume that the perturbation term W  is 
independent o f n and X n.

W e say that a closed subset ([1] Definition 1 ) S C [0,1] is invariant 
with respect to our stochastic difference eąuation if <p(S) ®  [—a, a] C 5 , 
where © is defined A ®  B  =  { x  -\- y : x G A , ? / G  B } .  W e will say S  is 
(<p, a) invariant then. Let us observe that every (<p, a) invariant subset 
S is invariant in an ordinary sense (i.e. <^(5') C S). If there exists a 
((p, a) invariant set S  then clearly X n is a Markov process with state
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space S. More precisely, for every initial probability g  concentrated on 
S  there exists the Markov process X n such that

V , ( X n+1 -  <p(Xn) e A ) =  [  g d \
J A

for every Borel A  C [—a,a]. W e show that the process X n defined on 
some (ip, a) invariant subset can be regarded as a part o f the Markov 
perturbation o f the dynamical system ([0,1], <*£>). W e set

g(t — x ) ,  for x  € [a, 1 — a] 
d R*óx a _2(a — x )  • lf0,a)(^) +  a~1 • x • g (t  — a ),fo r  x  £ [0, a)

[C) d X « - 2( i - ( l - a ) ) l M ( i ) +
a_1( l  — x ) ■ g(t — (1 — a )), for x  € (1 — a, 1]

where A denotes the Lebesgue measure. Clearly, the mapping

x  — ■> R* 8X

is norm continuous, so the Markov operator R  given by the above tran­
sition function is com pact.

Moreover, sińce R*6X -<-< A then R * (P (S ))  C ^ ( S ,  A) and it is easy 
to see that

=  /  ~  ^  f o r  e v e r y  ^  G  p

W e notice that if g is a function o f bounded variation then similarly 
d j  has bounded variation too, and the following rough estimation

V a r ( - ■■ x ) <  V ar(g ) +  2a~l
d A

holds.
Consider the perturbation o f Tv by the Markov operator R  and let 

gn be the canonical Markov process defined by 7Z(TV). For every Borel 
set A  C S and x  £ S  (notice that (p(x) € [a, 1 — a] then ) we have

P(Vn+1 G A  | gn =  x )  =  7l (T v )\A(x )  =  (R  o TV)*8X{A ) =

=  R*8v(x)(A )  =  f  g ( y -  <p(x)) d\(y).
JA
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On the other hand if x  £  S  then

P(xn+1 eA\xn = x )  =  P(<p(xn) + w eA\xn = x )  =

=  /  , 9{ y ) d \ { y ) =  /  g(y  -  p {x ) )d \ (y ) .
J A - t p ( x )  JA

Since X n and gn are Markov processes we conclude that all finite di- 
mensional distributions coincide. So on the phase subspace S they give 
equivalent descriptions of the perturbation o f the dynamical system
([0 , 1], v )-

Assume that ip is nonsingular (i.e. if A(y4) =  0 for a Borel set A  C 
[0,1] then A(< -̂ 1(/1)) =  0 ). The Frobenius-Perron operator connected 
with p  is an operator defined on T x([0 , 1]) as follows

In [1] Boyarski has studied the stochastic operators Q v defined on T 1(S') 
by the eąuation Q u>f { x )  — (Pvf  * g) ( x) ,  where * denotes the convolu- 
tion and g is the probability density function o f W .  The properties of 
invariant densities have been investigated there. In particular it was 
shown that the ” regularity” of g implies some nice properties o f invari- 
ant density. Since for a (p,  a) invariant set S the operators Q v and 
TZ(TV)* coincide on T 1(5') (notice that S  is an 7Z(TV) invariant subset 
then), thus { /  6  L 1(S) : Q vf  =  / }  =  Pn(Tv)(S)- The existence o f an 
absolutely continuous invariant measure o f is a simple conseąuence 
o f the last eąuality. Moreover it does exist for arbitrary continuous 
mapping (not necessary nonsingular or C 1 ) from [0 ,1] into itself.

C o r o lla r y  2 I f  fo r  a continuous mapping ip : [0,1] — » [0,1] there 
exists a closed (p , a) inuariant set S then fo r  euery random uariable 
W  with absolutely continuous density function g : [—a, a] — > [0, oo) 
the stochastic process defined by X n+1 =  p ( X n) +  W  has a stationary 
probability distribution o f  the form  V j  fo r  some positiue, normalized 
f  £ T x(5 , A). In particular fo r  euery Borel set A  C S V f ( X n £ A )  =
IA f d X

Now, let us fix the probability density function g o f W  and assume that 
supp g C [—a, a). Our next result corresponds to Theorem  1 from  [1].
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P r o p o s it io n  1 Let ip be a continuous mapping from  [0,1] into itself 
and IZ(Tv )be the compact perturbation*pf Tv (here R is defined by (c)).  
I f  g is o f  bounded uariation then the density o f  each IZ(T^)* inuariant 
probability p is o f  bounded uariation too.

P r o o f .  Let p  £  ^72(7V)([0,1]) be arbitrary. Since 

d p  [ d 7ZlTuYSi, x s
A  w- / — /■(*).

then for every 0 =  t0 <  t\ <  . . .  <  tn =  1 we get

£  ! , M x )  <  V a r { g )  +  2 o - ,  <  ^

The following theorem connects the smothness of invariant densities 
with properties o f g.

T h e o r e m  1 Let p  be a continuous mapping from  [0,1] into itself and 
S be ( p , a )  inuariant subset o f  [0,1].

I f  ip is .nonsingular and g £ L °°([—« ,« ] )  then density o f  euery 
'R(TV)*-inuariant probability p supported on S is a continuous func­
tion.

I f  g £ C q ([—n,a ]) (i.e. g ( —a) =  g(a)  — 0 and g has continuous 
k deriuatiues )  then ^  £ (^([O , 1]) fo r  each inuariant probability p  £ 
Pn(Tv)(S ) .

P r o o f .  Let p  be nonsingular and p £ P k(t  )(*S)- Since for each t £ 
[0 , 1]

-  <p(z) )dp(x) =  j sg(t- x )dp  o <̂ -1 (x ) =

r . .d p  o ip~l . , . . .  . dp o p ~ x
=  j  g ( t -  -----(ar)rfA(a:) =  g *  — — ----- (<)

then £ C ( [0 ,1]) with supp C S. Now, let g £ C o ([0 ,1]). Then

dA ( t  +  h ) ~  & ( t )  __
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= J g'(t  -  ¥>(*)) d g(x ) ,
f  g(t  +  h -  <p(x)) -  g(t  -  ip(x)) d g ( x ) 

h—*00 h

so dX ^ Crl([0ł !])• Similarly we get higher derivatives.

R e m a r k  In the previous theorem the nonsingularity assumption on <p 
is essential. In fact let <f(x) =  2_1 for all x £  [0,1] and

g( x )
(4a) 1 for x £  [—a ,0 ),
3(4a ) -1  for x £  [0, a].

where a <  4_1 is fixed. Clearly, the unit interval is (y?,a) invariant and 
the (uniąue) IZ(TV) invariant probability g  has the density o f bounded 
variation. But it can be com puted that

d g = J g ( t ~  <p{x))dg(x)

_  9 - i a  _  f  (4 « )  1 f ° r  * <E [2 1 - < z , 2  * ) ,
\ 3(4a ) _1 for t £ [2_ 1,2 _1 +  a],

a n d g $ ! C ( [ 0 , l ] ) .

P r o p o s it io n  2 Let p  be a nonsingular continuous mapping from  [0,1] 
into itself and g £ L1([—a,a])  be a density o f  some perturbation o f  p  
such that 0 £  suppg.

I f  there are no two disjoint non-meager p-invariant subsets o f [ 0,1] 
then 7Ł(TV) is uniąuely ergodic.

P r o o f .  As in the first part o f our theorem 1, if g  is 7^.(r¥>)*-invariant 
probability, then

j j i ł )  = J g ( t  -  x ) d l i °d\~ (x )dM x )

and thus

{ ( € [ 0,11  : ^ W > 0 }

has nonem pty interior. But the topological support o f every invariant 
probability is an invariant subset o f [0,1] (see [4] for detailes). So, 
because 0 £  supp g, we get that the support o f every 7Z(T,'v)* in- 
yariant probability is some (£>-invariant subset with nonem pty interior.
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Since supports o f distinct extremal invariant probabilities o f a com pact 
Marków operator are disjoint (see [4] ) thus because o f the assumptions 
o f our theorem the operator 7Z(TV) must be uniąuely ergodic.

Recall that a continuous mapping p  from [0,1] into itself is said 
to be transitive if there exists a point xo G [0,1] such that the orbit 
{<£>n(x 0 )}n>o is dense in [0,1]. The following result is a simple conse- 
ąuence o f the previous resułts.

C o r o lla r y  3 Let p  be a continuous, nonsingular and transitiue map­
ping from  [0,1] into itself and g G T 1([—a, a]) be the probability density 
function such that 0 G supp g. Then the Markou operator 7Z(TV) is 
uniąuely ergodic.

The following theorem expresses the continuous dependence o f the 
invariant measure o f the uniąuely ergodic com pact perturbation 7l(Tv ), 
on the mapping p.

T h e o r e m  2  Let p n — * p  uniformly on [0,1] uihere p n, p  are con­
tinuous mappings from  [0,1] into itself. I f  fo r  some positiue a there 
exists a closed (nonempty) (p , a)-invariant set S and there are no two 
non-meager disjoint p-invariant sets then fo r  euery probability density 
function g G L\(( —co, + o o ))  satisfying 0 G supp g C [—a, a], we have

where p n, p  are TZ(TVn)*, /K (T V)* inuariant probabilities, respectiuely.

P r o o f .  By our proposition 2 the Markov operator 7Z(TV) is uniąuely 
ergodic. Since p n — » <p implies TVn Tv , thus by our corollary 1 we 
get the thesis.

The following example shows that in generał the uniform conver- 
gence <pn — > ip o f continuous mappings from [0 ,1] into itself does not 
guarantee the convergence o f a suitable seąuence o f invariant probabil­
ities.
E x a m p le  Let <p be the continuous mapping given by the following 
diagram:
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Consider the density g — 8 on [—(16)-1 , (16 )-1 ] and let R  be the 
appropriate com pact Markov operator defined as in (c). Cłearly A  =  
[(16)~1, 7(16)-1 ], B  — [9(16)_1,15 (16 )-1 ] are the only (ip, (16 )_1) in- 
variant subsets of [0,1]. Thus ^ 7?(tv)([0 , 1]) has exactly two extremal 
measures concentrated on A  and B  respectively. Now, we define the 
seąuence o f continuous functions f n on the unit interval:
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and consider the seąuence tpn =  f n<p (clearly <pn — > <p). Observe 
that for odd n the mappings ipn have exactly one ((pn, (16)_1) invariant 
subset and it is contained in [(16)—1, 7(16)-1 ]. For even n the map­
pings ipn have also exactly one (<̂ n,(1 6 )-1 ) invariant subset, but it is 
contained in [9(16)_1, 15(16)-1 ]. Thus, for every natural n, we have 
|| Hn — fJ-n+i ||= where fij £ Pk (tv )([0 , 1]) and the seąuence o f mea- 
sures fin does not converge.

R e m a rk  It is easy to observe that by a smali modifications in the pre- 
vious example the mappings ip,<pn can be taken to be smooth.
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