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On compact stochastic perturbations
of mappings of the unit interval

Wojciech Bartoszek

Let 9n be continuous mappins of a compact metric space X and
3? be some fixed compact Markov operator on C(X). We study the
asymptotic (n — * o00) behavior of invariant probability measure of
the compositions (TVnR)*, where gn — * ip uniformly. We apply our
generat results to the investigation of the difference eguation X nt\ —
<p(Xn) + W, where W is a fixed random variable independent of n and
X n and < are continuous maps from [0,1] into [0,1].

It is shown that for a wide class of mappings < this Markov process
admits the unigue (stationary) invai'iant measure p(<p) and the mapping
(p — >p(<p) is continuous.

Let (X,p) be a compact metric space. We denote by C(X) the
Banach lattice of all continuous functions on X , and by P (X) the set
of all Borel probability measures on X. The smallest, closed set of all
fuli measure p € P(X) is denoted by supp p (the support of p). A
linear operator T : C(X) — * C(X) is said to be Markov if TI = 1,
and/ > 0=>e Tf > 0. Itis well known that for every Markov operator
T on C(X) there exits a unigue family of probability measures P (x, *),
on X such that

(a) for every Borel set A the mapping x — >P (x,A) is Borel measur-
able

(b) for every / € C{X), Tf(x) = f f(y)P(x,dy).
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In fact, we have P(x,-) = T*8X(-). By B(X) we denote the set of
bounded Borel functions on X. Using property (b) the Markov operator
T can be canonically extended to an operator T : B(X) — *B{X). We
say that a closed set A C X is T-invariant (or simply, invariant if T is
fixed) if for every x £ A we have P (x,A) = 1 (equivalentely T\A > 17)-

Now, let fi be the product space l1""Lo %n where X n = X. We eauip
fi with its natural topology and product cr—field. Let ijn be the natural
projection rn : fi — >Xn. It is well known (e.g. [3] Proposition 2.10
p.18) that given any initial distribution probability /z on X there is a
probability VMdefined on fi with

Viike Ak k = 0,1,....n} = J 2T (IAL.. (T\A).. )dfi

Moreover, the seguence 's a homogenous Markov chain with
transition probability P (=) and starting measure 4. It is called the
canonical Markov chain with transition probability P.

Let Pj(X) denote the set of all T*-invariant measures. Clearly, it
is nonempty, convex and iu*-compact subset of P{X), and for every /z
belonging to Pt{X) the canonical Markov chain {//;-} is stationary with
respect to 7°M

In the sequel we will need some informations on compact Markov
operators. Recall that a linear operator T : C(X) — »C (X)) is compact
if and only if the mapping x — >T*8Xis norm continuous, so every com-
pact Markov operator is strong Feller (TB(X) C C(X) see [3] Proposi-
tion 5.8 p.37 ). The Cesaro means Anf = n-1(/+T/-)-.. .+ 711-1/) of a
compact Markov operator T converge uniformly to a finite-dimensional
projection, ex Pt(X) (it means the set of extremal measures) is fi-
nite and supp flsupp/zZ2 = 0 for each distinct extremal T*-invariant
measures /Xi, /tj (see [2] and [4] for detailes). Observe that every contin-
uous mapping 9 : X — >X defines a Markov (deterministic) operator
Tvf = f o (p.

Now let M denote the convex, semitopological semigroup of all
Markov operators on C(X). For an operator R € N the mapping
M 3 T — >T oR is denoted by R. Observe that if Tv is a de-
terministic Markov operator induced by some transformation p then
K{T,)f{x) = Tv o Rf(x) = Rf(ip(x)) = f f(y)R(<p(x),dy). If for ev-
ery x 6 X the transition measure R(x,-) is concentrated on the bali
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B(x,r) = {y GX : p(x,y) < r}, then our operator 7~(7") can be
recognized as an r-perturbation of the dynamical system (X, ip). In
the seguel we will consider only compact perturbations (thus 7Z(T) is
a compact for every T G M). Clearly, 7Z(Tn) 7Z(T) whenever

Tn T (here s.o.t. means strong operator topology). Using the
compactness of the operator R we get the following.

Lemma 1 Let the seguence (Tn) of Markov operators on C(X) con-
verge in the strong operator topology to T and R be a fixed compact
Markou operator on C(X). Then 7Z(Tn) — * 7Z(T) in the operator
norm and every limit measure p = w* —lirn, >cpn is 7Z(T)* inuari-
ant (here pn G Pn(Tn)(X)). Moreouer, in this case Jp —pYy |- >0,
where || = || is the uariation.

Proof. By the compactness of R we can chose a finite, £-dense subset
fii - ,fm of R(Ki), where 7\i denotes the unit bali of C(X). Since
Tn T thus there exists no such that for n > no we have | Tnfj —
Tfj |I<£ for everyj = 1,... m. So, forevery/ GC(X), 1/ |IK1
we get

HR(T,)/ - Rl -
+ WK (r,)/, - 7 -+

l

if the index j is suitable. Thus,

B71(Tn) - 7£(T) ||= sup \\TL{Tn)f-TI[T)f\\
NI

tends to 0.
Now assume that p —w* —Ilim”™ ,00 pY for some py € Pn(Tni){X)-
For every / G C(X) we have

\Jfdp- jn(T)fdp\<\ Jfdp- ] fdpnj |+

IJ 7~(T) dpnj- J 72(Tnj)f dpnj |+ |J 72[T)f dpU- J K (T)f dp \.

Since the components of the right side of the previous ineaguality con-
verge to 0, thus p is 7Z(T)* invariant probability. Next

NP - Pn, ||=sup | I1f dp- [If dpnj=
i<i 3 J

I+
< 3£
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sup JI[ K(T)fdp - [[H(Tnp)f dpnj |<
|/||<i J

sup If 7Z(T)fdp - [ 7Z(T)f dpnj | +
mis 7 J

1J 71(T)f dpU - J 72(Tnj)f dpy \<

sup [ 1I(T)fdp- [/ 7~(T) dpnj |+ BK(T) - K(Tnj) |I<
Hni<i 7 7

sup {]| fTRfdp- [ Tfidp |+ |/ Tfidp- [ Tfidpy \+
M<K 7 J J J

I/ Tfidpnj - J K(T)Tfdpnj [}+ IK(T) - K(Tnj) I

sup | f Tfi dp - [ Tfidpn, |+ BK{T) - K(Tnj) |+2e
1<i<n J 4
(here {/i,..., fm} is an e-dense subset of R(Ki)). Since e can be taken
arbitrarily smali, then Ip —pn. |- >o0.
The following corollary strengthens some results from [lj.

Corollary 1 If the Markov operator 7Z(T) has exactly one invariant
probability measure p (i.e. it is uniquely ergodic ) and Tn T then
Ipn—p =0 (here pn G Pv.(Tn)(X)). In particular there exists n0
such that for n > no the operators 7Z(Tn) are uniquely ergodic.

Now, let ip be a continuous mapping from the unit interval [0,1] into
itself. Consider the stochastic difference eguation X n+i = <p{Xn) + W,
where W is a smali random variable possessing the probability density
function g : [, a] — >[0,00), where ais smaliandg > 0,/ “ag d\ = 1
for the Lebesgue measure A (i.e. Prob.(W E A) = fAg(x)dx for every
Borel set A C [—a,a] ). We assume that the perturbation term W s
independent of n and X n.

We say that a closed subset ([1] Definition 1) S C [0,1] is invariant
with respect to our stochastic difference eguation if <p(S) ® [—a, a] C 5,
where © is defined A® B = {x xy: xXxGA,?/G B}. We will say S is
(<p, @) invariant then. Let us observe that every (<p, a) invariant subset
S is invariant in an ordinary sense (i.e. <™5) C S). If there exists a
((p, @) invariant set S then clearly X n is a Markov process with state
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space S. More precisely, for every initial probability g concentrated on
S there exists the Markov process X n such that

V,(Xntl - <p(Xn) e A)= [ gd\
JA

for every Borel A C [—a,a]. We show that the process X n defined on
some (ip, a) invariant subset can be regarded as a part of the Markov
perturbation of the dynamical system ([0,1], <f) We set

g(t —x), for x € [a, 1 —3q]
d R*0x a_2(a —x) =If0,@(") + a~1=x =g(t —a),for x £ [0, a)

[© dx GAi-(1-a))IM i)+
a_1(I —x) mg(t — (1 —a)), for x € (1 —a, 1]

where A denotes the Lebesgue measure. Clearly, the mapping
X — ®R*8X

is norm continuous, so the Markov operator R given by the above tran-
sition function is compact.

Moreover, since R*6X -<-< Athen R*(P(S)) C ~ (S, A) and it is easy
to see that

=/ ~ A for every ~ G p

We notice that if g is a function of bounded variation then similarly
dj has bounded variation too, and the following rough estimation

Var(-m x) < Var + 2a-~I
( " ) (9)

holds.

Consider the perturbation of Tv by the Markov operator R and let
gn be the canonical Markov process defined by 7Z(TV). For every Borel
set A C S and x £ S (notice that (p(x) € [a, 1 —a] then ) we have

P(Vn+1 G A |Jgn= x) = 7I(TV)\A(X) = (R o TV)*8X{A) =

= R*8v(X)(A) = f g (y- <p(x)) d\(y).
JA
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On the other hand if x £ S then

P(xnt e A\XNn=x) = P(<p(xn) + w eA\XNn=x) =

= /1, 9{y)d\{y)= [/ gy - p{x))d\(y).
JA-tp(x) JA

Since X n and gn are Markov processes we conclude that all finite di-
mensional distributions coincide. So on the phase subspace S they give
equivalent descriptions of the perturbation of the dynamical system
([0, 11, v)-

Assume that ip is nonsingular (i.e. if A(y4) = 0 for a Borel set A C
[0,1] then A(<™ 1(/1)) = 0 ). The Frobenius-Perron operator connected
with p is an operator defined on Tx([0, 1]) as follows

In [1] Boyarski has studied the stochastic operators Qv defined on T1(S')
by the eguation Quf{x) — (Pvf *g)(x), where * denotes the convolu-
tion and g is the probability density function of W. The properties of
invariant densities have been investigated there. In particular it was
shown that the "regularity” of g implies some nice properties of invari-
ant density. Since for a (p, a) invariant set S the operators Qv and
TZ(TV)* coincide on T1(5') (notice that S is an 7Z(TV) invariant subset
then), thus {/ 6 LLS) : Qvf =/} = Pn(Tv)(S)- The existence of an
absolutely continuous invariant measure of is a simple conseguence
of the last eguality. Moreover it does exist for arbitrary continuous
mapping (not necessary nonsingular or C1) from [0,1] into itself.

Corollary 2 If for a continuous mapping ip : [0,1] — » [0,1] there
exists a closed (p, a) inuariant set S then for euery random uariable
W with absolutely continuous density function g : [—a, a] — > [0, 00)
the stochastic process defined by Xn+1 = p(Xn) + W has a stationary
probability distribution of the form Vj for some positiue, normalized
f £ Tx(5, A). In particular for euery Borel set AC S Vf(Xn£ A) =
IAfd X

Now, let us fix the probability density function g of W and assume that
supp g C [—a, a@). Our next result corresponds to Theorem 1 from [1].
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Proposition 1 Let ip be a continuous mapping from [0,1] into itself
and 1Z(Tv)be the compact perturbation*pf Tv (here R is defined by (c)).
If g is of bounded uariation then the density of each 1Z(T")* inuariant
probability p is of bounded uariation too.

Proof. Let p £ ~72(7V)([0,1]) be arbitrary. Since

dp [ d7ZITuYSi, x S
w- [ — /().
then for every 0 = tO< t\ < ... < tn = 1 we get
£ ! M x) < Var{g) + 20-, < 7

The following theorem connects the smothness of invariant densities
with properties of g.

Theorem 1 Let p be a continuous mapping from [0,1] into itself and
S be (p,a) inuariant subset of [0,1].

If ip is .nonsingular and g £ L°°([—,«]) then density of euery
'R(TVJ*-inuariant probability p supported on S is a continuous func-
tion.

Ifg £ Cq([-—,a]) (i.e. g(—) = g(a) — 0 and g has continuous
k deriuatiues ) then ~ £ (~([O, 1]) for each inuariant probability p £

PN(TV)(S).

Proof. Let p be nonsingular and p £ Pk(t )(*S)- Since for each t £
[0, 1]

- <p(2))dp(x) = JSQ(t- x)dp 0o 1(x) =

o dpoip~l. , ... . dp 0 p~x
=j o(t- - @rfA@) = g* — — (<)

then £ C([0,1]) with supp C S. Now, letg £ Co([0,1]). Then

aA(t+ h)~ &(t) _
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fo(t+ h- <p(x)- g(t- ip(x)) dg(x) —

h—*0D h J g'(t - ¥>(*) dg(x),

so dX ™ Cri([0+!])= Similarly we get higher derivatives.

Remark In the previous theorem the nonsingularity assumption on 9
is essential. In fact let <f(x) = 2_1 for all x £ [0,1] and

(4a) 1 for x £ [—a,0),
g(x) 3(4a)-1 for x £ [0, a].

where a < 4_1 is fixed. Clearly, the unit interval is (y?,a) invariant and
the (unigue) 1Z(TV) invariant probability g has the density of bounded
variation. But it can be computed that

dg —_
—J g (t~ <p{x))dg(x)

9-ia _ f (4«) 1 for *<€[2 1-<z,2 %),
\ 3(4a)_.1 for tE£ [2_1,2_1 + a],

andg$!C ([o,1]).

Proposition 2 Let p be a nonsingular continuous mapping from [0,1]
into itself and g £ L1([—a,a]) be a density of some perturbation of p
such that o £ suppg.

If there are no two disjoint non-meager p-invariant subsets of[0,1]
then 7L(TV) is uniguely ergodic.

Proof. As in the first part of our theorem 1, if g is 7*.(r¥*-invariant
probability, then

jjid) =Jg(t - x)dli*d\~ ydm x)

and thus

{(€[0,22 : ~ W > o0}

has nonempty interior. But the topological support of every invariant
probability is an invariant subset of [0,1] (see [4] for detailes). So,
because 0 £ supp g, we get that the support of every 7Z(Tv)* in-
yariant probability is some (E>-invariant subset with nonempty interior.
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Since supports of distinct extremal invariant probabilities of a compact
Markow operator are disjoint (see [4] ) thus because of the assumptions
of our theorem the operator 7Z(TV) must be uniguely ergodic.

Recall that a continuous mapping p from [0,1] into itself is said
to be transitive if there exists a point xo G [0,1] such that the orbit
En(xo0)in>o0 is dense in [0,1]. The following result is a simple conse-
guence of the previous resutts.

Corollary 3 Let p be a continuous, nonsingular and transitiue map-
ping from [0,1] into itself and g G T1([—a, a]) be the probability density
function such that 0 G supp g. Then the Markou operator 7Z(TV) is
uniguely ergodic.

The following theorem expresses the continuous dependence of the
invariant measure of the uniguely ergodic compact perturbation 71(Tv),
on the mapping p.

Theorem 2 Let pn — * p uniformly on [0,1] uihere pn,p are con-
tinuous mappings from [0,1] into itself. If for some positiue a there
exists a closed (nonempty) (p, a)-invariant set S and there are no two
non-meager disjoint p-invariant sets then for euery probability density
function g G L\((—=co, +00)) satisfying 0 G supp g C [—a, a], we have

where pn,p are TZ(TVn)*, K(TV)* inuariant probabilities, respectiuely.

Proof. By our proposition 2 the Markov operator 7Z(TV) is uniguely

ergodic. Since pn — » pimplies TWvh Tv, thus by our corollary 1 we
get the thesis.

The following example shows that in generat the uniform conver-
gence gn — >ip of continuous mappings from [0,1] into itself does not
guarantee the convergence of a suitable seguence of invariant probabil-
ities.

Example Let <9 be the continuous mapping given by the following
diagram:
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Consider the density g — 8 on [—(16)-1,(16)-1] and let R be the
appropriate compact Markov operator defined as in (c). Ctearly A =
[(16)~1,7(16)-1], B — [9(16)_1,15(16)-1] are the only (ip, (16)_1) in-
variant subsets of [0,1]. Thus ~7(tv)([0o, 1]) has exactly two extremal
measures concentrated on A and B respectively. Now, we define the

seguence of continuous functions fn on the unit interval:
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and consider the seguence tpn = fn<g (clearly 90 — > <p). Observe
that for odd n the mappings ipn have exactly one ((pn, (16)_1) invariant
subset and it is contained in [(16)—,7(16)-1]. For even n the map-
pings ipn have also exactly one (¢n,(16)-1) invariant subset, but it is
contained in [9(16)_1,15(16)-1]. Thus, for every natural n, we have
I Hh —f3n+H ||= where fij £ Pk(ev )([0, 1]) and the seguence of mea-
sures fin does not converge.

Remark It is easy to observe that by a smali modifications in the pre-
vious example the mappings ip,<pn can be taken to be smooth.
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