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ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY 
Problemy Matematyczne 1988 z.10

WŁODZIMIERZ A.ŚLĘZAK 
WSP w Bydgoszczy

CONTINUOUS APPROXIMATIONS AND APPROXIMATE SELECTIONS POR MU1TI- 
PUNCTIONS WITH VAIUES IN S-CONTRACTIBIE SPACES

The notion of convexity was generalized by many different means 
/see /• Some of these notions are useful in certain ąuestions
of topology and mathematical analysis, eee for example [3, 10, 12,
16 - 20 , 22 - 24 ] . The present paper contains some ertensions
of existing theorems concerning contlnuous single-valued approxima- 
tions and approximate selections for convex - valued multifunctions 
[l, 2, 4-9, 13, 15 , 212  onto the case of multifunctions whose va- 
lues are S- convex subsets of a suitable S-contractible space. Por 
to make our arguments reasonable complete we will start with reca- 
lling some basie notions related to S-convexity already discussed 
in detail in papers J16-20 ] and [22-23 ] .
A set Y is S- linear if there is a map S : Y x x Y Y such
that:
/1 / S i a,0, b) = b and S ( a,l,b) = a for all (a,b)ć- Y x Y .
The pair (Y,S ) is then a convex prestructure in the sens of Gudder- 
Schroek ]10] . Por any subset B of a S-linear set Y define:

f 2 !  coS ( »  : = {D C  Y : B C S (_ B x [0,l] x 3>) C  D j ,
Y y

Por B = 0 we have coS 0 = 0 . A map coS : 2 -> 2 defined by /2/
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is a convex prehull on Y , i.e. the following two conditions /3/ 
and /4/ are satisfied:

/3/ B c c o S ( B )  for a n y B C Y  ,

/4/ B C D  ^>coS(B} coS(D) for any B, D Y .

Thus the family:

/5 / C : » |B C  Y : B = coS B C. 2 1
determined by the convex prehull /2/ is a generalized convexity 
on Y. This means that:

/6/ Y £  C and

'1/ ̂  : j f j) c: c -> i Bj e  c .. I )

3 ś- J
The elements of /5/’ are called S-convex subsets of (Y, S ) and C 
is called S-convexity. Note that in generał coS c cjS / coS 
/see exaraple 2 on p .17 in \_22 J /.
If Y is in addition endowed with some topological structure T, 
then (Y,T,S) will be called S-contractible, if for each a t Y 
/8/ S ^a, ♦. , • ) : [̂ 0,1 _] xY —'* Y is a homotopy joining the
identity S ^a,0, •) = idy with a constant map S (a,l, •) =
consta. In other words for every a Y the map h& : 1 0,1 ’ -J> C 
; (Y, Y ) defined by:

/B/ '"O.l1 i t  ha (t)ĆC ;Y,Y ) , where

/9/ Y B b  t— > ha ( t V b ^  : =  S ^ a , t , b U ‘Y

is continuous, The space C (Y,Y) of all continuous transforma- 
tions of the space Y in IS f is assumed to be erjuiped with the 
ouasi-compact ooen topology.
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An S- contracible space fY.T.s) is of type I ,/cf. [171 . df. 3 
on p. 596/ if for any y <= Y and any neighbourhood V of y there 
exists a neighbourhood N of y such that coS (n ) c i  . A space 
(Y,T,s) is of type O if it is S-contractible and fory any B c  I 
and any neighbourhood V of the closure of coS B there exists a 
neighbourhood N of B for which coS (N)c V /cf. [18] , df. 2.8 
on p. 784/.
Let us suppose that the topology T is metrisable by a distance 
function ds Y x Y - » R +. By K (b, r) : - ^ jr 6' T : d (b,y ) < r^y
we denote the open bali centered at b £  Y and of radius r > 0. 
Similarly, for any subset B C  Y the eign K (B,r) will denote 
the set:

/10/ K (B,r ): - (J (b,r) : b f  B \ .

A metric S-contractible space ^Y#d,S ) is called to be uniformly 
of type 0 for balls if

/11! ^  ^  ^  00S K (b,t(0)<: K (cos B,
£ > O r (Ł )  > 0 B C Y V V 7

ind Y is of type I for this S.
Observe that each convex subset Y of any linear normed space is 
oniforały of type 0 if we define:

/12/ S ^a,tfb ) : » t • a + ^ 1 - t ) » b £ Y ,

fithout loss of generality we can on the strength of /4/ always 
assume in /11/ that the following inequality holds:

/13/ 0 < r (£) ^  t

et (X»T^ ) Be another topological space and let us consider a 
ultifunction P;X^>Y , i.e. a function whose values are nonempty
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subsets of Y. F is called lower semicontinuous /briefly lsc/ at 
a point x Q £  X iff whenever W ie an open set in Y with the pro- 
perty that P (x ) O W ^ 0 , there exists a neighbourhood U of
xQ such that F (x)r\ W p 0 for every x £■ U » U ( xQ ) . P is callt
alinost lower semicontinuous /alsc/ at xQ (  see jjB] , df. 2.1 on 
p. 186^ iff for each positive real number £ > 0 , there exists a 
neighbourhood U * U ( x ) of xQ such that:

/14/ U  (P (x) #fc) : x ć- D (xQ ) }  0 0 .

P is called lower semicontinuous /resp. almost lower semicontinu­
ous/ if it is lsc /resp. alsc/ at each point x Q of X.
A selector /resp. £ - approximate selector / for an P is a sin­
gle Talued function f : X-?-Y such that f(x)6-F ( x )  / resp.
f {x)fc K (p (x ) , ł ) for every x in X. Observe that every selec­
tor ia an £ - approximate selector, but the converse is false 
in generał. It is useful for comparison purposes to mention here 
the L.Pasicki analogue of celebrated continuous selection theorem 
of E, Michael:

PROPOSITION 0 /L.Pasicki/. Let X be a paracompact topological 
space and fY,d,Sj an S-contractible metric space uniformly of ty­
pe 0 for balls. Suppose that F:X -?Y is a multifunction with 
S-convex complete values /resp. S-convex values only/. If ? ie 
lower semicontinuous, then F admits a continuous selector /resp. 
a continuous ^ - approximate selector for each fc > 0 / .
While lower semicontinuity of P with complete S-convex values is 
sufficient for the existence of a continuous selector, it is in 
generał not necessary for P to admit either a continuous selec­
tor or even a continuous c - approximate selector.
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In case where Y ia a normed linear space, Deutsch and Konderov 
^[8] , thm. 2.4 on p. 18?} have characterized almost lower se- 
micontinuity and in the process showed that it is a necessary 
condition for the ezistence of a continuous selector. Our first 
proposition is an eztension into S-contractihle spaces of Deutsch- 
Kenderow theorem characterizing those multifunctions with S-convex 
images which haxe continuous £ - approiimate selectors for every 
6 >  0 .

PROPOSITION 1. Let (J.T^) be a paracompact spaoe and let (Y ,d ,sJ 
be a metric S-contractible space uniformly of type 0 for balls.
Let Ps i — >Y be a multifunction with S-convex values. Then P is 
almost lower semicontinuous if and only if for each £ >  0, P has 
continuous £ - approximate selector,

PROOF: Neeessitys Suppose P is alsc and let an arbitrary positive 
number £ > 0  be given. Take r(e") satisfying /11 / and /13/, In 
compliance with /14/ for each xQ £  X there exists an open neig­
hbourhood U(xQ ) of xQ such that

/15/ (p(x) , r(e) : x en(xD)J + fi .

Since (^X,T^) was paracompact, the open cover (x) s x <= Xj- of X 
has a locally finite refinement : j ć- Ĵ j where J is a set of 
indices. We can assume, without loss of generality, that the lnde- 
xing set J is well ordered by some total order relation Ąc JxJ.
Por each j £  J choose x.j such that C  U (x^ ) . Dsing 
paracompactness, we can choose a partition of unity |p^ : j C jjf 
subordonated to : J t  J . That is, each function
Pj : X f 0,11 is T^ - continuous,
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x 6 X  j ^  J 

Por each x £  X define:

/17/ J (x) : - | j £ J  : Pj(x) ^ O j 1 3;,̂. J2,...Jn ^

where n ■ n(x) is dependent of x and j1 J2 -C * Put:

/18/ ck(x) s - Pk (x) / maxjp.j(x): j £J(x)j | kej(x).

where y is an arhitrary fixed element of the image ? (x )C  Y.
It is easily seen that there always exists an k £ j  (x) such that 
ck (x) - 1, then S (yk , ek (x) , y)- yk for y <£ Y .
Then our definition /19/ is correct and f(x) is independent of 
the chooise of y.
Giyen any xQ£  X , there is a neighbourhood 0 ( x Q ) which inter- 
sects only finitely many of the so xQ ć  for only a finite 
set of indices J (x0] c J  . We have:

Conseąuently for all x € 0  (x0 ) we essentially take in /19/ those 
y^t for which J G  J (x0 ) • Observe that the function:

121/ 0(xo) ^  xt» g ^ r )  :« s (yjnt cjnC*l. $,)£* . » - n(x0 )

Obyiously each : X*^>[0,l} is continuous. Por each j ć- J let 
us select y^e Cx ) » x(t)) : x & ^ and define f : X Y
by a formuła:

/19/ f(x) : - S(y3i , c ^  (x) , S ( y ^  , c ^  (x) ,

a  ̂..., s[y3^ , c ^  (x) , y) ... ) 6 Y



-  33 -

is continuous on 0(xQ^. For i « 1,2, ..., n-1 let us define recur- 
sively:

1221 0(xo^ x ł - > g n_1Cx) : - S{ji , c3 Cx), (x.)) £  Y .
n-l n-l

Since y. are constant on Q(x J) and S(y. : [ o , l ] x  Y->Y
Jn-i ° v Jn-i y

is jointly continuous as a homotopy, we infer that each g , ^  is
continuous on o f  xQ') being a superposition of continuous maps.
Thus f [ 0 (xo) ■ is continuous on 0(xQ). Since 0 (xQ ) : x Q (- X *j

is an open covering of X, we infer that /19/ is continuous on X.
Observe that:

/23/ ^  f (x) f- coS K(F , r ^ ) )  .

In fact, choose any subset D belonging to the family under the 
sign of intersection in formuła /2/, where B : - r^d) .
Observe that for i » 1,2,..., n-1 we have recursi^ely:

/24/ gn_1 vx) - S x "0,1] x dK. D

for a function gn-i defined by /22/, because of Sn_i+i(x )'-~ 13 811(1 
y^ feB. By S:̂yk j c^ (x), y)« yk for some kć-J( x) the choice of

y tr F(x) is unessential, even if D. Since B was arbitrary, this 
yields:

/25/ g1 (x^ ■ f (xj£coS B ■ coS K (f  ( x ) , r ^ i ) .

Bearing in mind that F < x )  ■ coS F \ x ) , by /11 / we obtain:

/26/ f ^x>coS K (f (x), r^i)c' F {coS F (x) , O  - K iF ix) t ) .  

Thus:
^27/ dist ^f (x\ , F ;xM: - inf < d (f (x), y'): y( F (x j | <   ̂

and f is a desired continuous *- approximate selector for our
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multifunction F.
Sufficiency: Fix (->0 and x Q &- X. Aasume that for each *? >o 
there ie an f  C (X,Y^) such that f^ £ x ) ^ K  (f (£) ,o') • Take 
f: ■ t,j for o ■ źr /2 and choose a neighbourhood U (xQ ) of x0 
such that d (f (xQ ) , f (x))^S/2 for all x ć O  . Such U Cx0)
exists sińce f was continuous. Hence

t ^ t ) (i ) > £ /2 J CE (» & ) • « - )  •

In fact, if y€F(x^ is such that d^f(x), y)< «'/2 then by the
triangle ineąuality we have:

/29/ d (f y)iśd ff (xQ > , f ( x ) W  d(ftx^, y)>/ 2 + i / 2  - 1‘

bo that dist ( f(xQ) , F(x)j„t • Thus /14/ holds and F is alsc at 
xQ . Since xQi~ X was arbitrary, F is alsc as reąuired and the
proof of Proposition 1 is completed.e
At the present let us suppose that the topology T1 on X is metri- 
zable by a distance function d-j. For computational simplicity assume 
the Cartesian product X x Y to be endowed with the box metric d2 :

/30/ d2 ((X1 , y ^  , (x2 » y2'0 “ max^ di(xi» x2 ) * d ^y1 * y2 ^
A function f : X -^Y is called t - approximation for multifunction 
F: X -> Y if:

/31 / H ^ ( G r  f ,  O r ? ) ^ t ,

where the separation H is defined on X x Y by formuła:

/32/ H (m ,N^ : * sup inf d^ (m, n ) ; M,B X x Y
n & N  m <r M 

and the graph of F is defined as usualy by:

/33/ Gr F : « ̂  (x,y! - X x Y : y F { x )  V .
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Each g— approximate selector for F ls simultaneously Its f-appr 
ximation, hut the converse is not true in generał. Consider, as a 
example, the multifunction F: R — given hy the formuła:

/34/ |sgn x} for x ^ 0
F (x) : * >

/v L “1 » 1 ] for x - O

It is impossihle to inscrihe into the graph of /34/ a single-va- 
lued continuous function, i.e. there is no continuous selector 
for F.
Even more, it is also impossihle to find a seąuence fn of conti­
nuous single-valued functions such that:

/35/ dist fn (x) , F 0

uniformly /or almost uniformly/ on R as n tends to infinity.
In /35/ the sign dist is defined hy formuła l2 . l l , This example 
/34/ shows that in the theory of multifunctions neither the simp- 
le lnscription concept nor the traditional approximation princip­
ia may lead to generał and satisfactory result. One feels that 
here some more sophisticated principle is needed. It is easily 
seen that it is possihle to find a seąuence fn of continuous sin­
gle valued functions such that the seąuence Gr fnC X  x I of their 
graphs converges to the graph /33/ of the multifunction F, i, e. 
H * ^ G r  fn , Gr ?J tends to zero as n tends to infinity /cf. [4-7, 

13, 15, 2l]/.
Ohseree that /34/ fails to he alsc at xQ » 0 and thus, in compli- 
ance with Proposition 1 admits no continuous £ - approximate sele­
ctor for sufficiently smali numhers O 0 .  Following ■ 5 ] , df, 1.7 

p. 13 , a multifunction F:X~> Y is called weakly h r - upper 
semicontinuous /hriefly weakly h^ - usc/ at xQ 6  I if
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/36/ / \  / \  V  \  / x h(x(x)t F(Xi))
n?0 0*5*0 x1fcK(x0,ol x t  k (x q ,s )

Where similarly as in /32/ the separation is defined hy:

/37/ h*(b,d) = supjdist (b, d) : h C- B )

and the sign dist is erplained hy /27/. Ohserve that in generał 
h* (B,D^ differs from h^ D . B ^  . A multifunction F:X— ^Y is called 
weakly h*̂  - upper semicontinuous if it is weakly h+ - usc at each 
point xQ ćrX. F : X^Y is called h* - usc iff:

A \ j ^

/ 3 8 / x0̂ X  £ > 0  $ > 0  x.; K(x0,.S) h^(FCx) , P(xo)V'Ć .

If x1 ■ xQ in /36/ the definition of weakly hi* -upper semicontinui-
* * ty reduces to that of an h -upper semicontinuity. Wiile each h -usc

multifunction is weakly h * - usc, the conyerse is not true in gene-
* *-rai. In the ahhreviation " h -usc ", h is written to emphasize 

the role of the Pompeiu-Hausdorff /generalized/ separation /37/.
If card F(x) *» 1 for all x c  X, i.e. F(x) (x)V is single valued 
then F is h -usc /lsc, alsc, weakly h -usc / if and only if f is 
continuous. Following [13'\ , p. 72 define:

/39/ D^x,e) :-) : V  / \  h (f(x^,
L x.j£ x 2 £

^  f (k  (x,H) c  k (f  (*,) , O  }
x ^  K(x,S)

where for a subset A C X  we define the image as:

/40/ F(A) : -U$F£a) ! A K ' *  .
Ohserye that D (:x,i> is certainly nonempty if F is weakly h -usc
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and if 0. The function : X x R+-^ R+ defined by;

/Ą^/ £(x,e): « sup ( p (x, O )
is called in (.'13J the modulus of upper semlcontinuity of the multi­
function F. If F : X^>Y is weakly h^ -usc then the modulus of upp­
er semlcontinuity /4-1 / is positiye and lower semicontinuous with 
respect to the first yariable x / see f 5 j , lemma 3.2 on p. 20, 
cf, also a lemma on p. 72 in £13 [ / .

PROPOSITION 2. Let (X, be a metric space and ( Y,d,sj a me-
tric S-contractible space uniformly of type 0 for balls. Let F:X>Y

'if'be a weakly h -upper semicontinuous multifunction with S-convex 
▼alues, Then for every t > 0  there exists a continuous £ -approxi-
mation for ?, i.e, a single valued mapping f <£ C ( x ,y ) such that
the inequality /31/ is fulfilled. Horeoyer;

/42/ f(x) : = jf(x) « coS F ( x ) : - coS ( O  F(x)jCY.
■ x * X '

PROOF; For a given t > 0 ,  we define a n.ul t i function G:X— ^ Y  by put- 
tings

/43/ 0 ( x )  ; - * ( * { >  ,f(x, r (S/ż))))

for every X , where r « r[£ /2) is taken from /11/, We claim
that for every y in Y the fiber;

/44/ G'1 [y )  s I : y €  F (x ) |
is open in X, i.e, that multifunction /43/ is strongly lower semi­
continuous, Indeed, if xQ belongs to the fiber /44/ then:

/45/ y <ć’G /x 0 . f (k ( x q ,i(x0 , rV'i , r - r /2 > .

This means that yc-F(x,.^for certain x1 belonging to the bali
¥ x , x0, r i /2'^ . By the lower semlcontinuity cf the func-
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tion X.^x M »  ó ( x , r )  6  R+ , there exists an ^ > 0  such that for 
all x£ X (I0»7>) w® kave fe X (x, <TCx,r)) , r - r(*/2), in
accordance with /39/, /41/ łdiich means that for all such points x
we have y £ G (x) . Since xQć Gr*-1 ( y) was arbitrary, this means 
that the fiber /44/ is open in X,
The familylo”1 £y) j y & f j  is an open covering of the space X,
Since eyery aetric space X is paracompact, there exists a locally 
finite refinement s J j of this covering, Now, let 
|Pj 5 3 € be a partition of unity subordonated to this refine­
ment, so that /16/ holds, Choose for erery J a point y^ ę Y 
such that C  Q~1 ( Yj) and define f:X ->Y by a formuła /19/
where c^ and J(x) are defined by /18/ and /17/ respectively. We 
can prove in exactly the same manner as in the proof of Proposi­
tion 1 that the function f is continuous on X. Por an arbitrary 
x in X» f£x) is an S-convex combination of a finite number of 
y^ such that:

/46/ yj£ F (X j )c  G(x) , X j C - x ( x , ^  , r}) ,

Pix now x arbitrary. By the definition /43/ of G, there exlsts a 
point x^ such that:

/47/ d1 (x, x1)<d(x, r ( £ f z ) ) and

/48/ G[x^ » P ^X(x , <f(x,r)^ C. K ( P(x1 ) , r ) vdiere r ■ r(£/2 
and /39/ is utilized. Since P(x^) ■ coS P (x^ ) we ha-ve by /46/, 
/48/ and /11/ that:

/49/ f(x)e coS G(x)ccos K(P(x1'), r)c X (coS F(x.,) t*-/2_) -

- k ( ? ( x 1) , t / 2 )  .

Thus, arguing similarly as in /29/ we obtain:
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/50/ dist (f(x) ,F (x1) ) < £ /  2 .

Subaeąuently we have by Yirtue of ttae triangle ineąualltys 

/51 / Diat( (x, 1 (x\ ) , (łr F js « inf | d 2 ((ii f (*)), (u,v)) :

0 , v ) e  Gr r]< d2 ((i, f(x)j , (̂ X1 , f(x)jj+ Diet (

(*1 » *(*). {*1̂ 5 * P (x1)]^d2 ((x. f (x), (x, , f (x))| +

diat^f(x) , P ( x j ) )  ^(x»r^ ♦ &  / 2 < r  ♦ 6 / 2 -ś 6/2 +

fc/2 - e  ,

wfaere the inequalitłes /47/, /50/, /39/ and /13/ are adeouately 
taken into conslderatioc. Since x was arbitrary the proof of /31/ 
ia completed. The inclusion /42/ foliowa from /46/ in a manner 
appearing in the proof of formuła /26/. That ends the proof.

PROPOSITIOH 3. Let X and Y be the aame as in Propoaition 2 and
let F:X-?>Y be an upper aemicontinuous multifunction with closed
▼aluea. If f s X - > Y  is a aeouence of £_ t approximationa

fcn a
for F, where £ create a seąuence tending to zero as n tends to
infinity, then for every converging seąuence 7^ of points of the
domaine X satisfying the eąuality lim f CxJ) • y we have

fen 7
7° € ” ( *n ) •
PROOF: Thia foliowa immediately from Theorem 1.5*3 announced in a 
aurvey [25] and from our PropoBition 2.

For more informations about continuous approzimationa for multi- 
functions the reader ia refered to papers [1,2, 4-9, 13,15,21,26,27j 
and to soYiet works of Y.G.Borlsovich, A.D.MyBhkia, B.D.Gelman, 
Y.E.Glicklich and othera, carefuly aurveyed in [25] . The role of 
approximations in the theory of multifunctions was emphasized in
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| 26 '. The author wishes to express his thanks to Janina Ewert for 
her critical remarks.
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CIĄGŁE APROKSYMACJE I APROKSYMATYWNE SELEKTORY DLA MULTIFUNKCJI 
0 WARTOŚCIACH W PRZESTRZENIACH S - ŚCI^GALNYCH

Streszczenie

W pracy sformułowano warunki przy których multifunkcja przyjmują­
ca S-wypukłe wartości we wprowadzonej przez L.Pasickiego prze­
strzeni S-ściągalnej odpowiedniego typu posiada dla każdej £ > 0  
ciągły £ -aproksymatywny selektor oraz odpowiednio ciągłą jedno- 
wartościową £. -aproksymację. Uzyskane wyniki rozszerzają zakres 
stosowalności twierdzeń znanych w przypadku multifunkcji przyjmu­
jących wartości wypukłe w lokalnie wypukłych przestrzeniach linio- 
wo-metrycznych wskazując Jednocześnie na nieco inne zastosowania 
S-wypukłości w teorii multifunkcji niż w pracach £17-20 1 1(22-23!.


