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ZESZYTY NAUKOWE WYZSZEJ SZKOLY PEDAGOGICZNEJ W BYDGOSZCZY
Problemy Matematyczne 1988 z.10

WEODZIMIERZ A.SLEZAK
WSP w Bydgoszczy

CONTINUOUS APPROXIMATIONS AND APPROXIMATE SELECTIONS POR MU1TI-
PUNCTIONS WITH VAIUES IN S-CONTRACTIBIE SPACES

The notion of convexity was generalized by many different means

/see /= Some of these notions are useful in certain guestions
of topology and mathematical analysis, eee for example [3, 10, 12,
16 - 20 , 22 - 2471 . The present paper contains some ertensions

of existing theorems concerning contlnuous single-valued approxima-
tions and approximate selections for convex - valued multifunctions
[, 2, 4-9, 13, 15 , 212 onto the case of multifunctions whose va-
lues are S- convex subsets of a suitable S-contractible space. Por
to make our arguments reasonable complete we will start with reca-
Iling some basie notions related to S-convexity already discussed
in detail in papers J16-20] and [22-23 ] .

A set Y is S- linear if there is amap S : Y X X Y Y such
that:

/1/ S ia,O, b) = b and S (a,l,b) = a for all (a,b)¢- Y x Y

The pair (Y,S) is then a convex prestructure in the sens of Gudder-

Schroek ]10] . Por any subset B of a S-linear set Y define:

f2! coS (» : = {DCY : BCS (Bx [0,lI] x3»C Dj,
Y

Yy
Por B = 0 we have coS 0O =0 . A map coS : 2 -> 2 defined by 72/
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is a convex prehull on Y , i.e. the following two conditions /3/

and /4/ are satisfied:

/3/ BccoS(B) for anyBCY ,

/4/ BCD ~>coS(B} coS(D) for any B, D Y
Thus the family:

/5/ C :»|BCY : B=cosS B c. 21
determined by the convex prehull /2/ is a generalized convexity

on Y. This means that:
/6/ Y £ C and
. - - . L) -
v~ :jJf D ccec -3 i B e c .
383
The elements of /5/” are called S-convex subsets of (Y, S ) and C
is called S-convexity. Note that in generat coS C cjS / coS
/see exaraple 2 on p.17 in \ 223 /.
If Y is in addition endowed with some topological structure T,

then (Y,T,S) will be called S-contractible, if for each a t Y

/8/ S Ma, o, .) :[M0,1 ] xy —*Y is a homotopy joining the
identity S 7a,0, <) = idy with a constant map S (a,l, <) =
consta. In other words for every a Y the map h&: 10,1 *->C

; Y, Y) defined by:
/B/ ""O.Ilit ha (t)CC ;Y,Y ) , where

79/ Y Bb & > ha (tVvb~" 1= S”™a,t,buUu*y

is continuous, The space C (Y,Y) of all continuous transforma-
tions of the space Y in ISf is assumed to be erjuiped with the

ouasi-compact ooen topology.
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An S- contracible space fY.T.s) is of type 1| ,/cf. [171 . df. 3
on p. 596/ if for any y < Y and any neighbourhood V of y there
exists a neighbourhood N of y such that coS (n) ci . A space
(Y,T,s) is of type O if it is S-contractible and fory any Bc |1
and any neighbourhood V of the closure of coS B there exists a
neighbourhood N of B for which coS (N)cV /cf. [18] , df. 2.8
on p. 784/.

Let us suppose that the topology T is metrisable by a distance
function ds YXY-»R+. By K (b, r) :: - ~2pjr6'T : d (b,y)< rvy
we denote the open bali centered at b £ Y and of radius r > 0.
Similarly, for any subset BC Y the eign K (B,r) will denote

the set:
/10/ K (B,r ): - (J (b,r) :bf B \.

A metric S-contractible space ~Y#d,S ) is called to be uniformly

of type 0 for balls if

/1 A n n 00S K (b,t(0)<: K (cos B,
Y Y

£> 0 r(k) >0 BCY 7

ind Y is of type 1| for this S.

Observe that each convex subset Y of any linear normed space is

oniforaty of type 0 if we define:
/12/ S’\a,tfo) :» t e a + N"1-t)»bEy,

fithout loss of generality we can on the strength of 74/ always

assume in /11/ that the following inequality holds:

/13/ 0<r@® ~ t

et (X»T~ ) Be another topological space and let us consider a

ultifunction P;;X~>Y , i.e. a function whose values are nonempty
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subsets of Y. F is called lower semicontinuous /briefly Isc/ at

a point xQ£ X iff whenever W ie an open set in Y with the pro-
perty that P (x ) OW ~ 0 , there exists a neighbourhood U of

XQ such that F GQOr\W p 0 for every x U » U (xQ) . P is callt
alinost lower semicontinuous Zalsc/ at xQ ( see jjB], df. 2.1 on
p- 186~ iff for each positive real number £ > 0 , there exists a

neighbourhood U * U (x ) of xQ such that:
/14/ U (P ) #fc) - x ¢ D XQ) } O 0

P is called lower semicontinuous /resp. almost lower semicontinu-
ous/ if it is Isc /resp. alsc/ at each point xQ of X.

A selector /resp. £ - approximate selector / for an P is a sin-
gle Talued function f : X-?-Y such that f(x)6-F (X) 7/ resp.

f pOfcK (p (x) ,+#) for every x in X. Observe that every selec-
tor ia an £ - approximate selector, but the converse is false
in generat. 1t is useful for comparison purposes to mention here

the L.Pasicki analogue of celebrated continuous selection theorem

of E, Michael:

PROPOSITION O /L.Pasicki/. Let X be a paracompact topological
space and fY,d,Sj an S-contractible metric space uniformly of ty-
pe 0 for balls. Suppose that F:X -?Y is a multifunction with
S-convex complete values /resp. S-convex values only/. If ? ie
lower semicontinuous, then F admits a continuous selector /resp.
a continuous ” - approximate selector for each £ > 0 /

While lower semicontinuity of P with complete S-convex values is
sufficient for the existence of a continuous selector, it is in

generat not necessary for P to admit either a continuous selec-

tor or even a continuous c - approximate selector.
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In case where Y ia a normed linear space, Deutsch and Konderov
~[81 , thm. 2.4 on p. 18?} have characterized almost lower se-
micontinuity and in the process showed that it is a necessary
condition for the ezistence of a continuous selector. Our first
proposition is an eztension into S-contractihle spaces of Deutsch-
Kenderow theorem characterizing those multifunctions with S-convex
images which haxe continuous £ - approiimate selectors for every

6 > 0

PROPOSITION 1. Let (J.T”) be a paracompact spaoe and let (Y,d,SJ
be a metric S-contractible space uniformly of type 0 for balls.
Let Psi—>Y be a multifunction with S-convex values. Then P is
almost lower semicontinuous if and only if for each £> 0, P has

continuous £ - approximate selector,

PROOF: Neeessitys Suppose P is alsc and let an arbitrary positive
number £>0 be given. Take r('") satisfying /11/ and /13/, In
compliance with /14/ for each xQ £ X there exists an open neig-

hbourhood U(xQ) of xQ such that

/15/ GG ,re :x en(xD)Jd + A .
Since ("™X,T) was paracompact, the open cover (X) s x <=Xj-of X
has a locally finite refinement : J & Xy where J is a set of

indices. We can assume, without loss of generality, that the Inde-
xing set J is well ordered by some total order relation AcJxJ.

Por each j £ J choose Xxj such that C U ) . Dbsing
paracompactness, we can choose a partition of unity |p~ : j C jjf
subordonated to - J t J . That is, each function

P : X fO,ll is T~ - continuous,
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X 6 X I AN

Por each x£ X define:
/17/ J X)) - 113 PJ(X) 0] 13N J2,...dn N
where n m n(x) is dependent of x and jl J2 C * Put:

718/ k() s- Pk (X)) 7/ maxjp-jO): JEI(X)J | kej(x).
Obyiously each o X**>[0,1} is continuous. Por each jé& J let

us select y”~e X)) » x(®): x & N and define £ - X Y

by a formuta:

/19/ f(xX) - SY31 ,c”r X)) ,S(y» ,c™ (),

a ™ ..., sly3* , c® ) ,Yy) ...)6Y

where y is an arhitrary fixed element of the image O(X)C Y.

It is easily seen that there always exists an k£j (x) such that
ck (X) - 1, then S (yk , ek X)) ,vy)- yk fory <Y

Then our definition /19/ is correct and f(x) is independent of
the chooise of y.

Giyen any XQf X , there is a neighbourhood O (xQ) which inter-
sects only finitely many of the so xQ ¢ for only a finite

set of indices J (x0]lcJ . We have:

Conseguently for all x€0 (x0) we essentially take in /19/ those

y~t for which JG J 0) = Observe that the function:

121/ O0(x0)™ xt» g~r) :« s (yjnt cjnC*l. $,)£* . » - n(x0)
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is continuous on O(xQ™. For i « 1,2, ..., n-1 let us define recur-
sively:
1221 O(xo"x+->gn_1Cx) : - S{ji , €3 cx), &) £ Y
n-1 n-1
Since vy. are constant on Q(xJ) and S(y. [o,1]x Y->Y
Jn-1i © v In-1i y

is jointly continuous as a homotopy, we infer that each g,” is
continuous on of xQ% being a superposition of continuous maps.
Thus F[O0 (x0) = is continuous on 0(xQ). Since 0 (XQ) : xQ(-XH¥

is an open covering of X, we infer that /19/ is continuous on X.

Observe that:
/23/ n f (X) = coS K(F , r"))
In fact, choose any subset D belonging to the family under the

sign of intersection in formuta 72/, where B : - rn~d)

Observe that for i » 1,2,..., n-1 we have recursi”ely:

/24/ gn_1 vx) - S X "0,1] x dK. D

for a function gn-i defined by /22/, because of Sn_i+i(x)= 13 81Q
y» feB. By S2ykj c (X), y)« yk for some ké-J( x) the choice of

y tr F(X) is unessential, even if D. Since B was arbitrary, this
yields:
/25/ gl (x» m F (xjEcoS B m coS K (f (x) , r™i) .

Bearing in mind that F<x) m coS F \Xx) , by /11/ we obtain:

/26/ f "x>co0S K (F (X), r*i)c" F {coS F(x) , 0 - K iF i) t).
Thus:
~27/ dist M (xX\ , F ;xM: - inf<d (F &), y): y(F xj] <~

and f is a desired continuous *- approximate selector for our
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multifunction F.

Sufficiency: Fix (->0 and xQ& X. Aasume that for each *?>o0
there ie an f C (X,Y») such that ™ £x)7~K (f () ,0") = Take
f: m tj for om #/2 and choose a neighbourhood U (xQ) of x0
such that d (f (xQ) , f (xX))~S/2 Tfor all x¢O . Such U Cx0)

exists since f was continuous. Hence
th t) (i )>£/2JCE (»&)e«-) o

In fact, if yEF(X™ 1is such that d*"(xX), VYy)<«"/2 then by the

triangle ineguality we have:
/29/ d (F wisd ff (xQ> , F (X)W d(fx™, y)>/ 2 +i/2 -1

bo that dist (f(xQ) , F(X)j,,t = Thus /14/ holds and F is alsc at

XQ . Since xQi~X was arbitrary, F isalsc as reguired and the
proof of Proposition 1 is completed.e

At the present let us suppose that the topology Tl on X 1is metri-
zable by a distance function d-j. For computational simplicity assume

the Cartesian product X xY to be endowed with the boxmetric d2:

/30/ d2 ((X1 , y”™ , (X2» y2"0 “ maxMdi(xi»x2)* d Ayl *y2~"
A function f : X -~Y is called t - approximation for multifunction
F: X ->Y if:

/317 H~M(Gr F, or?)"t,

where the separation H is defined onX X Y by formuta:

/32/ H @ ,N :© * sup inf d~ (m, n ); M,BX x Y

n&N m<a« M

and the graph of F is defined as usualy by:

/337 Gr F 1 « 2 (X,y! = X xY = vy F{x)Vv .
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Each g— approximate selector for F Is simultaneously lts f-appr

ximation, hut the converse is not true in generat. Consider, as a

example, the multifunction F: R - given hy the formuta:
/34/ Isgn x} for x ~ 0
F OO - * >
¥ L1 » 1] for x - 0

It is impossihle to inscrihe into the graph of /34/ a single-va-
lued continuous function, i.e. there is no continuous selector
for F.

Even more, it is also impossihle to find a seguence fn of conti-

nuous single-valued functions such that:

/35/ dist fn(x) . F 0

uniformly /Zor almost uniformly/ on R as n tends to infinity.

In /35/ the sign dist is defined hy formuta 12.1l, This example
/34/ shows that in the theory of multifunctions neither the simp-
le Inscription concept nor the traditional approximation princip-
ia may lead to generat and satisfactory result. One feels that
here some more sophisticated principle is needed. It is easily
seen that it is possihle to find a seguence fn of continuous sin-
gle valued functions such that the seguence Gr fnCX x I of their
graphs converges to the graph /33/ of the multifunction F, i, e.
H*~"Gr fn, Gr ?)J tends to zero as n tends to infinity /cf. [4-7,
13, 15, 21V/.

Ohseree that /34/ fails to he alsc at xQ » 0 and thus, in compli-
ance with Proposition 1 admits no continuous £- approximate sele-
ctor for sufficiently smali numhers 00. Following ®5 ], df, 1.7
p- 13 , a multifunction F:X~>Y is called weakly hr - upper

semicontinuous /hriefly weakly h - usc/ at xQ 6 I if
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7367 [\ [\ 'V \'/ X h(x()t F(Xi))

n?0 0*5*0 x1fcK(x0 ,ol xtk (xq ,s)

Where similarly as in/32/ the separation is defined hy:

/37/ h*(b,d) = supjdist (b, d) : h GB)

and the sign dist is erplained hy /27/. Ohserve that in generat
h* (B,D differs from h~D.B”~ . A multifunction F:X-~"Y is called
weakly h* - upper semicontinuous if it is weakly h+ - usc at each
point xQ¢érX. F:X~Y 1is called h* - usc iff:

AN A

/38/x0 X £>0 $>0 x.; K(x0,.8  h~(FCx) ,P(XO)V'C

If x1 m xQ in /36/ the definition of weakly hi* -upper semicontinui-
ty reduces to that of an h -upper semicontinuity. Wiile each h -usc

multifunction is weakly h * - usc, the conyerse is not true in gene-

* *

rai. In the ahhreviation " h -usc ", h is written to emphasize
the role of the Pompeiu-Hausdorff /generalized/ separation /37/.

If card F(xX) » 1 for all xc¢ X, i.e. F®X) (xX)V 1is single valued
then F is h -usc /lsc, alsc, weakly h -usc / if and only if f is
continuous. Following [13'\ , p. 72 define:

/39/ D"x,e) :-) -V /\ h (FOX?,
L X_JE x2 £

n f(k (x,H) ¢ «k( (*,) ,0 }
x N K(x,S)

where for a subset ACX we define the image as:

740/ F(A) : -U$FE£a) 1 AK = > .

Ohserye that D (x,i> is certainly nonempty if F is weakly h -usc
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and if 0. The function : X x R+-~ R+ defined by;

IAN E(x,e): « sup (p (X, 0)

is called in ("13) the modulus of upper semlcontinuity of the multi-
function F. If F : X*>Y is weakly h” -usc then the modulus of upp-
er semlcontinuity /41/ is positiye and lower semicontinuous with
respect to the first yariable x / see f5 j, lemma 3.2 on p. 20,

cf, also a lemma on p. 72 in £13 [/.

PROPOSITION 2. Let (X, be a metric space and (Y,d,sj a me-
tric S-contractible space uniformly of type 0O for balls. Let F:X>Y
be a weakly H- -upper semicontinuous multifunction with S-convex
values, Then for every t>0 there exists acontinuous £-approxi-
mation for ?, i.e, a single valued mapping f < C (x,y )such that
the inequality /31/ is fulfilled. Horeoyer;
742/ (X)) : =jF(X) « coS F(x): - coS (O F(x)jCY.

mx * X '

PROOF; For a given t>0, we define a n.ultifunction G:X-~Y by put-

tings
/43/ 0 (x) ; - *(*{> ,F(x, r (8/2))))
for every X , where r « r[£ /72) is taken from/11/, We claim

that for every y in Y the fiber;

/44/ G"1[y) s | :y€ F(x)]

is open in X, i.e, that multifunction /43/ is stronglylower semi-
continuous, Indeed, if xQ belongs to the fiber /44/ then:
/45/ y <G /x0 . f (k (xqg ,i(x0 , rVTi , r-r /2 >.

This means that yc-F(x, -~for certain x1 belongingto the bali

¥ x , X0, r i /2~ . By the lower semlcontinuity cf the func-
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tion X.~XM» O6(x,r) 6 R+ , there exists an ~>0 such that for
all x£ X (10»7>5 w® kave feX (x, <TCx,r)) , r- r(*/2), in
accordance with /39/, /41/ Hdiich means that for all such points x
we have y £ G (X) . Since xQ¢ Q™1 (y) was arbitrary, this means
that the fiber /44/ is open in X,

The familylo”1 £y) j y&fj is an open covering of the space X,

Since eyery aetric space X is paracompact, there exists a locally

finite refinement s J j of this covering, Now, let
|IPj 5 3€ be a partition of unity subordonated to this refine-
ment, so that /16/ holds, Choose for erery J a point y»e Y

such that C Q~1 (Yj) and define f:X ->Y by a formuta 719/
where ¢~ and J(x) are defined by /18/ and /17/ respectively. We
can prove in exactly the same manner as in the proof of Proposi-
tion 1 that the function f is continuous on X. Por an arbitrary
X in X» Ff£x) is an S-convex combination of a finite number of
y” such that:

/46/ yjEF (Xj)c G(X) , XJjC-x(x,™~ , rp ,

Pix now x arbitrary. By the definition 743/ of G, there exlsts a
point x» such that:

/47/ dl1 (x, x1)<d(x, r (£ fz)) and

/48/ G[x™ » P ~"X(x , <F(x,N"C. K (P(x1) , r ) vdiere r m r(£/2
and /39/ is utilized. Since P(X”") m coS P (X ) we ha-ve by 746/,

/48/ and /11/ that:
749/ f()e coS G(x)ccos K(P(x1"), r)c X (coS F(x.,) t-/2) -
- k(?2(x1) , t/2)

Thus, arguing similarly as in /29/ we obtain:
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/50/ dist (F(x) ,F (xD))<£/ 2
Subaeauently we have by Yirtue of ttae triangle ineaualltys
/517 Diat( (X, 1 (xX\) , @r Fjs « inf |d2(@i f ()., (u,v))
O,v)e Gr rl<d2 ((i, fx)3 , XL , f(x)jj+ Diet (
Gl x5 P ca)IMd2 (- F OO, T OO+
diatrfo , P (X])) ~oorne &7 2<r e6/256/2  +

fc/2 - e ,

wfaere the inequalittes 747/, /50/, /39/ and /13/ are adeouately
taken into conslderatioc. Since x was arbitrary the proof of /31/
ia completed. The inclusion /42/ foliowa from /46/ in a manner

appearing in the proof of formuta /26/. That ends the proof.

PROPOSITIOH 3. Let X and Y be the aame as in Propoaition 2 and
let F:X-?>Y be an upper aemicontinuous multifunction with closed
valuea. If f s X->Y is a aeouence of £ t approximationa
for F, where ﬁj% create a seguence tending tg zero as n tends to
infinity, then for every converging seauence 7~ of points of the
domaine X satisfying the eguality lim f CxJ) <= vy we have

fon 7
7° € 7 ( *n ) e
PROOF: Thia foliowa immediately from Theorem 1.5*3 announced in a

aurvey [25] and from our PropoBition 2.

For more informations about continuous approzimationa for multi-
functions the reader ia refered to papers [1,2, 4-9, 13,15,21,26,27])
and to soYiet works of Y.G.Borlsovich, A._D.MyBhkia, B.D.Gelman,
Y.E.Glicklich and othera, carefuly aurveyed in [25] . The role of

approximations in the theory of multifunctions was emphasized in
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The author wishes to express his thanks to Janina Ewert for

her critical remarks.

REFERENCES

Lij

(2]

31

1

|6n

d1

8 -

[91

G.Beer, Approximate selections for upper semicontinuous con-
vex valued multifunctions, Journal of Approximation Theory
39: 2 (1983) , 172-184

G.Beer, On a theorem of Deutsch and Kenderov, Journal of
Approximation Theory 45:2 (1985), 90-98

R.Bielawski, Simpliclal convexity and its applications,
J,of Math. Anal _Appl. 127: 1 (1987) , 155-171

F.S. de Blasl, Characterizations of certain classes of semi-
continous multifunctions hy continuous approximations,
J.of Math. Anal. Appl. 106 (1985), 1-18

F.S, de Btasi, J.My3&k, On continuous approximatlons formul-
tifunctions, Pacific J. of Math. 123:1 (1986), 9-31

A.Cellina, A theorem on the approximation of compact multl-
valued mappings, Atti Accad. Nas. Lincei Rend. CI. Sci. Pis.
Mat. Natur (8) , 47 (@969) , 429-433

A.Cellina, A further result on the approximation of set-va-
lued mappings, Atti Accad. Naz. lincei Rend.Cl. Sci. Pis.
Mat. Natur (8) 48 (1970) ,230-234

F.Deutsch, P.Kenderov, Continuous selections and approximate
selections for set - valued mappings and applications to me-
tric projections, SIAM J. Math. Anal. 14:1 (1983) , 185-194

P.Deutsch, V.Indumathi, K.Schnatz, Lower semicontinuity, al-
most lower semicontinuity and continuoiis selections for set-

Yalued mappings, Journal of Approximation Theory, to appear



[10J

[

[12~

131

[14]

£157

1i1e]

[i7]

[18]

£19j

1203

213

Q2

4]

S.Gadder, F.Schroek, Generalized eonvexity, SIAM J. Math.
Anal. 11:6 (1980) , 984-1001

H.W,Kuhn, Contractibility and conyexity, Proc. AMS 5(1954),
w777-779

H.Komiya, Conyerity on a topological space, Tundam. Math.
111:2 (1981 . 107-113

A_Lasota, Z.Opial, An approxiraation theorem for multi-ya-
lued mappings, Podstawy Sterowania 1:1 (1971) > 71-75

W_P.0dyniec, W.A.Slezak, Wstep do analizy wypukdej,
Bydgoszcz 1987

Cz.Olech, Approximation of set-yalued functions hy continu-
ous functions, Colloguium Math. 19 (1968) , 285-293

1. Pasieki, On the Cellina theorem of monempty intersection,
Rey. Roun, Math. Ptires et Appl. 25:7 (1980) , 1095-1097

L.Pasicki. Retracts in metric spaces, Proc, AMS 78:4 (1980)
595-600

L.Pasicki, A fixed point theory for multl-yalued mappings,
Proc. AMS, 83:4 (1981) , 781-789

L.Pasicki, Nonempty intersection and minima* theorems, Buli.
Polish Acad. Sci. Math. 31: 5-8 (1983 ), 295-298

L.Pasicki, Some fixed point theorems for multi-yalued
mappings, Buli. Polish Acad. Sci. 31:5-8 (1983 ), 291-294

S.Reich, Approximate selectiions, beat approximations,
fixed pointa and inyariant sets, J. Math. Anal. Appl. 62

(1978) , 104-113

W_A_Slezak, On absolute extensors, Problemy Matematyczne 7

(1986) , 11-20



42 .

[_23j W.A.Slezak, On Caratheodory"s selectors for multifunctions
wdth Talues In S-contractible spacss, Problemy Matematyczne

7 (1986) , 21-34

£24] W.Takahashi, A convexity in metrlc space and nonexpanslve
mappings 1, KODAI Math. Sem. Rep. 22 ( 1970), 142-149

(25] VY.G.Borisovich, B.D.Gelman, A.D.Myshkis, V.Y.Obukhovskli,
Multivalued mappings, J.Soviet Math. 24 (1984) , 719-791

126 i A.Cellina, The role of approxImation in the theory of multi-
valued manpings, Differentlal Games and Related Topics,
(Proc. Internat. Summer School, Varenna 1970) , pp- 209-220,
North-Holland, Amsterdam 1971

[27J H.Schirmer, Simplicial approximation of smali multifunctions,
Fund. Math. 84 no 2 (1974) , 121-126

CIAGLE APROKSYMACJE I APROKSYMATYWNE SELEKTORY DLA MULTIFUNKCJI
0 WARTOSCIACH W PRZESTRZENIACH S - SCI”AGALNYCH

Streszczenie

W pracy sformutowano warunki przy ktorych multifunkcja przyjmuja-
ca S-wypukte wartosci we wprowadzonej przez L.Pasickiego prze-
strzeni S-Sciggalnej odpowiedniego typu posiada dla kazdej £>0
ciagty £ -aproksymatywny selektor oraz odpowiednio ciggta jedno-
wartosciowg £ -aproksymacje. Uzyskane wyniki rozszerzajg zakres
stosowalnosci twierdzen znanych w przypadku multifunkcji przyjmu-
jacych wartosci wypukte w lokalnie wypuktych przestrzeniach linio-
wo-metrycznych wskazujgc Jednoczesnie na nieco inne zastosowania
S-wypukdosci w teorii multifunkcji niz w pracach £17-201 1(22-231!.



