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SPECTRAL SPACES AND RADICALS IN SYSTEMS OP IDEALS

1. Introduction. In this paper, we study sets of ideals of a
commutative ring R with identity, which are closed undor any Interse-
ctions and containing R. If E satisfies these conditions, then by E we
denote the set of all E-prime ideals l.ejdeals P in E, for which the
condition AB C P, where A, B belong to E, implies Ac. P or BC P.
We Introduce in E a topology and we prove, that if E satisfies an
additional condition, then there exists a ring S, such that the spaces
Spec S and E are homeomorphie.

Simultaneously, we get some properties se-called r£ -radical
ideals i.e. ideals of E, which are intersections of E -prime idals.
Further, we examine systems of ideals In the sense [8],[9 , and
we give an application of this theory for a description of some
distinguish subsets of these systems and for a description of radicals,
which are connected with these subsets.

These subsets: AR, M), B(R, M), C(R, M) were introduced
in [8],[9] .W e shall prove, that if we give an additional assumption,
every of these class is a spectral space.

Throughout this paper, all rings are commutative with unity.
Let R be a ring. By i(R) we denote the set of all ideals in R.

If T is any subset of R, then by r(T) we denote a radical of Ti.e.
an intersection of all prime ideals containing T.
An ideal A of R is radical iff r(A) - A. Cde Is an ideal of

R, and x£R, then by A we denote the ideal (Atxn) where
X n-o
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» (r(A) : x). bet (R, M) be a system of ideals in the sense 17]

H . [»].ldeale of M will be caUed M-ideals.

AIB . | r g Ri N r *beA . It is easy to verify that r(A )=

An M-ideal P is primitive, if there exists a multiplicatively
closed subset S of R such that P n S «» < and P is maximal among
M-ldeals of R, disjoint from S. The set of primitive M-ideals will be
denoted by B(R, M)

An M-ideal P is called M-prime, If for M-ideals A, B the
condition A.B C P, implies A C P or Bc:' P, The set of all M-prime
ideals of(R, M) will be denoted by C(R, M). Moreover, by a (R, m)
will be denoted the set of all prime ideals of R, which belong to M.

By some modifications of the proof of the theorem at [5],

for differential rings, one can prove, that A(R, M)c H(R, m)C C(R,Mj.

If T is any subset of R, then by ”“t] we denote the smallest
M-ideal containing T. If A is an ideal of R, then by A we denote the
ww
greatest M-ideal contained in A.

2. E-prime ideals. bet R be a ring, I(R) - theset of all ideals
ofR, and let £ be a subset of I(R) such that R £ E. ldeals of E
are called E-ideals. An E-ideal P f R is called E-prime, if for E-ideals
A, B, the condition A.B C P, implies AC P or BC P.

The set of all E-prime ideals will be denoted by E.*If T is
any subset of R, then the intersection of all E-primeideals,which
contains T, will be denoted by rE (T), and will be called an E-radical
of T.flIf there is no E-prime ideals containing T, then we set: rE (T)

- R.

An E-ideal A will be called E-radlcal iff rE(A) - A.
PROPOSITION 2.1. If T, S are subsets of R, A, B are E*4deals
and P £ E* then
(1) T C re(T)
(2) T C P if and only if rE(T)C. P

(3) UT C S, then rE(T)c. TrE(s)

(4) rE(rEm A~ v rEATA



(5) rE(P) - P

(6) PE(A ¢ B) - rE(rE(A) ¢ rE(B))

(7) re (AB) - re(A n B) - tE(A) I rE(B)

PROOF4 . (1), (2), (3), (5) are obvious.

(4). Since (2), we have [p £ E*P O T] - [p £ E*P 32 rE(T)j,

*° re fre MmN " [pé e!' pd re(t)} “ / |{P™~ E* PA5T\"
re (7).
(6). Since (3), we have the inclusion ¢ . Now, if P 3 A + B,

then PD A and P D B, thus P3 rE(A) and PD <«E(B). Finally, we
get P3 rE(a) ., re£ (B).

(7). By(3), we get rE(AB)c rE(A”~B)c TrE(a)>>\re(B), It

suffices to show, that i£(ab) - re(a) n rE(B).tetl - £ PE E~
PD ABI ,J - |p£ ETPZ5 a] , K -1 P f E~P3 B] . Since
Il - JU K, we have r_(AB) - 1n P L= n P

P6 I P€ JU K
=T np -nN (0] p-r (a) n r (B).
Peu p ek E E

If T is any subset of R, then by VE(T) we shall denote the
set of all E-prime ideals containing T. The condition (2) of Proposition
2.1 implies VE(T) - VE((T)) - VE(rE(T)).

PROPOSITION 2.2. If E is a set of ideals in R, R (= E and
E is closed under any intersections, then

(1) VE(0O) - E , VE(l) -~

(2) If if i I» * family of subsets of R then

n VvE (T,)*VE ( ~ Ti 5
i £ i l«; i

(3) If TIt T2 are subsets of R, then U VE(T2) *“

“ V.  rE<TI> Te (T2)>

Let E d I(R ) be a set closed under any intersections and



~1
containing R. By the above Proposition, B is a topological space

with the closed sets VE (T). The open sets In E have the form

(T) m ~P e E? P*> T ], where T Is a subset of R.

If YC E? we denote JE(y) - fljp, PE y] ,IfY i*~ and Je (Y)=

- R, IfY - It is clear, that JE(v) £ b.

PROPOSITION 2.3. (a) If Tc R. then JeVe (t) . rE(T)
it . .
(b) IfYC E, then VeJde (Y) - Y, where Y

is the closure of Y In E.

PROOF. (a) Jeve(T) -n { P. p € VE (T)J - pi[p €EN
P 3t} - rE(T).
(b) Since YC Ve (Je(y)), we have Y c Vede (y).

If PG E* and PO Je(y), and we assume that P~ Y,

Conversely,
- P G DE(/0

then there exists and E -ldeal A such, that DE(a) n Y
Then we have YC VE(A)t hence P 3 Je (Y);o A and P £- VE (,A)

It contradicts with the fact that P £ De (a).
COROLLARY 24. If P G E? then VE(P) - -[p]

COROLLARY 2.5. There is a bijection between the set of
s
closed subsets of E and the set of E-radlcal E-ideals in R.

The mappings VE, JE are order-reversing bijections.

PROPOSITION 2.6. W PC- E~then VE£ (p) is a non -empty
irreducible closed subset of E. Every non-empty Irreducible closed

subset of E has the form VE (P), where P G el

PROOF. Let P E Erand let VE(P) C VE(rE(A)) O VE (rE(B))-
Then P 3 rE(A) rE(B). whence P3 re(a) or P 3 rE(B) so we

have VE (P) c: vVE(rE(A)) or vVE (p)C VE(rE(B))- Suppose now, that
A-

V is a non-empty closed irreducible subset in E, and V - Ve (q),

where Q £ E and te (q) - Q. We show, that Q £ ElIf Q 3 AB,
where A, B 6 E, then VE(q)C Ve (AB) - Ve (a) u Ve (B). Since



V (qg) is irreducible, Ve (q) ¢ Vg.(a) or Ve (gq)gq Ve (B), Hence we
have Q ~ A or QN B,

A set E is said to be rE-Noetherian, if E satisfies the
ascending chain condition on E-radical ideals.

The following lemma la obvious.

LEMMA 2.7. Let E be an rE-Noetherian aet. U T la a aubaet
of R, then there exists a finite aet TQ, auch that TQ C T and rE (T)

“ reE~TON*

PROPOSITION 2.8. If E la an r,-Noetherian, then every open
*o L
aet in E la quasi-compact.

PROOF, ~irat we prove, that if x £ R, then DE (x) la an open

quasi-compact set In E. Because for TC R, we have Dr (T) - D ft)
t£T E
it suffices to show, that If D_(x) - DE (x.), where x. £R
1fc |
for each | £ I, then I>E(x) - DE(XE£)wn ... uDEC(] )
By the Lemma 2.7., we have 1 n
DE(X) - iVl °E (xi> - DE"Xi Si£l}> “ DE(re({ XI » i€}~ *“
DE/\rE"XiI‘ n Xi3r)) " DE n xil >>~~~.xi|}) " DE“Xi.l"U"*
,U DB(X.l) * Now , if DB (A) is any open set in B O then
n
DE<A> - DE(rE(A)) - DE<rE(E£ | cccovveniennnn. ari> ~°E *ro«$ -
= DE(al)u. . .UDE(an), where a” aZ............. an€'A *
Dj (a' ,as a finite union of quasi-compact open sets , is quasi-compact.

*

COROLLARY 29. |If E is an rB_Noetherian set , then E is

a quasi-compact space.

THEOREM 2.10. Let E be a set of ideals of R, closed under any

intersections and R£ E . If E is an rE— Noetherian set , then there

exists a ring S such, that the spaces Spec g and E* are homeomorphic.



PROOF. Applying the results of [Z], it suffices to show, that
£ has the following properties
a) E* Is TQ - space.
b) E is quasi-compact,
Cj The quasi-compact open subsets of E*rare dosed under
finite intersections.
d;\ The quasi-compact open sets in E* form an open basis.
e) Every non-empty irredudble dosed subset has a generic
point.
The property a) is obvious and is satisfied by any set E of ideals

of R, dosed under intersections and which possesses R.

b) - Corollary 2.9.
c), d) - Proposition 2.8.

e) - Proposition 2.6.

Now, we give some applications of the above theory for the
sets: A(R, M), B(R, M), C(R, M), where (R, M) is a system of
ideals in the sens L&], [VJ

3. The space a (R. M). bet (R, M) be a system of ideals,
and let A(R, M) be the set of all prime ideals, which belong to M.
Moreover, let E « | G E M; r(G) » e The set E is closed under
any intersections and R € E, so E satisfies the conditions of the
Part 2. We shall prove, that E~- A(R, M).
If T Is any subset of R, then by rA(T) we denote the

smallest radical M-ideal in (R, M) containing T.

LEMMA 3.1. K G 6 E, then (GsI') £ E, for every subset T
of R.

PROOF. Let x £ R. Then Gx - (G:x) and r(Gsx) - f<Gx) -
(r(G) : x)m (G:x), so (Gac) £ E. Now, if T is any subset of R,

then (G:T) (G:x), and hence we have (G:T) £ E.
xgT

PROPOSITION 3.2. If S, T are subsets of R, then rA(s) n rA(T)*
- TA(ST).
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PROOF4 (this method is similar to the method of R.M. Cohn QQ ).
First, we prove that rg (S)rA(T)C rga (ST). Since TC(rg(5T) : S)
and (rg (ST): S)e.E (Lemma 3,1.), we have rg (T )c(rg (ST) : s),
that means S C (r (ST): r. (T) ) and hence r. (s)C(r. (ST):r.(T))
ie. TA (T)rpg (S)CrA (ST)
Further, we have (r (s)Or (T)NH2 - (r (s)OrA (T)) (rA(s)O rA,(t))
CrA (S)rA (T)CrA(ST). that impUeslm(g))b'llrﬂ (t)cerpg (ST)

The inverse inclusion is obvious.

THEOREM 3.3. If (R.M) is a system and E - -~GCM; r(G) - G~»,
then E* - A(R,M).

PROOF. It suffces to prove, that every ideal in E is prime,
Let PEE*. apep, Xy£EP. Then rg(x)rg(y)Crpg(xy)Crao(P) - P,
and hence rg (x)CP or ra (y)C P, that means Xx£P or YyEP.

THEOREM 3.4. if (R.WI) is a system of ideals and E --[g€ M,r(G) - g}
then ro (T) - rE(T), for every subset T of R.

PROOF. It suffices to verify (by Theorem 3.3.) that rg (T) -
-MpeEA (R.M); PDIj Let G - rg (T). If G-R, then the thesis
is trivial. Suppose now that GA"R and x R\ G. Consider an inducitive
family 2jx ” |h£E ; GCH, x*"H”J . Let P be a maximal element in ~ x*
We prove, that PEA (R.M). Therefore it suffices to demonstrate, that
P is a prime ideal in R. Suppose, that uv£€ P, wudp, v ™ P.
Then P~rpg (P.u), (P.v), so

s<€rA (P,m)0rpg (P,v) - rg((P,n) (P,v))CrA (P) - P, it gives a
contradiction with x”~P. So P is a prime ideal, and we proved that
for every x£ R\ G there exists a prime ideal PAEAfR.M) such that
X G CPX « Finally, we have G mO *
By the Theorems 2.10., 3.3 we have

COROLLARY 3.5. If (R,M) is a system which satisfies the

ascending chain condition on rg - radical M-ideals, than there exists
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a ring S auch that apacas A(R, M) and Sp«c S are homeomorphlc.

Other proof» of Corollary 3.5, we can find In the paper [BA

(for apecial ayatema) and ["'64.

Now, we give another description of the lIdeal rg (7). If T

la any aubaet of R, then we denote: {"[g “ T

Wn+l - r<[ WU nl ter

n > O.

THEOREM 3.« Let (R, M) be a ayatem. If T la a aubaet of

R, then rA(T) - u frin.
n—oO
PROOP. Let H - It la obvloua, that r(H) - H.
If x e H. then x e (T]Jnd [{TIn . f®&r aome n, therefore [xj C
clrh bl ,]c C' H. By Induction, it la eaay to prove, that {11 C
C rg('1)« tor every n < N, hence HC rA(TK

THEOREM 3.7. If(R, m) la a ayatem, then for any aubaeta

S, T of R, and for every n, mt N holda: {sinfrimC ~AST"n+m

PROOP. We prove thia theorem In several parte.

a) Pirat, we prove that. If x e. R, then x[Tt4 c r([xA4).

Since T C ([xT] : x) <C ([>rA : xM) £ M, Bo we have[T4C
C*, n-o
cl!st<M rxMc r(«so " sxM) mr([x* 1x)*

b)We demienatrate, that r(s)r (£14) C r( [st] ). By the part a),
we have sjVvJdcr ([si] ). Hence, It follow» that r(S)r( N )c r(s)n
ar(ftA) - r(s[T1l)c r(r(LST])) - r([STI]).

c) By induction, we ahall prove, that (s) C. JSt|"
Por n - O, the inclusion is trivial. Suppose, that this inclusionis
satisfied for some n. Then (s) \NTIn+l “ (s) r( [{T}inI>C

cr(s) r(4 i) C I([s W )cr ([{sT}) - {s T}n+l

d) We set one m. By induction with respect to n, we prove that

{4 A c { s4n..n For n - O, the Inclusion follows from c).



F-urth.r, w. h»v. {sIntl { T]m r( Fr{3''m>) {T}7TC r([{s]n M j)C

COTH M) - (5T b

4. The space C(R, M). Let (R, M) be a system of Ideals and
let C(Rt M) be the set of all M-prime ideals in M. If T is any subset
of R, then by rc (T), we denote the intersection of all prime ldeals
containing T. Let E » M. the set E is closed under any intersections
and contains R, so it satisfies the assumption of the part 2. Using

earlier notations, we have E » C(R, M), rE(T) - r~(T),
By the Theorem 2.10. we have

COROLLARY 4.1. If(jR, m) is a system satisfying the ascending
chain condition on 0p_-radical M-ideals, then there exists a ring S
0

such that the spaces C(R, m) and Spec S are homeomorphic.

Now, we give some properties r”~-radical ideals, that means such M-
Ideals G, for which G - r_(G). We say, that an M-ideal is M-irredu-
/

cible, if it iant an intersection of two M-ideals, which properly contains
Its.

PROPOSITION 4.2. Every M-irredudble r~,-radical ldeal is
M-prime.

PROOF. Let P be an M-irreduclble r~.—adical ideal and let A,
B be M-ideals such that ABC P. Then (A + P) (B + P)c P and

we have P - ic(a+ P)Orc(s + P). Indeed, P . rc(P)3rc
9rc(A + P) (B +P )) - rc(A + P) O rc(B + P) o rc(p) .P.
Because P is M-irreduclble, so P m rc(a + P) or p - ro(b + P).

Finally AC P or B O p.

PROPOSITION 4.3. If (R, M) is a system satisfying the ascen-
ding chain condition on r”~-radical ideals, then every -radical

ideal is a finite intersection of M-ideals.

PROOF. Suppose, that the set 21 of all r~-radical ideals which

are not finite intersections of M-ideals, is non-empty. Let P be a



maximal element ot X <« BY the Proposition 4.2, P is not M-irreducibie.
Therefore, there exist M-ideals A, B such that P ¢ A, P ¢ B and

A rB m P. Since r~"(A), rc (B) don't belong to Z , then
m.(a) - AiI*n A™n . . AjN
rc(B) - Bxr, B2r>. . . r>Bj
where A , . ... Afc, B~ . .. . Bj £ C(R, M).

Now, we have
P - rc(p) “ rc A n B) “ rc"A~n rC~B) " Al° * * ° Akrt
NBln. . .NBj

this contradicts with the fact that P £Z

COROLLARY 4.4. If (R, M) is a system of ideals satisfying
the ascending chain condition on r~-radlcal ideals then for every
M-ldeal A there exist only a finite set of minimal M-prime lIdeals

which contain A

5. The space B(R, m). Let (R, M) be a system of ideals
let B(R, M) be the set of all primitive M-ideals.

PROPOSITION 5.1. The following conditions are equivalent

(1) A £ B(R, M)

(2) A is a prime ideal and A - r(A) £-

(3) r(A) is a prime ideal and A - r(A)™]_

(4) There exists a prime ideal P in R, such that A -

PROOP. Is similar to the proof Ol the analogous theorem for
differential rings ( [4] Prop. 2.2).

If T is any subset of R, then by rB(Tt) we denote the
intersection of all primitive M-ideals containing T.

THEOREM 5.2. If T is a subset of R, then rB3(T) - r(]JTDH"

PROOP. If P is a prime ideal containing T, then by Proposition
5.1. , P". is primitive and P~ Z> U Z> T. Then rB(T) ¢ (1),

and whence we have rB(T) C r([td )"

and



If Q Is a primitive ideal containing T, then by Proposition
5.2, we have that r(Q) is a prime ideal containing r([tT) and

- Q. Therefore Q - t(q)# 3 r((vt])r and finally rB(T) 3 r( JtJ)
e @
COROLLARY 53. If G and H are M-ideals, then rg(GH) —

rB(GHH) - rB(G)O rB(H).

PROOF. rO(GH) - r([g =h]#- r(GH)» -(gO H)# - r(]GrnH] )™
- rB(GnH). rB(GH) - r([bH3) » r(GH)tt- (r(G)nr (h))™ -
- r(G)# NrH)# - r([G] ) Or( [H] )# - rB(G )n rB(H)

An M-ideal G Is called rB-radicaI, if rB(g) - G.

PROPOSITION 54. If (R, M) is a system satisfying the ascen-
ding chain condition on rB— radical ideals , then there exists a ring
S such that the spaces b(R,m) and Spec S homeomorphlc. The

proof is similar to the analogous proof of the theorem for differential
rings.
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PRZESTRZENIE SPEKTRALNE ORAZ RADYKALY W SYSTEMACH

IDEALOW

STRESZCZENIE

W niniejszej pracy zajmujemy sie rodzinami ideatéw pierscie-
nia przemiennego R z jedynka zamknietymi ze wzgledu na dowolne
przekroje i zawierajagcymi R. Jezeli E jest taka rodzinag, to przez E*
oznaczmy zbiér wszystkich ideatéw E-pierwszych. Wprowadzamy w E*
topologie i udowadniamy, ze przy pewnym zatozeniu dodatkowym
istnieje pierscien S taki, ze przestrzenie Spec S i E sg homeomorf-
iczne.

Jednoczes$nie, otrzymujemy szereg wtlasnosci tzw. ideatow
rE-radykalnych, to znaczy takich ideatéw z E, ktére sa przekrojami
ideatow E-pierwszych. W dalszym ciggu koncentrujemy sie na systemach
ideatow w sensie [8], [9] i podajemy zastosowanie powyzszej teorii
do opisu pewnych wyréznionych podzbioréw takich systeméw oraz do

opisu radykatéw zwigzanych z tymi podzbiorami.



