ZESZYTY NAUKOWE WYŻSZEJ SZKOŁY PEDAGOGICZNEJ W BYDGOSZCZY

Problemy Matematyczne 1982 z.4

Andrsej Nowicki
UMK Toruń
Ryszard Żuchowski

WSP Bydgoszcz

SOME REMARKS ON SYSTEMS OF IDEALS

If R is a commutative ring with identity and M is any set of ideals of R, then a pair (R, M) will be called a system of ideals, if the following conditions are satisfied

- A1. R is an element of M,
- A2. An intersection of any set of elements of M is an element of M,
- A3. A union of any non-empty set, tetalty ordered by inclusion, of elements of M is an element of M,
- A4. The null ideal belongs to M,
- A5. If A, B belong to M, then A+B belongs to M,
- A6. If A, B belong to M, then AB belongs to M,
- A7. If A, B belong to M, then A:B belongs to M, where A:B = $\left\{r \in \mathbb{R}; \bigwedge r \cdot b \in A\right\}$ b \in B
- A8. If A belongs to M, and x is any element of R, then $A_{x} = \bigcup_{n=0}^{\infty} (A:x^{n}) \text{ belongs to M.}$

Let (R, M) be a system of ideals. Elements of M are called M-ideals. If E is a subset of R, then we denote by [E] the smallest M-ideal containing E. If A is an ideal of R, then we denote by A the greatest M-ideal contained in A.

If (R, M) and (S, N) are systems of ideals, then a ring homomorphism $f:R \longrightarrow S$ will be called a morphism of systems if:

1. The Inverse image of any N-ideal is an M-ideal,

2. An ideal generated in S by the image of any M-ideal is an N-ideal.

In the papers [7], [9], there are elements of the theory of systems of ideals and among others important examples of systems as i.e. systems of differential ideals ([4], [5]), systems of differential ideals with respect to a higher derivation ([2], [3]) and systems of homogenous ideals in a ring with a grading ([1], [8]).

In this paper we give some remarks on systems of ideals and we describe some new examples of those.

PROPOSITION 1. If M is a set of ideals of R satisfying A3, then the condition A8 is equivalent with the following condition: (i) If $A \in M$, then $A_T \in M$, for every multiplicatively set T in R, where $A_T = \left\{ \begin{array}{c} r \in R; \ rt \in A, \ \text{for some} \ t \in T \right\}.$

PROOF. The property (i) implies A8, because $T = \{x^n; n = 0, 1, 2, ...\}$ is a multiplicatively set in R and $A_x = A_T$. Now, we prove the inverse implication. Let $A \in M$ and let T be a multiplicatively set in R. Consider a family $\sum = \{S; S \text{ is a multiplicatively set in R, such that } S \subset T \text{ and } A_S \in M\}$. The family \sum is non-empty, because for $t \in T$, $\{t^n, n = 0, 1, 2, ...\}$ is a multiplicatively set centained in T, and by A8, we have $A_{\{t^n\}} = A_t \in M$. Notice, that \sum satisfies the assumption of Lemma Kuratowski-Zorn. Let $\{S_i : i \in I\}$ be a chain in \sum . Then $\{A_S_i : i \in I\}$ is a chain in M and $S = \bigcup_{i \in I} A_S$, then, by A3, we have $A_S \in M$. Thus $S \in \sum$.

Let $S \subset T$ be a maximal element in Σ . Thus $A_S \in M$. Suppose that $S \subset T$, and let $t \in T \setminus S$. Then $U = S\{t^n\}$ is a multiplicatively set contained in T and properly containing S. By A3, we have $A_U = {}^AS\{t^n\} = (A_S)_t \in M$. Therefore $S \subseteq U$ and $U \in \Sigma$, in spite of S is a maximal element in Σ . So, we get S = T, and $A_T \in M$.

PROPOSITION 2. If (R, M) is a system of ideals, then an algebraic sum of any set of elements of M, is an element of M.

PROOF. If A is an ideal of R, then the condition $A \in M$ is equivalent with the implication: $x \in A \to [x] \subset A$ (see [6]). Let $\left\{A_i\right\}_{i \in I}$ be a collection of M-ideals. If $x \in \sum A_i$ then $x = a_1 + \dots + a_n$ belongs to $A_i + \dots + A_i$, so $[x] \subset A_i + \dots + A_i \subset \sum A_i$.

Assume now, that (R, M) is a system of ideals, S is a multiplicatively set in R and $S^{-1}R$ is a quotient ring of R with respect to S. Let $N = \left\{ \begin{array}{c} S^{-1}A; \ A \in M \right\}$. It is easy to prove, that N is the only set of ideals in $S^{-1}R$ such that $(S^{-1}R, N)$ is a system of ideals and the natural homomorphism $f(R \to S^{-1}R, r \mapsto \frac{P}{1}$ is a morphism of systems. The set N we shall denote by $S^{-1}M$.

PROPOSITION 3. If S is a multiplicatively set in R and $A \in I(R)$, then

a)
$$(S^{-1}A)_{\#} = S^{-1}((A_S)_{\#})$$

PROOF. First, we prove, that if A = A_S, then (S⁻¹A)_#=S⁻¹A_#

It is clear, that $(S^{-1}A)_{\#} = S^{-1}B$, where $B \in M$ and $B = B_S$. Hence $A_{\#} = (A_S)_{\#} = (f^{-1}(S^{-1}A))_{\#} = f^{-1}((S^{-1}A)_{\#}) = f^{-1}(S^{-1}B)$ $= B_S = B$,

where $f: R \rightarrow S^{-1}R$ is the natural homomorphism.

Then we have $S^{-1}(A_{\#}) = S^{-1}B = (S^{-1}A)_{\#}$, so finally

$$(s^{-1}A)_{\#} = (s^{-1}(A_S))_{\#} = s^{-1}((A_S)_{\#}).$$

This ends the proof of a). The proof of b) is standard.

A system (R, M) is called special, if the radical of an arbitary M-ideal is an M-ideal (7).

PROPOSITION 4. If S is a multiplicatively set in R, and (R,M) is a special system, then $(S^{-1}R, S^{-1}M)$ is special too.

PROOF. Let Q be any prime ideal in S⁻¹R. Then Q = S⁻¹P, where P is a prime ideal in R disjoint from S. By proposition 3 a), we have Q # = (S⁻¹P)# = S⁻¹(P#). But (R, M) is special, so P # is a prime ideal of R (Th.1.2 [7]). Since P# C P and PnS=Ø then P# O S = Ø Finally, Q # = S⁻¹P# is a prime ideal in S⁻¹R and by [7] we have thesis.

If P is a prime ideal in R, then we denote by (R_p, M_p) a system $(S^{-1}R, S^{-1}M)$, where $S = R \setminus P$.

PROPOSITION 5. Let (R, M) be a system of ideals. The following conditions are equivalent

- (1) (R, M) is special.
- (2) (Rp. Mp) is special, for every prime ideal P in R.
- (3) (R_{M1}, M_{M1}) is special, for every maximal ideal M₁ in R.

PROOF. The implication $(1) \Rightarrow (2)$ follows by Proposition 4. It is clear, that $(2) \Rightarrow (3)$. We prove $(3) \Rightarrow (1)$.

Consider any prime ideal P in R. We show, that P = 1 is a prime ideal. Let M_1 be a maximal ideal, such that $P \in M_1$. Let $S = R \setminus M_1$. Then $S \cap P = \emptyset$, and by Proposition 3 we have $(S^{-1}P)_{\#} = S^{-1}(P_{\#})$. Because $(S^{-1}R, S^{-1}M)$ is special, so $(S^{-1}P)_{\#}$ is a prime ideal in $S^{-1}R$, hence $P_{\#}$ is a prime ideal in R.

New we give new examples of systems of ideals. First, we describe all systems of ideals in the ring Z of integers.

EXAMPLE 1. Let $P = \{p_1, p_2, \ldots, p_{n^i}, \ldots\}$ be a set of prime integers (finite or infinite), and let $D = \{p_1^i, p_2^i, \ldots, p_n^i, \ldots\}$ be a set of fixed powers of elements of P. Then (Z, M_D) where $M_D = \{(n); n = (p_1^i 1)^s 1, \ldots, (p_k^i k)^s k, s_i \geqslant 0\} \cup \{(0)\}$ is a system of ideals. Conversely, every system (Z, M) has the above form.

PROOF. It is easy to prove, that (Z, M_D) is a system of ideals. We show, that any system of ideals (Z, M) has the form (Z, M_D) . Let $P = \{p; p = a \text{ prime integer, such that } p \mid n \text{ for some } (n) \in M, n \neq 0 \}$

If $P = \{p_1, p_2, \ldots, p_k, \ldots\}$, then we define $i_j = \min \{i; \text{ there exists } (n) \in M; n = p_j c, i > 0, p_j \nmid c\}$, where j = 1,2,... Set $D = \{p_1^i 1, p_2^i 2, \ldots, p_k^i k, \ldots\}$. We prove that $M = M_D$. Notice, that if $(n) \in M$, where $n = p_1^{k_1} \ldots p_k^{k_n}$, then by the uniqueness of primary decomposition and by Th. 3.4 [3], we obtain $(n) = (p_1^{k_1}) \cap \cdots \cap (p_n^{k_n})$, where $(p_1^{k_1}) \in M$, ..., $(p_n^{k_n}) \in M$. Hence, also $(p_1^{k_1}) \in M$, ..., $(p_n^{k_n}) \in M$.

Therefore $M_D \subset M$. If $(m) \in M$, where $m = p_1^{k_1} \cdot \dots \cdot p_{i-1}^{k_j}$ then $(p_j^{k_j}) \in M$, for $j = 1, 2, \dots, t$. It is obvious that $k_j \geqslant i_j$

Let $k_j = u_j \ i_j + r_j$, where $0 \leqslant r_j \leqslant i_j$, $j = 1, 2, \ldots, t$. If $r_j \neq 0$, then $(p_j^k) = (p_j^k) : (p_j^{kj}) \in M_j$ which contradicts with minimality of i_j . Hence, we have $(p_j^k) = (p_j^k)^{kj} \in M_D$ for $j = 1, 2, \ldots, t$. Finally $(m) = (p_1^{k}) \cap \cdots \cap (p_t^{k}) \in M_D$ and $M = M_D$

We shall describe now, all special systems in Z.

EXAMPLE 2. Let P be a set of prime integers. Then (Z, M_p) , where $M_p = \left\{ (n); n = p_1^i 1 \dots p_k^i k; p_1, p_2, \dots \in P, i_1 \geqslant 0, \dots, i_k \geqslant 0 \right\} \cup \left\{ (0) \right\}$ is a special system, Conversely, if (Z, M) is a special system, then there exists a set P of prime integers such that $M = M_p$.

PROOF. Is similar to the proof of Example 1.

We can do the analogous description for principal ideals domains.

If (R, M) is a system of ideals in R, then we denote by M[x] a set of ideals if R[x] of the form $A[x] = \{a_0x^n + \ldots + a_n, a_n \in A\}$, where $A \in M$. We shall, prove, that (R[x], M[x]) is a system of ideals. First, we prove two lemmas.

LEMMA 1. Let $f = a_n x^n + \dots + a_0$, $g = b_m x^m + \dots + b_0$ belong to R[x]. If g, f = 0, then g, $a_n^{m+1} = 0$

PROOF. Since g. f = 0, we have

(2)
$$b_{m-1}a_n + b_m a_{m-1} = 0$$

• • • • • • • • • • • • • • • • •

(m)
$$b_1 a_n + b_2 a_{n-1} + \dots + b_{n+1} a_0 = 0$$

$$(m+1)$$
 $b_0 a_n + b_1 a_{n-1} + \dots + b_n a_0 = 0$

Multiply the equation (2) by a_n , (3) by a_n^2 , ..., (m+1) by a_n^m , we have: $b_{m-1}a_n^2 = 0$

$$b_{m-2}a_n^3 = 0,$$

. 80

$$b_1 a_n^m = 0_1$$

$$b_0a_n^{m+1} = 0$$

Hence $g_n a_n^{m+1} = 0$.

LEMMA 2. Let $f = a_n x^n + \dots + a_0$, $g = b_m x^m + \dots + b_0$ belong to R[x]. If $g \in \bigcup_{k=0}^{\infty} (0x^k)$, then for each pair i, j, where $i = 0, 1, 2, \dots, m, j = 1, 2, \dots$, n there exists $a(i, j) \in N$ such that b_i , $a_j^{*}(i, j) = 0$.

PROOF. Induction with regard of n, where $n = \deg L$. If n = 0, the Lemma is obvious, Suppose now, that Lemma is true for polynomials f of degrees < n, and for every polynomial g. Let $\deg f = n$, and $g \in \bigcup_{k=0}^{\infty} (0:t^k)$.

Suppose, that g, $f^p = 0$. Let $h = f^p$. A coefficient at the maximal power of x in h is equal: $a_n^p = b$ Since g, h = 0, by the Lemme 1, we have g, $b^{m+1} = 0$. Then g . $a_n^r = 0$, where r = p(m + 1).

Let
$$f_1 = f_{-a_n} x^n$$
, then $g \cdot f_1^{p+r} = 0$. Finally $g \in \bigcup_{k=0}^{\infty} (orf_1^k)$,

where deg $f_1 \le n-1$, the thesis follows by the induction assumption.

Corollary. Let A be an ideal in R and let $f = a_n x^n \ddagger \dots + a_0$, $g = b_m x^m + \dots + b_0$ be polynomials in R[x]. If $g \in \bigvee_{k=0}^{\infty} (A[x]:f^k)$, then for every pair i,j, where $i = 0,1,2,\dots,m$, $j = 1,2,\dots,n$, there exists $s(i,j) \in \mathbb{N}$ such that $b_1 \cdot a_j^{s(i,j)} \in A$.

PROOF. It suffices to apply Lemma 2 and the isomorphism (R/A)[x] = R[x]

THEOREM. Let $f = a_n x^n + \dots + a_o \in R$ [x] and let A be and ideal of R. Then A[x] $f = (A_a \cap A_a \cap \dots A_a)$ [x]

$$\lim_{\substack{i \in \mathbf{c} \\ p \neq 0 \\ k \equiv 0}} (A[x] : f^k) = \bigcap_{\substack{i = 0 \\ k = 0}}^{p} \left(\bigcup_{k = 0}^{\infty} (A:a_1^k) \right) [x] ...$$

PROOF. The inclusion C follows from Corollary, we prove the inverse inclusion. If $g = b_m x^m + \ldots + b_0$ belongs to $\bigcap_{i=0}^{n} (\bigcup_{i=0}^{n} (A:a_i^k))[x]$, then $b_k a_0^s o k$, ..., $b_k a_n^s o k \in A$, Set $s_k = \max(s_{0k}, \ldots, s_{nk})$, for $k = 1, 2, \ldots$ m. Then $b_k a_1^s k \in A$ and $g_s f^{s_0 + s_1} + \cdots + s_m \in A[x]$.

EXAMPLE 3. If (R, M) is a systems of ideals, then (R[x], M[x]) is a system of ideals too.

PROOF. It is clear, that the conditions A1-A7 are satisfied. By the obove Theorem, the condition A8 is also satisfied.

EXAMPLE 4. If (R, M) is a special system of ideals, then (R[x], M[x]) is a special system of ideals.

PROOF. It suffices to notice, that f(A[x]) = r(A)[x].

REFERENCES

- [1] M.F.Atiyah, I.G.Macdonald, Introduction to Commutative Algebra Adison - Weseley Publishing Company, Massachusetts 1969
- [2] W.C.Brown, W.Kuan, Ideals and higher derivation in commutative rings, Canadian Journal of Mathematics 24(1972) . .
- 3 N.Jacobson, Lectures in Abstract Algebra vol. II I, D. Van Nostrand Company. 1964
- [4] W.F.Keigher, Prime differential ideals in differential rings, Contribution to Algebra, A Collection of Papers Dedicated to E.Kolchin, 1977, 239-249.
- [5] E.R.Kolchin, Differential Algebra and Algebraic Groups, Academic Press, New York, London, 1973.
- [6] A.Nowicki, Prime ideals structure in additive conservative systems (to appear) . .
- 7 A.Nowicki, R.Żuchowski, Special systems of ideals in commutative rings (to appear in. Commentationes Mathematicae).
- [8] O.Zariski, P.Samuel, Commutative Algebra vol. 2, Van Norstrand C.O. Princeton. 1960
- [9] R.Żuchowski, Systems of ideals in commutative rings (to appear in Commentationes Mathematicae).

PEWNE UWAGI O SYSTEMACH IDEAŁOW

STRESZCZENIE

W pracach [7], [9] podane są elementy teorii systemów ideałów i między innymi ważniejsze przykłady systemów jak np. systemy ideałów różniczkowych, systemy ideałów niezmienniczych ze względu na derywację wyższą i systemy ideałów jednorodnych w pierścieniach z gradacją.

W niniejszej pracy podane są pewne uwagi dotyczące systemów i opisane są nowe przykłady systemów ideałów.