Tadeusz Marian Jędryka Bydgoszcz Julian Musielak Poznań

SOME THEOREMS ON GENERALIZED MODULAR SPACES

1. In [4] there was introduced the notion of the modular space X₅ by means of a family of modulars depending on a parameter. This notion was applied in [1] and [2] to investigation of modular equations and integral equations of a special type. In this paper we investigate two problems in the space X₅: this of density and separability and that of uniform continuity of a translation operator.

Let (Ω, Σ, μ) be a measure space, Σ being a σ -algebra of subsets of a nonempty set Ω and μ -a σ -finite, complete, positive measure on Σ . Let X be the space of Σ -measurable, extended real-valued functions on Ω with equality μ -a.e. Let $\gamma: \Omega \times X \to (0,\infty)$ satisfy the following conditions:

- 1° g(t,x) is a pseudomodular over X (for definition, see [3]) for a.e. $t \in S^2$,
- 2° if $\rho(t,x) = 0$ for a.e. $t \in \Omega$, then x = 0,
- 3° g(t,x) is Σ measurable in Ω for every $x \in \mathcal{X}$,
- 4° if $x,y \in \mathcal{X}$ and $|x(t)| \le |y(t)|$ a.e. in Ω , then $g(t,x) \le g(t,y)$ a.e. in Ω .

Let X be the set of $x \in \mathcal{X}$ for which $\varphi(t, \lambda x) \rightarrow 0$ as $\lambda \rightarrow 0$ a.e. in Ω . In the following we restrict φ to $\Omega \times X$. Then

$$g_{s}(x) = \begin{cases} g(t,x) d\mu \end{cases}$$

is a modular in Xg, (see [4]). The respective modular space will be denoted

$$x_{g_n} = \{x: g_n(\lambda x) \longrightarrow 0 \text{ as } \lambda \longrightarrow 0, x \in X\};$$

$$|x|_{g_{\delta}} = \inf \{ u > 0 : g(\frac{x}{u}) \le u \}$$

is an F-norm in $X_{\mathcal{S}_n}$ (see [3]). In case \mathcal{S} is convex, i.e. if $\mathcal{S}(t, \alpha x + \beta y) \leq \alpha \mathcal{S}(t, x) + \beta \mathcal{S}(t, y)$ for $\alpha, \beta \geq 0$, $\alpha + \beta = 1$, for all $t \in \Omega$, where $A \in \Sigma$ is a fixed set of measure 0,

$$\|x\|_{S_n} = \inf \{ u > 0 : g(\frac{x}{u}) \le 1 \}$$

is a norm in X_{S_s} , equivalent to the former one. It is easily seen that an element $x \in X$ belongs to X_{S_s} , if and only if, there exists a $\lambda_0 > 0$ such that $\beta(\lambda_0 x) < \infty$ (see [1]).

1.1. The following example shows the connection between the above notions and integral transforms. We take a function k: $\Omega \times \Omega \times (0,\infty) \rightarrow (0,\infty)$, called kernel, supposing k(t,s,u) to be measurable in $\Omega \times \Omega \times (0,\infty)$, continuous and strictly increasing in u for all $(t,s) \in \Omega \times \Omega$, k(t,s,0) = 0. Then

$$g(t,x) = \int_{\Omega} k(t,s,|x(s)|) d\mu(s)$$

satisfies the above conditions. If we suppose that $\int k(t,s,u) d h(t) > 0 \text{ for all } u > 0 \text{ and a.e. } s \in \Omega, \text{ then } \Omega$ the space X_{Ω} is complete ([1], Th. 6). This was applied in [1] and [2], in order to solve the equation $x(t) = x(\Omega,x)$ in X_{Ω} .

1.2. In this paper, the following properties of g will be needed. g will be called local in X, if $A \in \Sigma$

and $\mu(A) < \infty$ imply $\chi_A \in X$, where χ_A is the characteristic function of the set A. g will be called absolutely continuous at $x \in \mathcal{X}$, if there exists a set $\Omega_A \in \Sigma$ with $\mu(\Omega_A) = 0$ such that for every $\varepsilon > 0$ there is a $\varepsilon > 0$ such that for any $t \in \Omega \setminus \Omega_A$ and every $\varepsilon > 0$, the inequality $\mu(B) < \varepsilon$ implies $g(t, x\chi_B) < \varepsilon$. g will be called approximately finite at $x \in \mathcal{X}$, if there exists a set $\Omega_A \in \Sigma$ with $\mu(\Omega_A) = 0$ such that for every $\varepsilon > 0$ there is a set $A \in \Sigma$, $\mu(A) < \infty$, such that for any $t \in \Omega \setminus \Omega_A$ there holds $g(t, x\chi_{\Omega \setminus A}) < \varepsilon$. Finally, we shall say that g is regular, if g is local in χ , absolutely continuous and approximately finite at each element of χ_{Ω} , and if $\chi \in \chi_{\Omega}$ implies $|\chi(t)| < \infty$ a.e. in Ω .

- 2. We are going now to investigate the subspace Egg of finite elements of Xg_{λ} . An element $x \in Xg_{\lambda}$ will be called finite, if $g_{\lambda}(\lambda x) < \infty$ for every $\lambda > 0$. Egg will denote the space of all finite elements of Xg_{λ} . Obviously, Egg is a linear, closed subspace of Xg_{λ} . Moreover, if $y \in Eg_{\lambda}$, x is Σ measurable and $|x(t)| \le |y(t)|$ a.e. in Ω , then $x \in E_{\lambda}$.
- 2.1. Lemma. Let g be regular, $y_n \in \mathcal{X}$ for $n = 1, 2, \ldots$, $z \in E_g$. Moreover, let $0 \le y_n(t) \to 0$ as $n \to \infty$ and $y_n(t) \le \le z(t)$ a.e. in S^2 . Then $g(t, y_n) \to 0$ as $n \to \infty$ a.e. in S^2 .

Proof. Let us take an arbitrary $\xi > 0$. Let $\Omega_1 \in \Sigma$, $\delta > 0$ and $A \in \Sigma$ have the same meaning as in 1.2. By Egoroff's theorem, there is a set $B \in \Sigma$ with $B \subset A$, $\mu(B) < \delta$ for which $y_n(t) \to 0$ uniformly in $A \to B$. Since $0 \le y_n(t) \le 2(t)$ a.e., applying the properties of a pseudomodular we obtain easily $g(t,y_n) \le 2\xi + g(t,3y_n) \times A \setminus B$ a.e. in Ω . Let $\eta > 0$ be arbitrary, then we may choose an index $0 \le 1$ such that $0 \le 1$

 η > 0. Hence $9(t,y_n) < 3E$ for sufficiently large n.

2.2. Theorem. If g is regular, then the set Sg, of simple functions in Eg, is dense in Eg, .

Proof. Let us first suppose that $x \in E_{g_{\lambda}}$, $x(t) \ge 0$ a.e. in Ω . Let (x_n) be a nondecreasing sequence of nonnegative simple functions such that $x_n(t) \to x(t)$ for $t \in \Omega$. Then $x_n \in S_{g_{\lambda}}$. Let us take any $\lambda > 0$. Then the sequence of functions $y_n = \lambda(x - x_n)$ satisfies the assumptions of Lemma 2.1 with $z = \lambda(x - x_1)$. Hence $g(t, \lambda(x - x_n)) \to 0$ as $n \to \infty$ a.e. in Ω . Moreover, $g(t, \lambda(x - x_n)) \not = g(t, \lambda(x - x_1))$ and $g(t, \lambda(x - x_1))$ is integrable over Ω . Hence $g(t, \lambda(x - x_1)) \to 0$ as $n \to \infty$. Since $\lambda > 0$ is arbitrary, we conclude that $x_n \to x$ in $x_n \to \infty$. Now, if $x \in E_{g_{\lambda}}$ is arbitrary, we write x in the form $x = x_1 - x_2$, where x_1 and x_2 are the positive part and the negative part of x_1 , respectively. Since $x_1, x_2 \in E_{g_{\lambda}}$, we may apply the former part of the proof.

2.3. We shall say that the measure μ is finitely separable, if there exists a sequence of sets $A_n \in \Sigma$ with $\mu(A_n) < \infty$ possessing the following property: for every $A \in \Sigma$ such that $\mu(A) < \infty$ there exists a nondecreasing suquence of indices (n_i) for which $\mu(A_{n_i} - A) \to 0$ as $i \to \infty$.

Let us remark that taking (A_n) in such a menner that $(A_n) = A = A = 0$ for i = 1, 2, ... and A = A = 0 $(A - A_n)$, we obtain $A \in \Sigma$, $A \in B$, $A \in B$ for $A \in B$, $A \in B$ for $A \in B$, $A \in$

2.4. Theorem. Let g be regular and let for any given $A \in \Sigma$ the condition $\chi_A \in E_{g_A}$ be equivalent to $\mu(A) < \infty$. If the measure μ is finitely separable, then E_{g_A} is a separable subspace of X_{g_A} .

Proof. By 2.2, it is sufficient to show that the characteristic function χ_A of any set $A \in \Sigma$ with $\mu(A) < \infty$

may be approximated in $X_{\mathcal{G}_n}$ as well as we please by characteristic functions of sets A_n from 2.3. Given $A \in \mathcal{Z}$, $\mu(A) < \infty$, let us take the set B and the sequence (n_i) as in 2.3. Let $0 < \eta < 1$, then

 $\mu(\{t: \chi_{A_{n_1}} \cdot A(t) \geqslant \eta, t \in \Omega\}) = \mu(A_{n_1} \cdot A) \rightarrow 0 \text{ as } i \rightarrow \infty.$

Hence $\chi_{A_{n_i}} = \chi(t) = 0$ in measure μ . Let us take an

arbitrary $\lambda > 0$ and let $y_i = \lambda \chi_{A_{n_i}} = \lambda$. One may find an

increasing sequence of indices (i_r) independent of λ such that $y_{i_r}(t) \rightarrow 0$ a.e. in Ω . Moreover, $0 \le y_{i_r}(t) \le \lambda \setminus_B (t)$

for t $\in \Omega$. Applying 2.1 we get $g(t,y_1) \rightarrow 0$ a.e. in Ω .

Moreover, $g(t,y_1) \le g(t,\lambda)_B$ and $\int_{\Omega} g(t,\lambda)_B d\mu = g(\lambda)_B < \infty$. Hence

 $g(\lambda(\chi_{\mathbf{a}_{\mathbf{n}_{\mathbf{i}_{\mathbf{r}}}}} - \chi_{\mathbf{a}})) = \int_{\Omega} g(t, y_{\mathbf{i}_{\mathbf{r}}}) d\mu \to 0 \quad \text{as } r \to \infty.$

Consequently, $\chi_{\mathbf{n}_{\mathbf{i}_{\mathbf{r}}}} \chi_{\mathbf{A}}$ in $\mathbf{I}_{\mathcal{S}_{\mathcal{S}}}$.

- 3. In this Section we shall suppose that $\Omega \subset \Omega_0$, where Ω_0 is a group with an operation +. Moreover, we shall suppose that if $A \in \Sigma$, then $(A + t) \cap \Omega \in \Sigma$ for any $t \in \Omega_0$. For an arbitrary function x on Ω we shall write $x_0(t) = x(t)$ for $t \in \Omega$, $x_0(t) = 0$ for $t \in \Omega_0 \cap \Omega$. Moreover, if y is a function defined on Ω_0 , the restriction of y to Ω will be denoted by $y \mid \Omega$. We shall write $x_0(\cdot) = x_0$ and $x_0(\cdot + h) = y$, where $y(t) = x_0(t + h)$, $h \in \Omega_0$.
- 3.1. We shall say that g is translation semiinvariant at $x \in X$, if there is a constant K > 0 such that for all $t, h \in \Omega_0$ and for every $\lambda > 0$ there holds the inequality (*) $Q(t, \lambda x_0(\cdot + h)|\Omega) \leq Q(t, K\lambda x)$.

3.2. It is easily observed that if g is convex, then g is translation semiinvariant at x, if and only if, there exist constants $K_1, K_2 > 0$ such that for all $t, h \in \mathcal{R}_0$ and for every $\lambda > 0$ there holds the inequality

 $g(t, \lambda x_0(\cdot + h)|S) \leq K_1 g(t, K_2 \lambda x),$ because $K_1 g(t, K_2 \lambda x) \leq g(t, K_1, K_2 \lambda x)$ for $K_1 > 1$.

Also, if g is convex, x(t), $y(t) \ge 0$ a.e. in g and g is translation semiinvariant both at x and y, then g is translation semiinvariant at x + y, too.

3.3. Lemma. Let 9 be translation semiinvariant at x. If $x \in X_{\beta_{\lambda}}$, then $x_{0}(\cdot + h)|\Omega \in X_{\beta_{\lambda}}$ and $(x_{0}(\cdot + h) - x_{0}(\cdot))|\Omega \in X_{\beta_{\lambda}}$. If $x \in E_{\beta_{\lambda}}$, then $x_{0}(\cdot + h)|\Omega \in E_{\beta_{\lambda}}$ and $(x_{0}(\cdot + h) - x_{0}(\cdot))|\Omega \in E_{\beta_{\lambda}}$.

Proof. Let $x \in X_{S_n}$ and let $\lambda_0 > 0$ be chosen in such a manner that $\rho_{S_n}(\lambda_0 x) < \infty$. Integrating the inequality (*) over S_n we get for $0 \le \lambda \le \lambda_0/K$

 $S_{s}(\lambda x_{o}(\cdot + h)|\Omega) \le S_{s}(k\lambda x) \le S_{s}(\lambda_{o}x) < \infty$, and so $x_{o}(\cdot + h)|\Omega \in X_{S}$. Other parts of the lemma are shown similarly.

3.4. We shall investigate now the translation operator T_h defined for $x \in I_S$ and $h \in S_0$ as follows: $(T_h x)(t) = x_0(t+h)|S$ for $t \in S$.

3.5. Theorem. Let φ be convex and translation semi-invariant at $x \in X_g$, with a constant K > 0. Then $T_h \in X_g$, and $\|T_h x\|_{\mathcal{C}} \le K \|x\|_{\mathcal{C}}$ for all $h \in \mathcal{C}_0$.

Proof. By Lemma 3.3, we have $T_h x \in I_{S_3}$. Integrating the inequality (*) over S_2 with $\lambda = 1/\eta$, we get

 $S_{s}\left(\frac{T_{h}x}{\eta}\right) = S_{s}\left(\frac{x_{o}\left(\cdot + h\right)|\Omega|}{\eta}\right) \leq S_{s}\left(\frac{Kx}{\eta}\right) \text{ for any } \gamma > 0.$ Consequently, we obtain $\|T_{h}x\|_{e} \leq K \|x\|_{S_{s}}$.

3.6. As an example, let us take P defined by means of a kernel k as in 1.1, where $P \subset \mathbb{R}^p$ and p is the Lebesgue measure. Let $x \in X$ and let us suppose that there exists a constant X > 0 such that

 $\int_{\Omega-h} k(t,s,\lambda \mid x(s+h)) ds \leq \int_{\Omega} k(t,s,K\lambda \mid x(s)) ds$

for all t, h $\in \mathbb{R}^P$ and every $\lambda > 0$. Then β is translation semiinvariant at x.

4. In this Section, Ω will mean a Lebesgue measurable subset of $\Omega_0 = \mathbb{R}^p$, Σ - the σ - algebra of all Lebesgue measurable subsets of Ω , and μ - the Lebesgue measure; we shall then write m in place of μ . Let \mathcal{F} be the family of all sets of the form

$$P = \langle \alpha_1, \beta_1 \rangle \times \cdots \times \langle \alpha_p, \beta_p \rangle \in \mathcal{G},$$

where $\alpha_i < \beta_i$ for $i = 1, 2, ..., p$.

4.1. Lemma. Let $P \in \mathcal{P}$ and let $x = \chi_p$ be the characteristic function of the set P in Ω . Let

$$y(t) = x_0(t + h) - x_0(t + k),$$
where $h, k \in \mathbb{R}^p$, $h = (h_1, ..., h_p)$, $k = (k_1, ..., k_p)$,
$$|h_i - k_i| < \beta_i - \alpha_i \text{ for } i = 1, 2, ..., p. \text{ Finally, let}$$

$$B = \{t: y(t) \neq 0, t \in \mathbb{R}^p\}.$$
Then

 $m(B) \leq \frac{2^{p+1}V}{a} |h-k|,$ where $V = (\beta_1 - \alpha_1) \cdot ... \cdot (\beta_p - \alpha_p)$, $a = \min_{i} (\beta_i - \alpha_i)$ and |h-k| is the euclidean distance between h and k in \mathbb{R}^p .

Proof. It is easily seen that y(t) = 1 iff $t \in P - h$ and $t \in P - k$, y(t) = -1 iff $t \in P - k$ and $t \in P - h$, and y(t) = 0 elsewhere. This shows that denoting $P_h = P - h$, $P_k = P - k$, we have $B = (P_h \cap P_k') \cup (P_h' \cap P_k)$, where the prime denotes the complement of the set with respect to Ω , and $m(B) = m(P_h \cap P_k') + m(P_k \cap P_h')$. Moreover,

it is easily observed that both sets $P_h \cap P_k'$ and $P_k \cap P_h'$ are contained in the set $Q_1 \setminus Q_2$, where

 $Q_1 = \langle x_1 - | h_1 - k_1 |, \beta_1 + | h_1 - k_1 | \rangle x ... \times \langle x_p - | h_p - k_p |, \beta_p + | h_p - k_p | \rangle$

 $Q_2 = \langle \alpha_1 + |h_1 - k_1|, |h_1 - k_1| \rangle \times ... \times \langle \alpha_p + /h_p - k_p|, |h_p - k_p| \rangle.$ Writing $a_i = |h_i - \alpha_i|$ and $d_i = |h_i - k_i|$ for i = 1, 2, ..., p, $r = \max_i d_i/a_i$, we have then

4.2. Theorem. Let $m(\mathfrak{N}) < \infty$ or $\mathfrak{H} \in E_{\mathfrak{H}}$ and let \mathfrak{H} be absolutely continuous at any constant function. Let $f(h) = T_h \chi_P$ for a fixed $P \in \mathcal{G}$. Then the map $f : \mathbb{R}^p \longrightarrow \mathbb{R}_p$ is uniformly continuous in the norm $\| \cdot \|_{\mathfrak{H}}$, and in case of \mathfrak{H} convex also in the norm $\| \cdot \|_{\mathfrak{H}}$.

Proof. First, we suppose m(Ω) < ∞ . Let ϵ > 0 and λ > 0 be given and let us choose Ω_1 and δ > 0 according to the definition of absolute continuity at $\mathbf{x} = \lambda \chi_{\Omega}$, with $\epsilon/m(\Omega)$ in place of ϵ . Let us suppose that $|\mathbf{h} - \mathbf{k}| < \gamma$, where $\gamma = \frac{\mathbf{a}}{2\mathbf{p}+1}$, a and V being defined in 4.1. Then the set B from 4.1 satisfies the inequality m(B) < ϵ . Consequently, ϵ (t, ϵ) ϵ (t, ϵ) for te ϵ) ϵ (t, ϵ). Hence $\epsilon \leq \lambda (\mathbf{T}_h \chi_p - \mathbf{T}_k \chi_p) = \epsilon \leq (\mathbf{t}, \lambda \chi_B |\Omega) \, \mathrm{d} \mathbf{t} < \epsilon$ for $|\mathbf{h} - \mathbf{k}| < \gamma$. New, let us suppose ϵ < 1 and ϵ = 1/ ϵ , then

$$S_A\left(\frac{T_h \chi_P - T_k \chi_P}{\epsilon}\right) < \epsilon < 1$$
 for $|h - k| < \gamma$.

Thus, $\|T_h \chi_P - T_k \chi_P\|_{S_b} < \varepsilon$ for $|h-k| < \gamma$, and in case of convex ε , also $\|T_h \chi_P - T_k \chi_P\|_{S_b} < \varepsilon$ for $|h-k| < \gamma$.

New, let us suppose that $\mathcal{N}_{\mathcal{Q}} \in \mathbb{E}_{\mathcal{Q}}$, then $\mathcal{Q}(t, 2\lambda \chi_{\mathcal{Q}})$ is integrable in \mathcal{Q} for every $\lambda > 0$. Hence there exists a set $A \in \Sigma$, $m(A) < \infty$, such that $\int \mathcal{Q}(t, 2\lambda \chi_{\mathcal{Q}}) dt < \frac{\varepsilon}{2}$.

Now, applying the first part of the proof with A in place of \Re and 2λ and $\frac{\xi}{2}$ in place of λ and ξ , respectively, we obtain

$$\begin{split} & \mathcal{S}_{\mathbf{x}}[\lambda(\mathbf{T}_{\mathbf{h}}\chi_{\mathbf{P}} - \mathbf{T}_{\mathbf{k}}\chi_{\mathbf{P}})] \leqslant \mathcal{S}_{\mathbf{x}}(\mathbf{t},\lambda\chi_{\mathbf{B}}) \, \mathrm{d}\mathbf{t} \leqslant \\ & \leqslant \int_{\mathbf{A}} \mathcal{S}(\mathbf{t},2\lambda\chi_{\mathbf{B}}) \, \mathrm{d}\mathbf{t} + \int_{\mathbf{x},\mathbf{A}} \mathcal{S}(\mathbf{t},2\lambda\chi_{\mathbf{x}}) \, \mathrm{d}\mathbf{t} \leqslant \mathbf{x} \end{split}$$

for $|h - k| < \eta$, and the result follows as in the first part of the proof.

4.3. Corollary. Let $m(\mathfrak{L})<\infty$ or $\chi_{\mathfrak{L}}$ E.g., and let \mathfrak{L} be absolutely continuous at any constant function. Finally, let $x = \sum_{j=1}^{r} d_j \chi_{P_j}$, where $P_j \in \mathfrak{L}$, and $f(h) = T_h x$. Then the map $f \colon \mathbb{R}^p \longrightarrow X_{P_j}$ is uniformly continuous in the norm $| \cdot \cdot \cdot \cdot \rangle_{P_j}$, and in case of g convex also in the norm $| \cdot \cdot \cdot \rangle_{P_j}$.

4.4. Theorem. Let $\Omega \in \mathbb{R}^r$ be an open set, $m(\Omega) < \infty$ or $\chi_{\mathfrak{L}} \in \mathbb{R}^r$, and let g be absolutely continuous at any constant function. If $E \in \Sigma$, $m(E) < \infty$, then for every $\epsilon > 0$ there exist sets $P_1, P_2, \ldots, P_n \in \mathcal{P}$ with pairwise disjoint interiors such that $|\chi_E - \chi_n| |\chi_{\mathfrak{L}} < \epsilon$. If g is convex, $|\chi_{\mathfrak{L}}| = \chi_{\mathfrak{L}} = \chi$

Proof. First, let us suppose that $m(\Omega) < \infty$. Given $\epsilon > 0$ and $\lambda > 0$, we apply the definition of absolute continuity at $x = \lambda \chi_{\Omega}$ with $\epsilon / m(\Omega)$ in place of ϵ . Let Ω_{1} and $\delta > 0$ be chosen, accordingly. There exists an open set $G \subset \Omega$ such that $E \subset G$ and $m(G \setminus E) < \frac{\delta}{2}$. Then G can be written in the form $G = \bigcup_{i=1}^{\infty} P_{i}$, with $P_{i} \in \mathcal{F}$, where P_{1}, P_{2}, \ldots

have pairwise disjoint interiors, and $\sum_{i=1}^{\infty} m(P_i) = m(G) < \infty$

Hence $\sum_{i=n+1}^{\infty} m(P_i) < \frac{\delta}{2}$ for an index n. Let us

write $E_{\varepsilon} = \bigcup_{i=1}^{n} P_{i}$, then $m(G \setminus E_{\varepsilon}) < \frac{\delta}{2}$. Thus, the sym-

metric difference E = E satisfies the inequality

$$\begin{split} & m(\mathbf{E} \stackrel{!}{=} \mathbf{E}_{\ell}) \leq m(\mathbf{G} \setminus \mathbf{E}_{\ell}) + m(\mathbf{G} \setminus \mathbf{E}) < \delta \text{. Hence} \\ & g[\lambda(\chi_{\mathbf{E}} - \chi_{\mathbf{E}_{\ell}})] = \int_{\Omega} g(\mathbf{t}, \lambda \chi_{\mathbf{E} \stackrel{!}{=} \mathbf{E}_{\ell}}) d\mathbf{t} < \epsilon \text{.} \\ & \text{Choosing } \ell < 1 \text{ and } \lambda = 1/\epsilon \text{. we conclude } |\chi_{\mathbf{E}} - \chi_{\mathbf{E}_{\ell}}|_{\mathcal{S}_{\ell}} < \ell \end{split}$$

or $\|\mathcal{X}_{\mathbf{E}} - \mathcal{X}_{\mathbf{E}_{\xi}}\|_{S_{\delta}^{\zeta_{\xi}}}$ as in the proof of 4.2.

If we suppose $\chi_{\mathcal{G}} \in \mathbb{F}_{q}$, and we argue as in the proof of 4.2, we obtain

 $S[\lambda(\gamma_{E} - \chi_{E_{\xi}})] \leq S(t, 2\lambda) \chi_{E} = E_{\xi}^{dt} + S(t, 2\lambda) dt < \varepsilon$ for suitably chosen $P_{1}, P_{2}, \dots, P_{n} \in \mathcal{G}$

4.5. Corollary. Let $\Omega \subset \mathbb{R}'$ be open. Let $m(\Omega) < \infty$ or $\chi_{\Omega} \in E_{S_n}$. Moreover, let S be absolutely continuous at any constant function. If $x = \sum_{i=1}^{q} c_i \chi_{E_i}$, where $E_i \in \Sigma$, $m(E_i) < \infty$, then for every E > 0 there exist numbers d_1, d_2 , ..., d_r and sets $P_1, P_2, \ldots, P_r \in \mathcal{F}$ with pairwise disjoint interiors such that $|x - \sum_{j=1}^{r} d_j \chi_{P_j}|_{S_n} < E$. If S is convex, $|s_n|_{S_n} = 1$, $|s_n|_{S_n}$

Applying both corollaries 4.3, 4.5 and theorems 3.5 and 2.2, we shall prove the following theorem on uniform continuity of $f(h) = T_h x$:

4.6. Theorem. Let SCR be open, $m(SC) < \infty$ and let S be convex, regular, alsolutely continuous at any constant function and translation semiinvariant at every $x \in X_{S_A}$ with a constant K > 0 independent of x. Then the map $f: R \longrightarrow X_{S_A}$ defined by $f(h) = T_h x$ is uniformly continuous in the norm $\| \|_{S_A}$, provided $x \in E_{S_A}$.

Proof. By 3.5, we have $\|T_h u\|_{\mathcal{G}_s} \le K \|u\|_{\mathcal{G}_s}$ for every $u \in X_{\mathcal{G}_s}$. Let $x \in E_{\mathcal{G}_s}$ be given. By 2.2 and 4.5, there exists a function $z = \sum_{j=1}^{r} d_j \chi_{P_j}$ with $P_j \in \mathcal{G}$ such that $\|x - z\|_{\mathcal{G}_s}$

Hence

$$\|f(h) - f(k)\|_{S} \le 2K \|x - z\|_{S} + \|T_{h}z - T_{k}z\|_{S} < \frac{2}{3} + \|$$

+ $\|T_hz - T_kz\|_{\mathcal{S}_h}$. By 4.3, $T_hz: \mathbb{R}^r \to X_{\mathcal{S}_h}$ is uniformly continuous. Hence there exists $\gamma > 0$ such that if $|h - k| < \gamma$, then $\|T_hz - T_kz\|_{\mathcal{S}_h} < \frac{\varepsilon}{3}$. Consequently, if $|h - k| < \gamma$, then $\|f(h) - f(k)\|_{\mathcal{S}_h} < \varepsilon$.

REFERENCES

- [1] T.M. Jędryka, J. Musielak, On a modular equation /I/, Functiones et Approximatio 3 /1976/, in print.
- [2] T.M. Jedryka, J. Musielak, On a modular equation /II/, Relationes Mathem., in print.
- [3] J. Musielak, W. Orlicz, On modular spaces, Studia Math. 18 /1959/, 49-65.
- [4] J. Musielak, A. Waszak, A contribution to the theory of modular spaces, Proceed. Prague Topol. Symposium, 1971, 315-319.

SOME THEOREMS ON GENERALIZED MODULAR SPACES

Abstract

Let X g, be the modular space generated by the modular $\mathcal{G}_{\mathbf{S}}(\mathbf{x}) = \mathcal{G}(\mathbf{t}, \mathbf{x}) \, \mathrm{d} \mu$, \mathbf{x} - any measurable function over Ω , and let Eq. be the subspace of finite elements of X g. There are considered problems of density of simple functions in Eq. and of separability of Eq. . This is applied in case $\Omega \subset \mathbb{R}^p$ in order to investigate the problem of uniform continuity of the translation operator $T_h \mathbf{x}$ with respect to $h \in \mathbb{R}^p$.

O PEWNYCH TWIERDZENIACH O UOGÓLNIONYCH PRZESTRZENIACH MODULARNYCH

Niech X_{g_s} będzie przestrzenią modularną, generowaną poprzez modular $\gamma_s(x) = \int_{\Omega} \zeta(t,x) \, d\mu$, gdzie x jest funkcją mierzalną nad Ω i niech E_{g_s} będzie podprzestrzenią elementów skończonych z X_{g_s} . Rozważa się problem gęstości funkcji prostych w E_{g_s} oraz ośrodkowość E_{g_s} . Rozważa się to w przypadku, gdy $\Omega \subset \mathbb{R}^p$, aby zbadać problem jednostajnej ciągłości operatora przesunięcia $T_h x$ ze względu na $h \in \mathbb{R}^p$.