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SOME THEOREMS ON GENERALIZED ﬁODUIAR SPACES

1. In [4] there was introduced th: notion of the modu-
lar space xgb by means of a family of modulars depending
on a parameter. This notion was applied in [1] and [2] to
investigation of modular equations and integral equations
of a special type. In this paper we investigate two pro-
blems in the space xgb : this of density and separability
and that of uniform continuity of a translation operator.

Let (S? ,2, )'be a measure space, >, being a G- alge-
bra of subsets'of a nonempty setS2and M =- a G- - finite,
complete, positive measure on2. . Let ¥’ be the space of
2. - measurable, extended real-valued functions on 2 with
equality v = aee. Let @ : S2x¥-—+<0,00> satisfy the fol-
lowing conditions:

1% 9 (t,x) 1is a pseudomodular over £ ( for defini-
tion, see [3])!01' a.e. t €S2,

22 1% g’(t,x)- O for a.e. t € 5?_, then x = O,
3° 1 (t,x) is 3 - measurable in G2 for every x€ X,

4° if x,ye ¥ and |x(¢)< ly(¢)] a.e. in €2, then
g (t,x ) <3(t,¥) a.e. in S2 .
Let X be the set of x € X for which @ (t, Ax)—=0
as A—»0 a,e, in S2 . In the following we restrict ¢ to
S$2 X X, Then
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g (x) = Jf’(t,x) dp

is a modular in Xo ( see [4])._The respective modular
space will be denoted

xg ={xt g, (Ax) —0 as a0, xe x};
then
lxls,b-inf{u> 0: §(E)$u} :

is an F-norm in X¢ (see [3]) . In case § is convex, i.e.

if @(tyxx + py)gaxg(tyx) + P?(t,y) for %, 0,
X+ =1, for all teSe, where A€ 2 is a fixed set of

measure 0O,
EEN -if{u> o0 ¢(¥)<}

is a norm in IS’}; , equivalent to the former one. It is
easily seen that an element x€ X belongs to 15’5 s i1f and
only if, there exists a A, > 0 such that 9(A x)< e
(see [12).

1.1, The following example shows the connection between
the above notions and integral transforms. We take a fun-
ction k: Qx S2%<0,%0)—><0,0<), called kernel, supposing
k(t,s,u) to be measurable in $2x §2x <0,00), continuous
and strictly increasing in u for all (t,s)e€ $2x52,
x(t,s,0) = 0. Then :

(t,%) = § k(t,8, 1x(8)]) @ o (s)
g = 1) @
satisfies the above conditions. If we suppose that

(kt,su d A(t)S 0 for all u>0 and a.e. s € §2, then
Q : -
the spé.ce x?», is complete ([1], Th. 6). This was applied

in (1) and (2], in order to solve the equation x(t)=
= u(t X in X .
¢t ) €,

1,2, In this paper, the following properties ofg
will be needed. @ will be called local in X, ifAeZ
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and #(A)( co imply XAE X, where XA is the characteris-
tic function of the set A..¢ will be called absolutely
continuous at x € ¥ , if there exists a set 5-3-1 € 2l with

(521')= 0 such that for every & >0 there isa & >0
such that for any teS$2~ 571 and every B €XZ , the inequa-
lity (B) < § implies ¢ (t,xyg) <& . g will be called
approximately finite at x ¢ X , if there exists a set
5216 2. with rb(5?-1) = 0 such that for every € >0
there is a set A € 55, »(A)K © , such that for any
£eG2~ Q1 there holds g tt,x ‘X_Q\'A)<£. Finally, we shall
say fhat g is regular, if ¢ is loeal in X, absolutely
continuous and approximately finite 21 each element of
X, , and if x¢X implies | x(t)| - 60 a.e. in S2 ,
_5’/_; S

2, We are going now to investigate the subspace Es’,a

of finite elementa.of 196 . An element xex& will be
called finite, if B.s( Ax)< oo for every A >0, Eg,
will denote the space of all finite elements cf Xg¢, .
Obviously, E?A is a linear, closed subspace of X_ﬂ -t g
Moreover, if ye€ E& , X is X - measurable and | x(t)[<
£ly(t)| a.e. in §2 , then XEE& X

2.1, Lemma, Let § be regular, y, ¢ Xforn = 1,2,464p
zeEgs « Moreover, let 0< yn(t)—+0 as n—» 00 and yn(t)g
£2z(t) a,e, in S2, Then @ (t7,)20 as n—ma.e. in L I

i Proof. Let us take an arbitrary £5>0. Let 9_21&23 .
& 2 0 and A€Z have the same meaning as in 1,2, By
Egoroff's theorem, there is a set B€X with BC A, M B)<é
for which yn(t)—90 uniformly in A~B. Since 0 <y ( t)<
< z(t) a.e., applying the propertie_s of a pseudomodular
we obtain easily g(t,yn) L2e+8{t,37, Xadg) ace.

in S2. Let 7 > 0 be arbitrary, then we may choose an index
R such that 3y ()l p (t)< X, (t) for n>N and
te AN B, Hence g:(t,yn) = 25 g(_t,“jxa) for n> K
a,e. in S2, say for teQ\Qz with )u.( 52,) = 0. Let us fix
teS2NS52,, then ¢ (t.”;?h“& for sufficiently small
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> 0. Hence}’)(t,yn) < 3¢ for sufficiently large n.

2.2, Theorem, If ¢ is regular, then the set S_?A
of simple functions in ES’A is dense in Eg, .

Proof. Let us first suppose that IEEE s X(t) 2
a.e. in&2. Let (x,) be 2 nondecreasing sequence of non-
negative simple-functions such that x (t)—>x(t) for teSe,
Then x_ € S?b . Let us take any A >0, Then the sequence
of functions y = Al(x - x,) satisfies the assumptions
of Lemma 2,1 with z = A(x - x,). Hence ?(t,}\{x - xn))—"o
as n—>o a.e., in 52, Moreover, ¢(t, A(x - xn))gg‘(t.)-tx - xﬂ)
and 9(t, A(x - x)) is integrable over S2. Hence
g f;\(x - X )) - 0 as n—>o00, Since A> 0 is arbitrary, we
conclude that X —> X in I? « Now, if x & Egé is arbitrary,
we write x in the form x = x_ - Xx_, where X and x_ are
the positive part and the negative part of x, respectively.
Since x o X_€ E_S , we may apply the former part of the
proof,

2.3. We shall say that the measure W is finitely
separable, if there exists a sequence of sets Anﬁ Z with
f‘-(An) < oo possessing the following property: for every
Ag¢ 3 such that (A)<o00 there exists a nondecreasing
suquence of indices (n, ) for which/a.(kni 2+ 4)—>0 as
i—>o00.

Let us remark that taking (4 ) in such a menner that

;t(*n aa)<2ifor1-12,...1andn-1up1(1-12,
b =

we obtain Be3, \/~(B)<w. ACB, A, C B for i = 1,2,...
i

2.4. Theorem, Let @ be regular and let for any given '
A €2 the condition X,€ Ef:s be equivalent to w(A)< .
If the measure k is finitely separable, then E_ is
Sa
a separable subspace of IS’A .

Proof. By 2.2, it is sufficient to show that the cha-
racteristic function 7Y, of any set A€Z with /t(l)(cn



o 2T

may be approximated in xs,b as well as we please by cha=-
racteristic functions of sets An from 2,3, Given A€ Z,
P(A)(.oo, let us take the set B and the sequence ( n,) as
in 2.3. Let 0<’?<1, then

/‘({t XA o277, te 52})'/*( : 4)—>0 as i—>co.,

Hence ’X-L = (t)"‘?o in meaaure}h. Let us take an
n, .
arbitrary A >QOand let ¥y -Ax‘n SO U One may find an
:
increasing sequence of indices (ir) independent of A such
that y, (t)—>0 a.e. inS2, Moreover, 0 <y, (t)<AYg(t)
P r

for t €<2. Applying 2.1 ve get 9 (t,7,) =0 ace. n%2 .
Moreover, (%, )__4, S(+A%y) and gejg (A7) dfu- -
=g (xXg)< o0, Hence

fb("('x‘n IV S 3(tyy ) df—r0 a8 r—w,

Consequently, ’x‘n——‘?n in 1% .

3. In this Section we shall suppose thatloC &2 o? where

52. is a group with an operation +. Moreover, we ahall
snppoae that if A€Z, then (A + t)~nS2€Zfor any te& S2 .
For an arbitrary function x onS2 we shall write - t\ =
= x(t) for teS2, x (t) = 0 for t€ S2~S2, Moreover, if
y is a function deﬂned on S, the sastriotion: of y to <
will be denoted by y |S2. We shall write x (+) = x_  and
x, (* + h) = y, where y(t) = x (t + h), h&SZ

3.1, We shall say that 3 is translation semiinvariant
at xe X, if there is a constant K> 0 such that for all
t,h eSZO and for every A> O there holds the inequality

0 g(ty Ax,(++B[R) £ g (HEAX).
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3,2, It is easily observed that if 9'13 convex, then
< 1s translation gemiinvariant at x, if and only if, there
exist constants I1,K2) 0 such that for all t,hC% and for
every A >0 there holds the inequality

St Axy (e + n)l) £ K,  (¢,K,Ax),
because K1Q’(t szx‘}(Q(t,I1,K2)Lx) for K1>1.

Also, if 5’ is convex, x(1), y(t)> 0 a.e. inST and ¢ is

translation semiinvariant both at x and y , then € is
transiation semiinvariant at x + ¥, too.

3,3, Lemma, Let § be translation semiinvariant at
x. If x¢Xp , then x, (* + n)J$2 € Xy, and
[x,(* +h)-x )]]Qexgs * If xeB, , then X, Eoi h)|Re
€ E?b and [x (* #h) -x (-)}]ST—:e B-g‘ .
Proof., Let x¢ I‘S and let A > O be chosen in such

a manner that @ (X x)< oo. Integrating the inequality
(%) over 52 we get for 0 <AL A/K

55( Ax, (o« + h)lQ)43(!?~x)<§(A x) < oo,

and 80 x, (* + h)IQe xf. . Other parts of the lemma are
shown ninilarly.

3.4, We shall investigate now the translation operator
T, defined for xe and h& Qo as follows:

(2. x)Xt) = x, (¢t + B)IS2  for t€ ST,
h ° .

3.5. Theorem, Let © be convex and translation semi-
invariant at 1619 with a constant K>0, Then T, € X
9 h 54
and HThx[]g Kl :r.!(%; for all h ¢

Proof. By I.emma 3.3, we have Thr ex% . Integrating
the inequality (3¢) over ¢ with A = 1/«2 , we get

Laal

; « + 0
V(—l—‘i).):’,:,(xo I ) S,,s foran,y 7?0.

L=

c uentl obta exfl <xllxl, .
onsequently, we obtain || . nf.s Il x 'fb
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3,6, As an example, let us take 3 defined by means
of a kernel k a8 in 1.1, where ¢2c R and is the Lebes~-
gue measure. Let x€ X and let us suppose that there exists
a constant K >0 such that

[ x(t,s, Alx(s + 1)) ) ds sg( k(t,5,KAlx(s)]) ds
(2-h)as2 :

for all t,h e R° and every A >0, Ihens is translation
gsemiinvariant at x,

4. In this Section, $2 will mean a Lebesgue measureble
subset of 2 =/M", Z - the o’ - algebra of all Lebes-
gue meaaurable subsets o:l.’S? , and W = the Iaebeagne me-
asure; we shall then write m in place of/v Let 2 be the
family of all sets of the form

P -<“1, ‘/51>X‘...)(<0Cp. PP>C§1
'herea 4{‘51 for 1 = 1 2..-..}).

4 1. Lemma, Let P € 33 and let x -'{ be the charac-
teristic function of the set P inS2. I.ot

yft)-x(t+h)-x(t+k),
where h’kel r' h (h ,....h?y k= (k1’ooo.kp],

lh -k | < P for i =1,2,...,p. Finally, let
B-{t. (t)lo. teq’}
Then
‘ 1
n(B) .4-23;1- (- x|,

"where V -<{51 41).....(PP -dp)' as -?(Pi "")(1) al;d
|h - x| 18 the euclidean distance between h and k w R,

Proof, It is easily seen that y(t) = 1 iff t€P - h
and t€P -k, y(t) = - 1 iff t€P - k and t€P - h, and
y(t) = 0 elsewhere. This shows that denoting
Py=P-h P =P~k we have B = (Pthk') v} (Pl;nl’k),

where the prime denotes the complement of the set with
respect to $&2 , and m(B) = m(P" P;:) + n(PknP{l). Moreover,
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r
it is easily observed that both sets P,n B, and P, NP
are contained in the set Q,™ @,, where

Q1 "<0{1 i Ih1'k1li51+|h1'k1|>x--x<ﬂ('|hp-kp|,Fpi-lhp-l%‘)-

qz -’<(X1 +* lh1-k1‘ (51-|h1-k1|>\’ -4X<0(p'|’/ H',Pp-lhp—kg).
Writing a; =, - and d; = [hy - kg| for i =1,2,...,p

r = max di/ai’ we have then
i

d d
1
me:E2m{Q“~Q);§2?[1+-- b wB) @lw oa }8
) 1 2 ) ( ap) ( 1a1)
d 9 p+
(\1- 5§ )J* P [(nr)p - (1-r)3ﬂ<21’* Vr < ol | h=k|.

4.2, Theorem, Let m (52)< @ or K€ Eo, and let < be
absolutely continuous at any constant function., Let f(h) =
= Th}-P for a fixed Peg). Then the map f: I?,P-——p ng:. is

uniformly continuous in the norm || |[(,, and in case of

" convex also in the nomml| ﬂ? " %

Proof. First, we suppose m(92)< oo, Let &£ > 0 and
A > 0 be given and let us choose 521 and o> 0 according
to the definition of absolute continuity at x =AY ,
with &/m t‘?} in place of € . Let us suppose that |h - k| <7,
where M = —"T— a and V being defined in 4,1. Then the
set B from 3 1 datisfies the inequality m(B) <&, Consequ-
ently, ¢ (%, AXB!Q,k &/m(RQ) for tel 521. Hence

o [\ (1% - Tkxlg}sé?(t. MplSe) at < g

for /h - k/ <™ . New, let us suppose £<1 and A = 1/ . 4
then

(Th"h}’ o TklP

)< €< for |bh - k|<7.

R

Thus, I Tb LP - T %Pl < € for |h - k|<42 , and in case
~of convex g ‘also || T 'X - Tk‘xP”f;,<& for |h = k| < /

New, let us suppose that%g € Eg,, then g(t, ZAXSQ
is integrable in §2 for every A > O, Hence there exists
aset A6 3, nf4) < oo, such that g (t,zlz\dt < 5.

1A
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Now, applying the first part of the proof with 4 in place
of 32 and 2A and % in place of A and £ , respectively, we
obtain

St Y - B xR < C}Sg(t.l’xﬁ) at, £

< [e(naayy)at« [ 2(t,22%glat <&
A QA
for |h - k|<*), and the result follows as in the first
part of the precof,

4.3, Corollary. Let m($j<oo of "X EEp and let §
be absolutely continuous at any constant function, Finally,
let x = ;; dijj’ where PjE’ﬁ » and f(h) = Thx. Then

the map f: 'R — X A is uniformly continuous in the norm
| ls,, and in case of < convex also in the norm Koo
J_t:.

4,4, Theorem, Let gee ll R be an open set, m{5¢< wor
EEgJk , and let S be absolutely continuous at any
constant function, If E€ T, m(E)<{®, then for every
£>0 there exist sets P1,P2,...,P ¢ & with pairwise
disjoint interiors such that | - l <€ .1 Q 18
] =1 .1.
convex, | _ If',, may be replaced by, U;,; .
Proof. Pirst, let us suppose that m ($2)<c . Given
€ > 0 and A>0, we apply the definition of absolute con-
tinuity at x = A} with € /m($2) in place of € . Let S¢,
and & > 0 be chosen, accordingly. There exists an open set
G ¢ S2such that ECG and m(G~E) < 5 + Then G _can be writ-
ten in the fomm G = U Pi’ with Pi" 5‘-) » where P,,P,, ...

@
have pairwise disjoint interiors, and 1}:' m{Pi) = m(G)<®

(=
Hence 2 m(P) < § for an index n, Let us
i=n+1 L5

¢ G : 5
write E . = iL-)1 Pi’ then m(G\EE) (‘é « Thus, the sym-

metric difference E = Ee satisfies the inequality
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u(E 2 B;) < m(G~E¢) + m(G E) <3, Hence

g[z(lﬁ -13')] = QI ?(t: 7‘7(.3 2 l") dt < £ .
Choosing €< 1 and A = 14 , we conclude |],B -X/E‘]%( &
or || Kg - Bg"!fi as in the proof of 4.2.

If we supposé X, € E, , and we argue as in the proof
of 4.2, we obtain f

§[M%Le ‘135{]{!9&.2.?« Xge:g ;Lg(t.zzxa)_au £

for suitably chosen P,, PreeeyPp € Lo

r
4.5, Corollary, Let S2C R pe open. Let m(S2)< oo or
'X.QE. Egb . Moreover, let ¢ be absolutely continuous at

any constant function, If x = 1 cj_'):'_g » where E,€Z,
; i= i

m[Ei)<°° , then for every £ >0 there exist numbers dqpdsy

espd, and sets P1'P2*"'1-Pre ¥ with pairwise disjoint
- <
interiors such that 'x_ £1 .113")(_1,"|g‘h £, 1t g is convex,

j=
| l& may be replaced by } H&.

Applying both corollaries 4.3, 4.5 and theorems 3,5
and 2,2, we shall prove the following theorem on uniform
continuity of f(h) = T, x3

4.6. Theorem, Let S2'C Rrbo open, m(S2) < oo ana set
59 be convex, regular, alsolutely continuous at any
constant function and translation semiinvariant at every
x€eXy, ~with a constant K> 0 independent of x. Then the
map f3 R’—*Xndeﬁned by f(h) = Thx is uniformly conti-
nuous in the norm | E.'L,’ provided x¢€ ES’& L :

Proof. By 3.5, we have || T u g €K Ilul!g‘.' for every
u€Xe . Let x € Eg be given, By 2.2 and 4.5, there exists
nfu‘:ft?tion z-f a,x with P, € ¥ such that Hf x - gl.<
J-“ J PJ J fos

< E&/3x.



Hence
. 2
- £ - - =£
fj£(n) £(k)llg £ 2K Il x zugbf I Ty2 AL

+IT z - T zl?b . By 4.3, T z: ﬁl"-—-’xf is uniformly con-

tinuous, Hence there exiats 7> 0 such that if |h - kl(
then [Thz - T,z %}( = . Consequentty, if |h - kl('? then

I £(h) - £(k)| <g. -
$s
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SOME THEOREMS ON GENERALIZED MODULAR SPACES

Abstract

Let X (A be the modular space generated by the modu-
lar S’B(x) -J S’(t,x)dr » X = any measurable function over
S¢, and let Eg be the subspace of finite elements of
X Qy There are considered problems of density c. simple
functions in E €5 and of separability of E_?é . This is
applied in case $2 C R" in order to investigate the
problem of uniform continuity of the translation opera-
tor T,x with respect to he RP .
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O PEWNYCH TWIERDZENIACH O UOG61.NIONICH
PRZESTRZENIACH MODULARRYCH

Niech X g . bgdzie przestrzenis modularng, generowans
poprzez modular j’s(x) =J§(t,x) dr, gdzie x Jest funkcjg

mierzalng nad S i niech E?a bgdzie podprzestrzenig elemen-
téw skoriczonych z Xo . Rozwaza si¢ problem ggstodSei funkeji
prostych w E¢ _ oraz osrodkowosé E¢ 4+ Rozwaza sig to w przy-
padku, gdy <2 C RP, aby zbadaé problem jednostajnej ciggZos-
ci operatora przesuniecia ‘I‘hx‘ ze wzgledu na he RP,



