I; Mozejko (Bydgoszcz)

ON ABSOLUTE CONVERGENCE OF FOURIER TRANSFORM
FOR FUNCTIONS OF TWO VARIABLES

We consider real or complex functions of two real va-
riables x = (:ﬁ, X,) € 32. where R® denotes the 2-dimen-
sional space with inner product xy = x4y, + X ¥, The

Fourier transform for £ € L1 18 of the form

(1) f(x,l,xa) = &r X GSG f( Y195 ) ol ( X¥4+%575 ) dy, a5, -
Denoti.ns dy = dy,'dara :re can rewrite the formula (1) as
(2) £ x H’%fi (v) 19 g,
In this paper, both the forms will be used. The integral
on the right-side of (2 ) for an integrable function f is
absolutely convergent, hence E{x) is well defincd. Sub-
sequently, we consider functions from L2; then the formu-
la (2) i8 not correct in general.

Let £¢ 1% r > O. The function

f(x) if |xj& T
B)fr(x)=

0 if |xy > r
is for every r > O locally integrable, and hence the Fou-
rier transform (2) exist for the function (3) . Let as denote

4) £, (x) = 1 gy o L ey Y g,
(4) £, (x __ﬁ(r(v) dy y) e iy
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It is known (see [ 4], page 45), that the sequence ;:r
converges in norm in 12 to £ 1°. Hence the expressions (1)
and (2) should be understood as
(5) 1im j\r-r 12 ax = 0.

e

The increment of the function f and the 2-th inte~
gral modulus of contimit.y are defined as followss:
(G)Aﬁ’a)(fﬂ:h) = M2 (22493508085 =
= £ (xqshqaXpthy ) = £ (XghgaXp) = £ (XqadpHhy) 4
+ f(x.‘.xa) .
'k‘ i Au_ e, )2 ax )1/2

(‘ LJé m 5 \ m
By

i=1,2

We mow calculate the Fourier transform (2 ) for the
function (6) » It is known that for ge¢ L' there holds the
formulas ; (x+h) = oPX E;(x) . In [5| it is shown that
this formula holds also for g¢ I.a. Applying it and using the
linearity of the Fourier transform it is easily to show that

- ) 2
@12 gxyn) = (o1 = 1)(ot22% = 1) £ (x3p)

Hence
3(1.2) (f.x,h)\ = 4| ain(h.lx.1/2)| \sin(haxaﬂ)l |f(x.1.22]‘ .
Putting 2h in place of h, we obtain
(9)"‘('1 2\1‘ x,2h)| = 4| sin byx,| |8in hox,| \;(11"‘2” .
We shall prove the following




Theorem 1. Lot £e I°, 0< ) < 2, , > O

5,> Os
We denotes 1 - %p + ¥
%P"1 —ra'.‘: cand%fbﬂ - X3 = do
of continuity (7) satisfies the inequality

3 5[ 2 (2, ooy o) (20, k1) oo

= a, 1 """fb +¥. = by
If the integral modulus

then .

o) § (iz™ ™ x«xaﬂ

- o =00

Pr o o f, Taking into account (9) and the Pareeval

dx1 dxz <c‘:j L]

tormila (gl ¢2 = | gl (2 " obtain
oo ®o

(11) S S sin® h,x, sin® boX, | £ (11.22)\ dx, dx, <
-0 -00

(1,2) 12
< %[ué 28y, 20y) |
[.r.:t.. Ei. i - 1 2 5’"" n’k. = 1'2 [ RN} denote the fOllOWing

subsets of the plane RZ'

E, = {('11,12) 3 2“'15-_'::.' < 2By oK1, X, < 2]{'}

(12)
]'-'3 - {(1’1'12) H 2n-15_; X4 & 2% 4 o~k < 2 € o—k+1 I—_

< X 8 2'“"'1; o~k X, 2‘]‘”;

-
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The inequality (11) wnes u.ll. the more
(13) jam hyx, 8in? Box, | £ (Xqexp)| 2 dxy X, <
*e[w“f’(th a,) | 2
Ienawpu'l;h,' -‘]‘(/2‘"’ hz.TT/zk* o ror(x,].xa)el‘,l

we have /4 € hyX, < W /2, hence sin® hyxy > 1/2,
i. = 1.2-
Denoting A = () ("f’(z'“, Z'k) and applying L‘B) we obtain

(16)(|2 (x)]% ax < © 4%,
where' C is a positive comstant. Suppose p,q > 1,
1/p + /9 = 1 and put p =[/2. From Hblder inequality and

relationship (14) we have
S |2 (x)) ( j |2 (x)) dx)ﬂ/a o(n+k) 1= 3/2
¢ oy A 2(:»1:) (1> Pl2)
Por (Xqe%; )¢ By there hold inegualities
i g @, mlt ¢ % hames

Syl ™ (2 () ey ax, <o, 4 aom g,

Suming the above obtained inequality with respect to n and
k we have
8 -
“”55'*«' ol |7 )| oy axp < 0,7 T2,
. 250,

We now consider the subset E,, formula (12) . Let h, and

h, have the very same meaning as above, hence



- 25 -

ﬂ’/‘z':"""I < Xqb4 < /2%, The inequality (sin x)/x>,—,l‘% implies

sin h,x, > 2-211' and hence sin° hyx, % 2=, However
Bin2 hzxaz 1/2 1is just the same as in case of Eqe Hence

and from (11) it follows

5|f (x)|?2 ax < (1/8) 4%, 2%,
From thi.s inequality and from H8lder inequality, taking into
account the limits of integration we obtain
¥4 TR o 5 b
(1s)j |24 20" | £ (x,I,xa)\ ax, ax, ¢ G, Al guo Kb
Bumins i.n n and k, we get -

. 'fh
(17 5‘8131'2(1 |12\3v\f (x.‘,xz)\ d_x,,' dxa < 022:‘ f 2nc. 5,
¢ Sk

Analogous calculations for E3 and 34 give the following
result, immediately

TCie ¥ 1o s E P na 4
{"3)1S§|x1| |2, )" | 2Gqex0) | axy ax, < GBZZA ona ok

and
1 A1
O3 1l fxpm) | x e < 0

Adding the relatiomships (15) , (17), (18) , (‘19) and
putt‘ins C5 = max (049 Cps Czy C,) We obtein

SS"‘*I‘ %ol |£Gpmy)|" axg axp <

z T Al o 2 (20, 2)



Note. The integral (19) does not need to be included in the
sum (20) , because it is finite. However, the estimate of
(19) does not increase the estimate of the inmtegrals (15) ,
(17) and (18) , therefore for the reason of symmetry on the
rightside of (20) , the integral (19) was included in the

sum (20) .
 The right-side of (20) is finite from the assumption, hence

"-'10")- ! ! b= -':'] 4
(21) SS 1%q) " (Xl [£(xgemp) | dxq dxpl

We have proved the theorem for the first quarter of
the 32 plane., We now define the following subsets for the
second quarter of the B° plane, m,k = 1,2 ...

: -n k=1
Eg = z{'x,pxz) s -2‘“'”5 L T T

(22)

Ea = [[xq’xa) H _2“11*1:5 x,] < —2-11 3 2-k s X5 g 2-k+1}

The variables x1 and x, in (22) and in (12) are equal up

to the sign, therefore the expressions sin® hqX,q, | x4 \x“

¥y ,°
ainz 12h2 and |12| ' have the same estimate as those thus
obtained. Hence the integrals



-4 © (.“00 4 4 e
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coresponding to the double series in n and k on the sub-
sets (22) have estimates up to a constant, which are equal
to estimates of the integrals (15) = (19) . Hence

I c C Y‘ L “ 1
(23)§ 1=\ \xa\x \t (11-"25\33 dx) dx; < 00,

Analogous results can be obtained for remaining parts of
the Ra plane, The theorem is proved.

Note. Denoting B = (282 4 27¢) (2 4+ 244 -
_ 288 (q 4 B (e =a)) kb (4, ok d-b))

and putting ¢ = a, 4 = b we obtain 2‘5: 3 ¥4 =2,
2() = 3%, =2, hence a = b = \’,J . Therefore P = 4,20%k,

Then, for the convergence of (10) it is sufficient to

assume that

’q‘[_.)i'- k\1!
Z’}ELQTEE \2 n 21{)\%

In particular, putting ir.‘; =1 we have ), =%, =0 and

Ao, )
2‘n+k\ o

- Vil el
the convergence of the series s’ )’ .\_-Uf (2B 2 k) o(n+k)
m

i
[

implies the convergence of the integral

\“3 | 2 (xpxp) | axq ax;

-0 ~omy
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