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On a modular equation II

.M, Jedryka (Bydgoszoz ) and J, Musielak ( roznah )

1. In [1] , we investigated the modular equation of the

form
x (t)= X S’(ttx) ’

where S)(t.x) is a family of pseudomodulars depending on
the parameter +, applying the Banach fix-point theorem.
We investigated solutions belonging to the modular space
Ig o where Ss is given by formula (2) below, Here, we
ghall continue the investigation of the operator
(1) (a(x)])(8) = = 9 (tyx), %# O,
in a ball in xgas .

Let §) be an abstract nonempty set, 2, -0, 0= algebra
of subaéts of §¢ » - a nonnegative, finite measure in Z
and - the space of real-valued, j, — measurable functions
in §2 § two funotions equal /Mr - almost everywhere on GPare
Pegarded as one and the same element of )¢ . We denote by
3, an arbitrary fixed linear subspace of 3 . Let
5) Q X }fo-—b (o,oo) be a map of Q X}Eoin the extended
real halfline, such thats
1. S(t,x) is a convex pseudomodular in %D for a.e. te§d,
2) 12 g(tyx) = O ase. in G0, then x = 0,



-4-

3) g(t.‘x) is a ) - measureble function in the variable ¢
in§2, for every x € X, :

Let X be the set of functions x ¢ ), such that S (t] ')\_x)—;

as A - 0 a.e. in 7 , and

(2) 9p (X) = éi(t,x) aj,

then SJ" is a convex modular in X, and
; xg-{xnxex, SB(Lx)—j»O as A - 0}
is a modular space, which is a normed linear space under the
norm
x||, = inf > 0 (5)-(1.
=g ) 1Y 01 g4F) <

It is easily seen that Ig coneists exactly of such elementis
x ¢ X for which Soﬂ( x)(_oo for some ),. > 0 (for the
definitions, see (1] » [2]) .

2, In the following, we denote for any 0 < M < oo,
by K g /M/ the ball in 155 with centre at O and with

redius ;. with respect to the norm || ||g5.

Theorem 1. Let O0<M<{o00o, O ¢ M'C 00, Let us suppose
that for every x ¢ X and for all A satisfying the inequalities
0 <)< &, there holds the inequality

(3) g(® hae g (ox)) < g(t.l!gz-) ace. 1 G2 .
Then the operator A defined by (1) maps !(S (M) in

S-\(ll).
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rroot. Integrating (3) , we get

g»,,(x/\lx)) < ¢ o (Af— =),
Hence, X € X implies A (x)eXo. Now, let x xgs(u),
S
and let us take /A = l}' s thenS%B(JﬂLJ-]—)s?ﬂ(—ﬁ-) o
Since [|x\|§54 M, this implies g (E)g. Consequently, o

;»B(éﬂm)é'l, and we get

lia (2l <My 1.0, A (x)e ngﬂ')-
5 3
Theorem 2, Let S satisfy the assumption (3) of Theorem
1 with M°= M, Moreover, let us suppose that for every { ) O
there exists a .S > 0 such that for arbitrary %L> 0 and for
all =X,y € xg ( M)thers holds the inequality
3

Sl o9x) = O(ea¥)
(4) ,]Sz(t' nE )d)b Jgtt. y}lﬂ d/»o
Then the operator A maps K 5 (H) into itself continuously.

Proof. By Theorem 1, .. maps K‘j (M) into itself, Now,

”%ﬂng |B€ in.fiLWPO s u(t, K!le_) d/;, }
!l‘me—’u)“gs = \x| mﬂqu, 0 =j (t; )d}m}

Hence, applying (4) we observe that

H%‘xl\fq implies \\ A'(—x}——(cn‘l)“g;g

but this shows the continuity of A.
Similarly as in [1], Theorem 3, the following theorem



may be proved:

Theorem 3. Let S satsify the ascumptions of Theorem 1,
Moreover, let us suppose there exists a number of> O such
that | _

t _f'_Lusl:gLux.J ap < e X a

g T r 5{1( B3 o

for all x,y ¢ xsa(u) and for every 1> O Then the operator 4
S

satisfies the inequality

(5) |A(x) =4 (:r)ljg < llx- y'\\§

S S
for all I.y € Kg (H) .
S

3. Now, we shall apply the above theorems to the case

of ¥, =¥, and of a modular
(6) g(‘b.x) = § k(58 [x (o)) au(s)
where k : G2 x G2 x {0,00) — £0,00) is a measurable function
in 92 x 92 x < 0,00 , k (t,8,0) =0 a.e. 1nSG2 xG7 and
k (tysyu) is a continuous, convex function of the variable
u for almost all t,s €S2 (see [1] , formula (7)). We have
then X =X , Let us denote

kﬂl(tiul?j = { k [ttsn Ak (s,u,v)] d}" (8)

O

and r A
¢4 (t,x) =A K, (te8, | x (s)\)a};.(s)
for A > 0. Then the following theorem holdss
Theorem 4, Let O { M <00, 0 < M'C 0o+ If the inequality

(?) S"}t (t.x)g}gu g(t.l %1 x) a.e. in §?

holds for all A such that O< )\ ¢ {fz » then the operator
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(8) (a@) () =% [x (m|x®D) ape)
maps xgs(u) in Kg (M) for each ® such that [ | £ ‘-&-‘ ‘

Proof, Iet x € Xg 0L N jpr + Bimoe [R|-|G) < T
applying Jensen inequality we have

¢ (% Meg(‘.:)) <

£‘ﬁ]§g¥ ik{f,s,lk(sl u,,\uu)\)]d,/,u(ru,)l d,)“cg) "

M’I
= i S (s Ny = gl < gt

a.e. in 2, by the assumption (7) . Applying Theorem 1 we
conclude that A maps K SS(H] in Kgﬁ(ll') .

Theorem 5. Let us suppose that the assumptions of
Theorem 4 are satisfied with M'= M and that for every fb)O
there exists a mumber X > < such that

(9) sl
Sl - o

éf{k ™ lx(ul{g- Y | J‘q’“(”*)

_ for almost all t ¢32 and for arbitrary x,ye Rg(M) « Then the
5

operator A defined by (8) maps Kqo(M) into itsslf, continu-
S £
3

ously.
Proof. Let us take any "'[)O and let £> O be arbitrary,
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s | S { o _
Taking ,b = m—l- and choosing ) = —“'-Y-I— » Where )( is
given by (9) » We obtain

Iﬁi,gk[t ke 'k(’u v, Ix()]) -k (v, \'16:)\)\] rl-f,u(«,») Z

[x(w) = y(w)]
<k [tw, X0 ng ]
for almost all (t.u)egz &? Hence, applying Jensen

inequality, we get

SS;{ 21-’)—‘f—dl Jdp(e) <

%[[Lk[ !:]?illk (1,0 Ix(0)1) = K (1,0 [yt o0 ) ek (tr)] d.)b('u.)] dpult)e
SJ;IRIJZQI (W x(@])- (“.V.lj(*f”)ﬂi;t(ul)dﬁ(m‘ dp (v)
éﬂé&a&k[t.u,%lk(u.u nmn-k(u.-w.\«ﬁmn\]tl;l 9 dpten) (B
LT

¢ 55{552 L[t,u,'-%‘—q;i}‘ﬂ'ld}l(u)]dﬁm :

= Jolt, A;T})d pit
.



. for almost every t¢3C., This proves the inequality (4 ) .
Applying Theorem 2, we conclude the continuity of the ope-

rator A,
Theorem 6., Let us suppose that the assumptions of
Theorem 4 are satiafied and that for a fixed mumber Ok > O

there holds the inequality
‘)[Z{G%lik t ’Uu‘\il‘\k 'u, 'U' \’((Uﬂ) —\('('u_lvl \!(‘U} DHJ}J (‘1’)} J}‘ () <
€ Jh[tw 55 14~ yeat pcad

for all /> 0, almost all t ¢ 9 and for arbitrary =x,y¢€ x:);(u).
9
Then the operator A satisfies the inequality (5) for all

XoY € KSJ (M)
Pro « Arguing as in ti- proof of Theorem 5, we get

k:({-_ (-, x?z P ,q})d‘}""(“é

é‘i@ﬁék[t,u‘% |0, I (o) = ke (1, U',I'\_%(u)m ] diu () d/&t'u-)} dpltle
éé{ét t'u.,m—,'l | x(w) ~ 'lé(’u)\ d)uw}d/; t)

g?( ' “‘““1 )
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for as.8. Tt € SE . By Theorem 3, we conclude the in-

equality (5h
We proved in [1], Theorem 6, that if k satisfies the

following condition:

(¢) for every ¢ > 0, there holds S

for a.e. 8¢l , Se

then the space xSJ is complete.
Hence applying the Banach fix-point theorem in x (m)
‘:

k (tys,¢)du(t) >0

to the operator A defined as above, and to the operator
B(x)= A(x)+ y, ¥y€ IS, being fixed, we obtain

easily the following result:

Theorem 7. Let us suppose the assumptions of Theorem 6
to be satisfied, and let k satisfy the condition (C) .
Then the integral equation

x (t) = aeg k (b, | % (w)|)ap(a)
has only the trivial aolution Xx=0 in K (MJ Moreover,
if 0 ¢ ¥V 1 is fixed and if the assmmptiona of Theorem 4
are satisfied with M'= " M and ye K, ((1=%)M), then
the integral equation ’
x (t) = ‘:(ﬂ k (tyu, | x (u) \.)d/u,[u +y(t)

has exactly one solution in KS (M) .

4, As an example of moduler of the form (5) , let us

take S0 = 0,1, ju= the Lebesgue measure,



o A

(10)  k (ty8u) = & (t,8) o |u|,
where k, is measurable in{0,1x{0,1) , S k, (t, 8) dt > 0 for
almost all ae<0,1> « Then we have °
?(t,x]: f k, (ty8)| x (8)] as,

kq (tu“ﬂ' J\ 5 k,(ty8) k4 (8yu) de lv],

531 (tyx) = /\5{8 ky (,8) &y (8yu) da]\ x (u)| du
for any A > O, lloreaver. X € Ig is equivalent to the
condition 2 ‘

jufk,l(t, | x (8)|ds dt < oo

SBupposing that
(1) 7

S k, (ty8) k, (su) as < fﬁ\k,](t,u)

fow almost all (,u)e(0,1)x{0,% 0 < ¢ 1, we obtain
the condition (7) with any M° § \> M for arbitrary A > 0o,
[¥| < 1. Moreover, applying (11) we obtain the inequality
(9) with X = /g « Furthermore, if O0< < \¥| %+ then
the operator A satisfies the inequality (5) . Obviously, the
condition (C) is satisfied, and so IS;S is complete. Hence,
applying Theorem 7, we obtain the following results

Theorem 8, Let k and k,; be defined by (10) , and
let us suppose (11) to be satisfied, Moreover, let () < 1,
Then the integral equation x (t) =¥ S k, (tyu)
o|x (u) [ du + y (t) has for any y € CKS.S((ﬂ- \‘J\)ll) exactly
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one solution x in - Kg (®),
5
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