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Summary. Understanding mind-brain-environment relations is one of the key top-
ics in psychology. Kurt Lewin, inspired by theoretical physics, tried to establish
topological and vector psychology analyzing patterns of interaction between the
individual and her/his environment. The time is ripe to reformulate his ambitious
goals, searching for ways to interpret objectively measured brain processes in terms
of suitable psychological constructs. Connecting cognitive and social psychology
constructs to neurophenomics, as it is done now in psychiatry, should ground them
in physical reality. 
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Searching for bridges

Psychology is based on constructs that were derived from common-sense 
understanding of mental processes and behavior, refined over the years, but in most
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cases without connection to physical processes in the brain. Paul M. Churchland 
in 1981 article Eliminative Materialism and the Propositional Attitudes argued that com-
mon-sense understanding of the mind (or folk psychology) is false and that progress
in understanding brain functions will lead to elimination of most concepts that psy-
chology is based on. Patricia Churchland in an influential book Neurophilosophy (1986)
has also supported eliminativist position. After all biology, chemistry and physics
had to abandon many concepts and theories that in the past seemed reasonable, but
were eliminated by deeper understanding of biological and physical processes. Many
constructs introduced by Freudian psychology have been rejected. Other constructs,
such as distinction between different types of memory were gradually introduced:
working memory (~1960), episodic and semantic memory (1972), implicit memory
(1981). Such constructs may in future still be splitted into more subtypes that corre-
spond to specific brain processes. 

Defining psychological constructs is harder than physics or biology constructs.
Individual variability of brains, irreversible influence of experiments on cognitive sys-
tems, makes comparison and stability of results quite difficult. For that reason Smed-
slund (2016) concluded that psychology cannot be an empirical science. Failure of
structuralism and move towards behaviorism created an interest in conceptual foun-
dations of psychology, following the success of physics. Kurt Lewin has published
several influential books (1936; 1938; 1951) introducing psychological force field analy-
sis, describing psychological processes in topological spaces, focusing on conceptual
representations and measurements of psychological forces. Daniel Khaneman in his
Nobel Prize biographical note1 (2002) said: “As a first-year student, I encountered the
writings of the social psychologist Kurt Lewin and was deeply influenced by his maps
of the life space, in which motivation was represented as a force field acting on the in-
dividual from the outside, pushing and pulling in various directions. Fifty years later,
I still draw on Lewin’s analysis of how to induce changes in behavior…”. 

Lewin has formulated field theory to describe behavior as a result of patterns 
of interactions between the individual and the environment. In his theory cognitive
dynamics is represented as a movement in phenomenological (he has used the word
“hodological”) space, a “life space” or a field that includes person’s values, needs,
goals, motives, moods, hopes, anxieties, and ideals. Forces in this field arise in social
situations, driving cognitive movement toward or away from goals of the person. His
description of the process of mental change include 3 stages: unfreezing or escaping
the inertia, transition without clear idea where it leads, and freezing or crystallizing
new behaviors. These ideas can be linked to activity of neural networks, simulated
in computer or observed in neuroimaging (Dobosz, Duch, 2010; Duch, 2011). 

Perhaps the time is ripe to take ideas of Kurt Lewin seriously. I will first make
a short review of different trends in psychology that were initiated by Lewin’s work,
and then present some developments in neuroscience that should ground psycho-
logical constructs in objectively measured brain processes.

1 https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2002/kahneman-
-bio.html
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Dynamical ideas in psychology

Lewin’s “field theory” ideas, discussed in the next section, led to the develop-
ment of Gestalt approach, avoidance conflict model, and personality psychology
(Foschi, Lombardo, 2006). They have contributed to many trends in science that are
briefly presented below. 

George Kelly (1955) has formulated personal construct psychology, as a complete
theory of cognition, action, learning and intention, using geometry of psychological
spaces as alternative to logic. This may be considered as a simplification of Lewin’s
field theory, making it easier to apply in practice. Subjective reality is expressed in
terms of psychological constructs. Kelly (1955, p. 39) assumed that “A person’s con-
struction system is composed of a finite number of dichotomous constructs”. These
constructs provide psychological dimensions that characterize people and mental
events. Understanding people requires identification of constructs they use, defined
by results of psychometric tests, mental states, and various other types of elements.
This information is stored in a “Repertory Grid” matrix, with rows representing per-
sonal constructs that are relevant to some specific purpose, and columns that repre-
sent various elements, such as opinions, preferences, or potential actions. Techniques
based on personal construct psychology (PCP) have wide applications in social psy-
chology, psychotherapy, personality assessment and human resources in business
context, supporting decision-making processes and helping to study personal and
interpersonal systems of meaning (Abraham, Shaw, 1984). WebGrid (Gaines, Shaw,
1997; http://webgrid.uvic.ca) approach has further developed the conceptual repre-
sentation system, using graded constructs instead of simple dichotomies, providing
interactive software tools to elicit and analyze mental models of individuals and
groups within specific domains of experience. 

Many other grid-based software approaches were created to represent psycho-
logical constructs. Perceptions, beliefs, values, personality traits and other constructs
may be represented in high-dimensional spaces, with measured or estimated values
in particular dimensions. Roger Shepard’s research on mental representations (Shep-
ard, 1987; 1994) was focused on understanding topology of such spaces, searching
for interesting regular structures and invariants that represent universal psychological
laws. Using non-metric multidimensional scaling approach he has shown how phys-
ical properties of stimuli, important from evolutionary point of view, are reflected in
mental models. Perception of objects, spatial relations, color space, color constancy,
the pitch of sounds, tastes, and abstract numbers rely on neural transformations that
support optimal generalization and categorization. Many experiments with human
and animals perception proved that the use of inter-stimulus distances D to measure
similarity of stimuli leads to exponentially decaying generalization probabilities 
P(D) = exp(–αD) of behavioral reactions. Another universal psychological law says
that the discriminative reaction time falls off as the inverse of the inter-stimulus dis-
tance (Shepard, 1987; 1994) Both laws can be derived from optimal Bayesian princi-
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ples. Psychological laws related to perception and mental representation evolved
over a long time, reflecting universal physical principles. For example, 24-hour cir-
cadian rhythm is a consequence of the law of angular momentum conservation that
warrants stable spinning of the Earth. Similarity and causal relations between mental
representations of physical events are isomorphic to the relations between physical
events themselves, although there is obviously no direct resemblance of mental rep-
resentations to physical events. This second-order similarity is the basis for efficacy
of learning by mental simulations of physical events, thought experiments, observed
in mental rotation and imagery. Apparent motion is constrained by kinematic geom-
etry in three-dimensional space, and reflects anticipations about object constancy.

Geometric/dynamical ideas related to mental models may be found in many
fields. Lewin’s ideas inspired decision field theory (Busemeyer, Townsend, 1993)
and Discrete Process Model (DPM) theory (Rainio, 2009). In DPM psychic forces are
defined as the probability of transition from one cognitive state in valence field to
another. Rainio (2009, p. 18) concluded: “It seems obvious that Kurt Lewin’s brilliant
intuitive insights concealed fundamental ideas which lead to new understanding
not only in dynamical psychology but also in a much greater domain of philosophy”. 

Cognitive science book Mind as Motion (Port, van Gelder, 1995) focused on dy-
namical systems approach as a general framework for theories of cognition, dis-
cussing developmental processes, language, articulation in speech, decision making,
perception, learning, spatial orientation and many other issues. Computational sys-
tems used by symbolic cognitive science models belong to a restricted subclass of
dynamical systems. Most psychological processes change in a continuous way and
cannot be represented by finite symbolic computational systems. Conceptual repre-
sentation using discrete symbols, verbal descriptions of nonlinear dynamics, may
not be a good approximation of behavior. Early cognitive science relied on symbolic
artificial intelligence in search for unified theories of cognition (Newell, 1994). Rea-
soning and problem solving were understood as search in discrete problem spaces.
Several cognitive architectures (ACT-R, SOAR, CLARION and others) were pro-
posed as computational models explaining many aspects of cognition (see the review
in Duch, Oentaryo, Pasquier, 2008). This approach had some successes, but it was
never useful in understanding perception, motor control or imagery. Recent revival
of artificial intelligence based on machine learning, deep neural networks and dy-
namical systems has led to great progress in technical applications. These approaches
should be fully encapsulated in new cognitive architectures that will advance con-
nectionist models to a new level, providing simulations of many behavioral functions.
Generic processes of self-organization and learning (Kelso, 1997) lead to creation and
evolution of complex patterned behavior that can be analyzed in psychological
spaces. 

Dynamical approach has also been used in developmental psychology to de-
scribe grasping, crawling and learning to walk (Smith, Thelen, 1993; Thelen, Smith,
1996). It can explain many aspects of language, including some features of semantics
and conceptual integration (Fauconnier, 1994), stream of thoughts represented by
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trajectories in psychological spaces (Elman, 1995), and development of natural cat-
egories and associations in language in spaces created by latent semantic analysis
(Landauer, Dumais, 1997). In The Continuity of Mind (Spivey, 2007) a step towards
connecting psychology with brain activity is made, by considering trajectories
through the neural state space. This approach was applied to motor action, vision,
formation of categories, language, memory and problem solving. 

Many recent discoveries in neuroscience show that interpreting brain neurody-
namics in language of dynamical systems leads to a deeper understanding of current
psychological constructs, and to creation of the new ones, more specific and closely
linked to the physical reality of objectively measured brain activity. Symbolic, con-
ceptual description of continuous processes may in most cases be useful as a rough
description of behavior. However, more detailed dynamical models of mental
processes will be hard to describe conceptually. Some aspects of nonlinear dynamics
may be visualized in psychological spaces.

I have formulated definition of mental forces (Duch, 1996; 1997; 2012) similar
to the Discrete Process Model of Rainio (2009), pointing out that such forces should
be measured by the probability of transitions between brain states in neurodynamics.
We can measure brain activity using many techniques, such as EEG, MEG, NIRS,
PET, fMRI and other approaches. How this neural activity is spread through the con-
nectome to various regions of the brain, and how joint activity of these regions is re-
lated to behavior is not yet clear. Even worse, description of the phenomenology of
mental states through introspections seems impossible, as shown for example by
Hurlburt and Schwitzgabel (2007), and Schwitzgabel (2011). We can describe only
those mental states that correspond to strong, repeatable brain activations associated
with linguistic tokens (Duch, 2012). Neurophenomenology proposed by Varela
(1996) explores mutual constraints between brain activity and inner experience. Still
most of neuroscience and neuroimaging research ignores subjective experience,
while psychological theories forget about the brain processes behind theoretical con-
structs they postulate.

Kurt Lewin’s field theory and attractor neural networks

Lewin was especially concerned with A dynamic theory of personality (1935), in-
cluding all factors that may influence behavior. His famous equation B = f(P, E) ex-
presses behavior B as a function of both the person P and the environment E. More
precisely (Lewin, 1951), behavior of a person depends on the: genetic and other fac-
tors that contribute to the brain structure on which personality of this person devel-
ops in a given environment; dynamic approach that involves forces determining
actions; psychological perspective of a person subjectively perceiving her/his “life
space”, relevant internal-external factors; analysis of the situation, reflection, asso-
ciations, understanding; finally behavior as a function of the total field containing
all these elements changing in time, described in topological spaces divided into
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some regions. This has been illustrated in his book using a diagram that divides the
field into regions and arrows representing forces based on valence. Figure 1 repre-
sents positive central force field G (Lewin, 1938, figure 33) and different regions that
have influence on this central region. A person P placed in region A exerts some
force on C, denoted as fA, C. This is still a metaphoric description of intentional activ-
ity and goal-directed behavior. 

 

Figure 1. Illustration of Lewin’s force field 
Source: Lewin (1938).

According to Lewin psychology should use constructs to represent causal in-
fluences and connections between observations. He has introduced several new con-
structs, such as valence, action research, sensitivity training, group dynamics, mind
as a complex energy field, behavior as a change in the state of this field, regions, life
space, forces and tension, equilibrium states. Complex energy field can be presented
in the language of dynamical systems. Transformation between states of activations
in neural space S(N) and between mental states S(M) described in psychological
spaces is already to some degree possible. Brain-computer interfaces (BCI) analyze
and interpret mental activity, changing it into intentional actions. Mind reading is
an exciting and rapidly developing field. Mapping from Brain  Mind, or Objective
 Subjective, may be represented in symbolic form as:

S(B; E)  S(M; E’),

where environment E is reduced at the mental level to E’, psychological perspective
of E, as Lewin has noticed. “Genetic factors” forming the foundations on which per-
sonality may develop are now greatly expanded. 

National Institute of Mental Health (NIMH) in the USA has initiated an ambi-
tious Research Domain Criteria (RDoC) approach to multi-level neuropsychiatric
phenomics (Insel et al., 2010). Instead of traditional description of mental disease by
listing their symptoms deregulation of normal activity of 5 large brain systems is
considered: negative/positive valence systems, arousal-regulatory system, cognitive
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system, and social processes system. These systems are characterized at many levels
by genes, molecules, cells, circuits, physiology at the physical level, and description
of behavior, plus subjective self-reports, collected using various research paradigms
(figure 2). While all physical levels influence behavior it is the activity at the neural
system level, representing Lewin’s complex energy field, that is directly responsible
for action. Neurodynamics explains cognition and behavior, it is measured using
neuroimaging techniques, and can also be simulated computationally using neural
network models. There is no simple causality here, as environment and behavior
may influence genetic level, changing the system through epigenetic regulation of
gene expressions. The causal chain includes a loop: 

Environment => Genes => Proteins => signaling pathways, receptors, ion
channels, synapses => properties of neurons => development of neural net-
works, connectomes => neurodynamics => cognitive phenotypes => behav-
ior, abnormal behavior => syndromes, mental disorders => interactions with
the environment.

 

Figure 2. Multi-level phenomics, from genes to behavior 
Source: own work.



strona 14

I will present here analysis of neurodynamical processes based on computa-
tional simulations and fMRI neuroimaging experiments, referring to Lewin’s ideas.
Artificial neural networks are constructed from computational units representing
neurons. They receive signals, do simple calculations and send signals to other neu-
rons. The state of the network is characterized by the pattern of activity of neurons
that changes in time. Biological neurons have very complex structures. Neural sim-
ulators should take into account at least basic biological properties of neurons, such
as excitatory and inhibitory types of connections (activating ion channels in synapses
of neurons that let positively and negatively charged ions form currents flowing be-
tween inter and extra-cellular space), and spontaneous depolarization decreasing
activity of neurons (leak current channels). Neural simulator called “Emergent” is 
a suitable tool providing biologically inspired model of neurons and their networks
(Aisa, Mingus, O’Reilly, 2008). The 3-layer model of reading (figure 3) has separate
layers O for orthography, P for phonology, and a large layer S to represent semantics
as a distributed activity over 140 neural units representing microfeatures defining
concepts. Additional hidden layers transform signals flowing in both directions be-
tween layers O  P, O  S, and P  S. The system has learned to map each of the
3 layers to the other two for a set of 40 words by adjusting strength of synaptic con-
nections. 

 

Figure 3. Model of reading in Emergent simulator, with 3 main and 3 interconnect-
ing layers of neurons 

Source: own work.
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Activation of the orthographic layer will lead to specific patterns of activation
in the phonological and semantic layers, etc. These activations are not static, they
fluctuate around specific pattern that persists for some time, depending on network
properties and noise in the system. Since these quasi-stable patterns attract activity
from similar patterns, competing with each other, they are called attractors of the
dynamics. All states that are attracted to the same pattern belong to the basin of at-
traction for that specific pattern. Basins of attractors divide the space of neural ac-
tivity into distinct regions. In case of semantic layer such patterns represent concepts,
and are linked to symbolic representation in O and P layers. Neural networks that
have this type of dynamics are called attractor networks.

Transitions between attractor states are possible because neurons active in such
states after some time will decrease their activity and desynchronize (due to the leak
currents leading to spontaneous depolarization). Also noise in the system and new
stimuli may push the system out of the attractor basins. This process has been de-
scribed in Lewin theory in terms of psychological forces that act on life energy field
changing its state. In the model here neurodynamics means changes in 140-dimen-
sional patterns of semantic layer activity. This can be visualized using several tech-
niques: recurrence plots, fuzzy symbolic dynamics or MDS visualization (Duch,
Dobosz, 2011). Presenting selected word as input in O or P layer the system enables
attractor state representing the semantics of this word, the S layer pattern fluctuates
staying in the basin of attraction, and after some time making rapid transition to an-
other attractor state. These transitions usually take place between concepts that have
weak overlap, sharing some microfeatures. Transitions at the semantic level result
in activation of the phonological layer that produce a stream of words, serving as 
a model of the stream of thoughts. Dwell time in attractor basin determines the speed
of changes in the mental field, or speed of attention shifts. 

In figure 4 each point represents specific activity pattern in 140 dimensions. 
Recurrence plots (figure 4, top left) show using color codes distance D(x(ti), x(tj)) 
between the current state at time ti and the state at time tj. Dark square areas along
the diagonal show that the system stays in the attractor basin, the trajectory x(ti)
changes only slightly. After a short time there is a fast change to another attractor.
Intermediate states during transitions are too short to activate symbolic representa-
tions and have no semantic interpretation. Wandering between different attractor
states is clearly seen in the MDS representation (figure 4, top right). Fluctuations of
the patterns in the FSD representation (figure 4, bottom) show a few points during
transition between basins of attractors and dense cloud of points inside the basin of 
attraction. 

This type of analysis shows the speed of attention shifts in semantic layer in re-
action to external stimuli or intrinsic dynamics. Certain dysfunctions at the single
neuron or neural network level may lead to problems with attentions shifts, they
may either be to slow or too fast (hyperactivity), as it is observed in case of autism
or ADHD (Duch et al., 2012). 



strona 16

 

Figure 4. Trajectories representing change of the semantic layer activations (figure 3).
Top left – recurrence plots (time on both axis); top right and bottom – MDS
and FSD representation, color shows time, axis show distances between
points on the trajectory 

Source: own work.

 

Similar visualization of dynamics is possible with brain signals from EEG, MEG
or fMRI. In this case some measures of activity of small brain patches that estimate
brain cognitive activity are evaluated. In case of EEG or MEG it can be areas that
have large clustering coefficients of Phase Locking Values (PLV) or other measures.
In case of fMRI it can be clusters of voxels with increased or decreased activity. In
this way patterns of correlated activity are discovered, and knowing brain anatomy
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they can sometimes be interpreted in a meaningful way. One of the most exciting
areas of brain research is network science (Bassett, Sporns, 2017), analysis of active
networks in the brain. Networks have nodes (localized populations of neurons) that
are activated when specific functions are performed. The best hope for understand-
ing the sources of cognitive activity, elucidating details of cognitive processes, is
based on network science. This approach is still in the early stages, our ability to ex-
tract meaningful information from brain signals is limited, but it already allowed
for asking specific questions that could not be formulated at the behavioral level. 

Basic human brain anatomy is similar, with standard divisions between brain
lobes, fissures, gyri, and sulci of the cerebral cortex, and subcortical nuclei, but indi-
vidual variability is high. Are the functional networks similar in all brains, or are
they highly individual? Are the brain regions highly specialized or are they flexible,
and similar level of competence can be reached using different sets of network
nodes? Can the whole-brain network properties change during active task perform-
ance? All these questions have important implications not only for understanding
cognitive processes, but also for practical applications, for example in neurorehabil-
itation. The division between automatic and deliberate psychological processes is
now commonly accepted. Global Neuronal Workspace Theory (Dehaene, Kerszberg,
Changeux, 1998) assumes two main computational spaces: a set of specialized and
modular perceptual, motor, memory, evaluative, and attentional processors, and 
a unique global workspace composed of distributed and heavily interconnected
nodes connected by long-range axons. Thinking, deliberation, problem solving, or
intelligent behavior in new situations require flexibility at the global workspace level.
If the need arises, for example cognitive load on the whole-brain network is high,
they may recruit additional brain regions, including regions that are usually active
in the resting state (Finc et al., 2017). Higher network modularity is correlated with
higher working memory capacity and better performance. Strong connectivity
within modules and sparse connections between modules increases effective coop-
eration of brain regions, and is associated with higher IQ. Individual connectome
and functional networks that can be activated in this neural space probably deter-
mine all personality traits, preferences, and cognitive abilities. They may be used to
identify various mental disorders. For example, estimating the strength of the most
important 16 functional connections was sufficient to reach 85% accuracy in distin-
guishing autistic people from the healthy ones (Yahata et al., 2016).

Conclusions

Psychiatry has been based on constructs that were derived from behavioral 
syndromes. The attempt to define Research Domain Criteria (RDoC) based on multi-
level phenomics shows that traditional approach has exhausted its ability for de-
scription of abnormal behavior, because “…these categories, based upon presenting
signs and symptoms, may not capture fundamental underlying mechanisms of dys-
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function” (Insel et al., 2010, p. 748). Neurocognitive phenomics based on analysis of
major brain networks and dynamical concepts is our best chance for understanding
abnormal but also normal behavior. Following psychiatry, it should be actively pur-
sued in psychology and learning sciences (Duch, 2013). Such approach will confirm
the basic insights of Kurt Lewin, linking psychology with neuroscience. Without 
relating psychological constructs to brain processes situation will be similar to para-
metric theories that explain sunsets and sunrises by fitting models to the data. Psy-
chological constructs should “capture fundamental underlying mechanisms”, and
that requires understanding of neurodynamics. 

Does it mean that classical psychological concepts should be eliminated, as Paul
M. Churchland (1981) claimed? This is highly doubtful. Approximate description of
causal structure of brain or behavioral states may sometimes be more informative
at a macroscale, as shown by information theory analysis (Hoel, 2017). Complex psy-
chological concepts certainly need to be better aligned with neurocognitive phe-
nomics. That includes self, personality, consciousness, intelligence, talent. Even in
categorization experiments purely psychological explanations may be quite different
than those based on nonlinear dynamics of neural networks (Duch, 1996). Neuro-
dynamics and neurocognitive phenomics are the key for further development of
psychological constructs. Is there a shorter route to deep understanding of human
behavior?
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KURT LEWIN, KONSTRUKTY PSYCHOLOGICZNE 
I źRóDłA POZNAWCZEJ AKTYWNOśCI MóZGU

Streszczenie. Zrozumienie związków umysł-mózg-środowisko to jedno z najważ-
niejszych zagadnień psychologii. Kurt Lewin, zainspirowany przez fizykę, próbował
analizować wzorce interakcji człowiek-środowisko, tworząc psychologię opartą na
topologii i przestrzeniach wektorowych. Nadszedł już czas, by sformułować jego
ambitne cele, poszukując sposobów interpretacji obiektywnie mierzalnych procesów
zachodzących w mózgu za pomocą odpowiednich konstruktów psychologicznych.
Konstrukty psychologii poznawczej i społecznej można powiązać z neurofenomiką,
podobnie jak to się robi w psychiatrii, zagnieżdżając ich znaczenie w rzeczywistości
fizycznej.
Słowa kluczowe: konstrukty psychologiczne, systemy dynamiczne, sieci atrakto-
rowe, neurodynamika, fenomika neuropsychiatryczna, Research Domain Criteria
(psychiatria), Kurt Lewin
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