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ON THE MEASURABILITY OF FUNCTIONS

WITH QUASI-CONTINUOUS

AND UPPER SEMI-CONTINUOUS

VERTICAL SECTIONS
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ABSTRACT. Let f : R2 → R be a function with upper semicontinuous and
quasi-continuous vertical sections fx(t) = f(x, t), t, x ∈ R. It is proved that if the
horizontal sections fy(t) = f(t, y), y, t ∈ R, are of Baire class α (resp. Lebesgue
measurable) [resp. with the Baire property] then f is of Baire class α + 2 (resp.
Lebesgue measurable and sup-measurable) [resp. has Baire property].
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1. Introduction

Let R be the set of all reals. It is well known that there is a nonmeasurable (in
the sense of Lebesgue) set A ⊂ R

2 which intersects every straight line at most
two points (see Sierpiński [8]). The horizontal sections fy(t) = f(t, y), t, y ∈ R,
and the vertical sections fx(t) = f(x, t), t, x ∈ R, of the characteristic function
f = κA of the set A are upper semi-continuous everywhere and discontinuous
at most two points. Nevertheless the characteristic function f of the set A
is not Lebesgue measurable. In this article we prove that the simultaneous
upper semi-continuity and quasi-continuuity of the sections fx, x ∈ R, and the
measurability (Borel, Lebesgue or Baire) of the sections fy, y ∈ R, guarantee
similar measurability of f .
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2. The main results

For the formulation of the main results of this note recall that a function
g : R → R is quasicontinuos at a point x ∈ R if for each η > 0 there is a non-
empty open interval I ⊂ (x − η, x + η) such that g(I) ⊂ (

g(x) − η, g(x) + η
)

(see [4,7]).

I. Measurabilities

������� 2.1� Assume that the vertical sections fx, x ∈ R, of a bounded func-
tion f : R2 → R are quasicontinuous and upper semicontinuous and there is a
dense set A ⊂ R such that the horizontal sections fy, y ∈ A, are of Baire class
α ≥ 0. Then f is of Baire class α+ 2.

P r o o f. Without loss of generality we can assume that the set A is countable.
For all positive integers n ≥ 1 and all integers k ∈ Z we find open intervals In,k =
(an,k, an,k+1) with endpoints belonging to A such that 0 < an,k+1 − an,k < 1

n ,

an,k ∈ {
an+1,i : i ∈ Z}

for k ∈ Z and lim
k→−∞

an,k = −∞ and lim
k→∞

an,k = ∞. For

n ≥ 1 and y ∈ In,k we put fn(x, y) = sup
t∈In,k

f(x, t) and fn(x, a,n,k) = f(x, a,n,k)

for k ∈ Z. We will prove that f = lim
n→∞

fn. Fix a point (x, y) ∈ R
2 and a real

η > 0. If y = an,k for some n ≥ 1 and k ∈ Z then evidently for all w ∈ R and
i ≥ n we have fi(w, y) = f(w, y). Therefore we can assume that y �= an,k for all
n ≥ 1 and k ∈ Z. Since the section fx is upper semi-continuous, there is a real
δ > 0 such that f(x, t)− f(x, y) < η

2 for t ∈ (y − δ, y + δ). Let m be a positive

integer such that 1
n < δ for n ≥ m. Let i ≥ m be an integer. There is a unique

integer k(i) with y ∈ Ii,k(i). Since ai,k(i) and ai,k(i)+1 belong to (y− δ, y+ δ), we
have f(x, y) ≤ sup

t∈Ii,k(i)

f(x, t) = fi(x, y) < f(x, y) + η. So |fi(x, y)− f(x, y)| < η

for i ≥ m and lim
n→∞

fn = f . Now we shall prove that the functions fn are of

Baire class α+1. Indeed, since the vertical sections fx are quasi-continuous, for
a fixed a ∈ R and integers n, k, the set

Bn,k =
{
(x, y) ∈ R×In,k : fn(x, y) > a

}
=

⋃
y∈A∩In,k

({
x ∈ R : f(x, y) > a

}×In,k
)

is in
0∑

α+1
class whenever α > 0. Therefore for α > 0 the set

{
(x, y) ∈ R

2 : fn(x, y) > a
}
=

∞⋃
k=−∞

Bn,k∪
∞⋃

k=−∞

({
x : f(x, an,k) > a

}×{an,k}
)
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is in
0∑

α+1
class and the functions fn, n ≥ 1, are of Baire class α+ 1. In the case,

where α = 0, we observe that the sets Bn,k, k ∈ Z, are open, and consequently
the restricted functions fn/Bn,k are of the first Baire class. This suffices to the
relation that fn is of Baire 1 class. �

������	�
 2.2� Assume that the vertical sections fx, x ∈ R, of a bounded
function f : R2 → R are quasi-continuous and upper semi-continuous and there
is a dense set A ⊂ R such that the horizontal sections fy, y ∈ A, are Borel.
Then f is a Borel function.

P r o o f. Without loss of generality we can assume that the set A is countable
and find a countable ordinal α such that the sections fy, y ∈ A, are of Baire
class α. By Theorem 2.1 the function f is of Baire class α+ 2. �

Example 2.3. Let C ⊂ [0, 1] be the ternary Cantor set and let (In) be an enu-
meration of all components of the set [0, 1] \C such that In ∩ Im = ∅ for n �= m.
Put In = (an, bn) for n ≥ 1 and find reals cn ∈ (an, bn) and rn ∈ (0, bn−an) such
that cn > bn− rn and ak is not in (bn, bn+ rn) for k < n. Let Tn be the triangle
with the vertices (cn, cn), (bn − rn, bn) and (bn + rn, bn). There is a continuous
function fn : Tn → [0, 1] such that fn(bn, bn) = 1 and fn(x, y) = 0 for all points
(x, y) belonging to the boundary of Tn with y < bn. Let g(x, y) = fn(x, y)
for (x, y) ∈ Tn, n ≥ 1, and let g(x, y) = 0 otherwise on R

2. Observe that
all horizontal sections gy are continuous and all vertical sections gx are quasi-
continuous. Moreover, if a section gu is not upper semi-continuous at a point
w ∈ R then w ∈ C. For such a point (u,w) we put f(u,w) = lim sup

y→w
g(x, y)

and let f(x, y) = g(x, y) for all other points (x, y) ∈ R
2. Then the vertical

sections fx, x ∈ R, are quasi-continuous and upper semi-continuous and for all
y ∈ R \C the sections fy are continuous. Since f(bn, bn) = 1 and f(an, an) = 0
for n ≥ 1, the function f is not of Baire 1 class. Therefore it is not true that if
for the function f : R2 → R having upper semi-continuous and simultaneously
quasi-continuous its vertical sections fx, x ∈ R, there is a dense set A ⊂ R such
that the horizontal sections fy, y ∈ A, are continuous, then f is of Baire 1 class.
So in Theorem 2.1 the Baire class α + 2 of f cannot be replaced by a smaller
one.

Analogously as Theorem 2.1 we can prove the following theorem.

������� 2.4� Assume that the vertical sections fx, x ∈ R, of a bounded func-
tion f : R2 → R are quasi-continuous and upper semi-continuous and there is a
dense set A ⊂ R such that the horizontal sections fy, y ∈ A, are Lebesgue mea-
surable (resp. have the Baire property). Then f is Lebesgue measurable (resp.
has the Baire property).
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Remark 1� In Theorems 2.1 and 2.4 the assumption of the boundesness of f is
not important. Indeed, we can investigate the function g = arctan(f) and apply
the equality f = tan(g).

Observe that Theorem 2.4 is more general than [3: Theorem 5].

Remark 2� Martin Axiom implies that there is a Lebesgue nonmeasurable func-
tion f : R2 → [0, 1] with upper semi-continuous and approximately continuous
sections fx, x ∈ R, and Lebesgue measurable sections fy, y ∈ R, (see [2] and [1]
for the information about the approximate continuity). In [5] M. Laczkovich and
A. Miller present very interesting results concerning to the measurabilities (of
Borel and Lebesgue) of functions of two variables with approximately continuous
vertical sections.

Remark 3� It is known that the quasi-continuity everywhere and the continuity
almost everywhere of all vertical sections fx, x ∈ R, of a function f : R2 → R

and the Lebesgue measurability of all horizontal sections fy, y ∈ R, imply the
Lebesgue measurability of f ([6]). The following example shows that there are
upper semi-continuous and simultaneously qusi-continuous functions g : R → R

which are not almost everywhere continuous.

Example 2.5. Let C ⊂ [0, 1] be a Cantor set of positive Lebesgue measure and
let (In) be a sequence of all components of the set [0, 1] \ C with In �= Im for
n �= m. For n ≥ 1 let In = (an, bn) and cn = an+bn

2 . Then the function

g(x) =

⎧⎪⎨
⎪⎩

0 for x ∈ C ∪ (−∞, 0] ∪ [1,∞)

−1 for x = cn, n ≥ 1

linear on the intervals [an, cn], [cn, bn], n ≥ 1

satisfies all requirements.

II. Sup-measurability

Recall that a function f : R2 → R is said (L)-sup-measurable (resp. (B)-sup-
measurable) if for each Lebesgue measurable (resp. with the Baire property)
function g : R → R the Carathéodory superposition h(x) = f(x, g(x)) is
Lebesgue measurable (resp. has the Baire property) (compare [10]).

������� 2.6� Assume that the vertical sections fx, x ∈ R, of a bounded func-
tion f : R2 → R are quasi-continuous and upper semi-continuous and there is
a dense countable set A ⊂ R such that the horizontal sections fy, y ∈ A,
are Lebesgue measurable (resp. have the Baire property). Then f is (L)-sup-
measurable (resp. (B)-sup-measurable).

P r o o f. The same as in the proof of Theorem 2.1 for all positive integers n ≥ 1
and all integers k ∈ Z we find open intervals In,k = (an,k, an,k+1) with endpoints
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belonging to A such that 0 < an,k+1 − an,k < 1
n , an,k ∈ {an+1,i : i ∈ Z} for

k ∈ Z and lim
k→−∞

an,k = −∞ and lim
k→∞

an,k = ∞.

For n ≥ 1 and y ∈ In,k we put fn(x, y) = sup
t∈In,k

f(x, t) and fn(x, an,k) =

f(x, a,n,k) for k ∈ Z. Then f = lim
n→∞

fn. Fix a Lebesgue measurable function

g : R → R. Since f(x, g(x)) = lim
n→∞

fn(x, g(x)) for x ∈ R, for the proof of the

Lebesgue measurablity of the superposition h(x) = f(x, g(x)), it suffices to show
that the superpositions hn(x) = fn(x, g(x)) are Lebesgue measurable for n ≥ 1.
For this we will prove that they are approximately continuous almost everywhere.
The sets En,k =

{
x ∈ R : g(x) = an,k

}
, k ∈ Z, are Lebesgue measurable and the

sections fan,k are Lebesgue measurable. Since Lebesgue measurable functions
are approximately continuous almost everywhere, the restrictions hn/En,k(x) =
f(x, an,k), k ∈ Z, of the superposition hn are aproximately continuous almost
everywhere. Similarly the sets Hn,k =

{
x ∈ R : g(x) ∈ (an,k, an,k+1)

}
are

Lebesgue measurable for k ∈ Z. The restrictions g/Hn,k are approximately
continuous almost everywhere. Let w ∈ (an,k, an,k+1). Observe that fn(x, y) =
fn(x,w) for y ∈ (an,k, an,k+1) and x ∈ R. Since fn is Lebesgue measurable
by Theorem 2.4, the section (fn)

w is also Lebesgue measurable. As Lebesgue
measurable the section (fn)

w is approximately continuous almost everywhere.
If x ∈ Hn,k is a density point of the set Hn,k at which (fn)

w is aproximately
continuous then from the equality fn(t, g(t)) = fn(t, w) for t ∈ Hn,k it follows
that the function hn(t) = fn(t, g(t)) is also approximately continuous at x. This
finishes the proof of (L)-sup-measurability of f . For the proof of the (B)-sup-
measurability of f we take a function g : R → R with the Baire property and con-
sider the superposition hn(x) = fn(x, gn(x). The restrictions hn/En,k, k ∈ Z,
have evidently the Baire property. Next finding w ∈ (an,k, an,k+1) we observe
that there is a residual set K such that the restrictions g/K and (fn)

w/K are
continuous. Therefore the restrictions hn/(K ∩Hn,k) are continuous and hn has
the Baire property. This finishes the proof of (B)-sup-measurability of f . �

3. Final problem

In the theory of differential equations it is well known that if a locally bounded
functions f : D → R , where D ⊂ R

2 is an open set containing a point (x0, y0),
is such that the sections fx, x ∈ PrX(D) (the projection of D), are continuous
and the sections fy, y ∈ PrY (D), are Lebesgue measurable, then there is a
Carathéodory’s solution of the Cauchy problem y′(x) = f(x, y(x)), with the
initial condition y(x0) = y0, i.e. y is an absolutely continuous function satisfying
almost everywhere in its domain the equation y′(x) = f(x, y(x)) and such that
y(x0) = y0.
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������� 3.1� Let f : R2 → R be a locally bounded function having upper semi-
continuous and simultaneously quasi-continuous vertical sections fx, x ∈ R.
Assume that there is a dense set A ⊂ R such that the sections fy, y ∈ A, are
Lebesgue measurable. Does there exist a Carathéodory’s solution of Cauchy’s
problem y′(x) = f(x, y(x)) with the initial condition y(x0) = y0?
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