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Abstract: Admixture diffusion flows are investigated in two-phase randomly nonhomogeneous

multilayered strips with non-uniform distributions of inclusions. Cases where the most probable

disposition of layered inclusions is located near the body boundary on which the mass source

acts in the neighborhood of another boundary and in the middle of the body are considered.

The initial-boundary value problem is formulated for the function of random mass flow under

conditions of a constant flow on the upper surface and zero concentration of the admixture on the

lower surface. Calculation formulae are obtained for the diffusion flow averaged over the ensemble

of phase configurations in the particular cases of beta-distribution at zero and nonzero initial

concentrations. The dependences of the averaged admixture flows on medium characteristics are

established. It is shown that if the admixture diffusion coefficient in inclusions is greater than in

the matrix, consolidation of inclusions in the middle of the body leads to an increasing diffusion

flow. Simulation of the averaged diffusion flows of the admixture in the multilayered strip is

performed for different model variants of a probable disposition of phases in the body and their

comparative analysis is carried out.

Keywords: diffusion process, mass flow, random structure, Neumann series, averaging over the

ensemble of phase configurations, beta-distribution
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1. Introduction

In many cases there is the important problem of estimation of the effect

of random inclusions on the admixture diffusion process in different media. In

particular, it may be nonhomogeneous geological structures, composite construc-

tions, multilayered filters, porous materials, nanostructures and so on. As a rule,

we know the geometrical and physical characteristics of these inclusions as well

as the conditions on the internal contact boundaries.

Until now approaches have been sufficiently developed and mathematical

models have been created for determination of distributions of the admixture

concentration in the semispace and the layer in the assumption of uniform

or gamma-distributions of inclusions in the form of sublayers, parallel-oriented

cylinders and spheres [1–6]. However, in many cases, an important characteristic

of the diffusion process, in addition to the migrating substance concentration, is

the diffusion flow. Owing to the investigation of diffusion flows it is possible to

determine the parameters of various kinds of membranes and filters, carry out

the estimation of their operation and so on [7–10]. In particular, multilayered

filters with different porosities of sublayers are used in the existing industrial

systems for treatment of drinkable water and polluted sewage. The efficiency

of their operation depends substantially on both the porosity and geometrical

parameters of individual elements and the material from which they are made. In

the engineering practice, as a rule, simulation and computing are used to solve

the corresponding nonlinear problems of filtration by numerical methods.

In determining the mass flows of the admixture in multiphase bodies of

a randomly nonhomogeneous structure significant difficulties arise during the pro-

cedure of averaging over an ensemble of phase configurations because the functions

of correlation between the gradient of the stochastic field of the concentration and

the random diffusion coefficient are unknown. One way to solve this problem is the

approach proposed in the works [11, 12], in which for porous bodies the authors

propose to build balance equations for homogenized media before with physical

characteristics being the averaged magnitudes that take into account the differ-

ence between coefficients of individual phases. In such case, as a rule, they neglect

the interaction between phases. In the works [13, 14] the processes of heat transfer

and diffusion in one-dimensional periodical stratified structures are studied on the

basis of the method of homogenization, where the authors use the micro-macro

approach to describe physical processes and impose certain constraints of admis-

sibility of description for the specific heterogeneous material by some equivalent

homogeneous medium. In the paper [15] the random flow is determined after the

Darcy low, in which the filtration coefficient is a random function of the spatial

coordinate. The methods of both small perturbations and smoothing (with the

corresponding constraints) have been applied to construct the problem solution.

And also they impose the condition of normal distribution of phases, which makes

it impossible to determine the averaged mass flow, therefore the authors define

the two-point function of covariation only.
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The vital different original approach is proposed in the work [16]. The

differential equation for the function of mass flow is obtained from the equation

for concentration and the kinetic relation between the mass flow and the gradient

of concentration (by the Fick low type). Then, we formulate the correspondent

initial-boundary value problems directly for the sought function of the diffusion

flow. However, within the scope of such approach we have to formulate the

boundary conditions so as to avoid certain possible contradictions. Thus, if the

diffusion flow value is larger on the upper body boundary than on its lower surface,

then, an unlimited amount of the diffusing substance can enter into a limited body.

Similarly, while maintaining a much larger flow through the lower boundary of

the layer we also come to certain collisions. In this regard, we propose to set

the value of the mass flow on one body surface and the values of the admixture

concentration on another surface. Further, we have to find the value of mass

flow on this boundary too. In this approach, a random structure of the medium is

taken into account in the diffusion coefficient of the migrating substance, in which

there is the stochastic function of the spatial coordinates. For solving the initial-

boundary value problem of such kind we use the approach developed, for example,

in [1] for determining the random field of the admixture concentration. Taking this

approach we reduce the formulated diffusion problem to the equivalent integro-

differential equation with random kernel for the function of diffusion flow. We find

the solution of the obtained equation by the method of successive iterations in the

form of the Neumann series as such representation of the solution is convenient

for performing the procedure of averaging over an phase configuration ensemble.

The theorem on absolutely and uniformly convergent Neumann series as well as

the theorem on the existence of the solution of corresponding integro-differential

equation is formulated and proved. We also average the stochastic mass flow

over the ensemble of phase configurations for the cases when the admixture is

initially absent in the body or it is given its nonzero constant initial distribution.

Calculation formulae for the averaged mass flow are obtained for the multilayered

strip with the uniform distribution of phases [17].

This paper is devoted to study stochastic flows of admixture in two-phase

randomly nonhomogeneous stratified bodies at different variants of probable non-

uniform distributions of inclusions on the basis of the developed approach.

2. Mathematical model of diffusion flows of admixture

particles in stratified bodies

2.1. Problem formulation for the mass flow

Consider the process of the admixture substance diffusion in a strip of

thickness z0 that contains n0 sublayers of the phase j = 0 (matrix) and n1
sublayers of the phase j = 1 (inclusions). The coordinates of sublayer locations

are unknown. The volume fraction of the basic phase v0 is much greater than the

volume fraction of inclusions v1. And the diffusion coefficients are constant within

the scope of each phase.



324 Y. Chaplya, O. Chernukha and A. Davydok

In a one-dimensional spatial coordinate case the equation of admixture

diffusion formulated for the function of mass flow in a multiphase body is as

follows [18]
∂J(z,t)

∂t
=D(z)

∂2J(z,t)

∂z2
(1)

Here J(z,t) is the random mass flow; D(z) =

{

D0, z ∈Ω0
D1, z ∈Ω1

is the stochastic

coefficient of admixture diffusion, Ωj is the domain of the j-th phase (j=0; 1).

Let the diffusion flow be absent in the body in the initial moment of time.

The constant diffusion flow is supported on the body boundary z = 0 and the

admixture concentration c(z,t) equals zero on the lower surface of the strip z= z0.

Namely, the following initial and boundary conditions are given

J(z,t)|t=0=0 (2)

J(z,t)|z=0= J∗≡ const, c(z,t)|z=z0 =0 (3)

Herewith the diffusion flow on the lower boundary is a certain function of time

F (t) that is to determine additionally

J(z,t)|z=z0 =F (t) (4)

We shall find the function F (t) from the corresponding initial-boundary value

problem for the migrating substance concentration.

The condition on the flow (2) means that the admixture concentration can

be both zero and nonzero constant in the initial moment. Here we consider both

cases.

2.2. Equivalent integro-differential equation. Neumann series

Reduce the problem (1)–(4) to the equivalent integro-differential equation.

To do this we introduce a random “function of structure” which does not

depend on the medium physical characteristics and satisfies the condition of body

continuity [1, 19]:

ηij(z)=

{

1, z ∈Ωij
0, z /∈Ωij

,
1
∑

j=0

nj
∑

i=1

ηij(z)= 1 (5)

where Ωij is the i-th simply connected domain of the j-th phase, Ωj =
⋃nj
i=1Ωij .

The diffusion coefficient is represented by the function ηij as follows

D(z)=

n0
∑

i=1

D0ηi0(z)+

n1
∑

i=1

D1ηi1(z) (6)

If we substitute such representation of D(z) into Equation (1), denote the

operators

L(z,t)≡
∂

∂t
−

(

n0
∑

i=1

D0ηi0(z)+

n1
∑

i=1

D1ηi1(z)

)

∂2

∂z2
L0(z,t)≡

∂

∂t
−D0

∂2

∂z2
(7)
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then taking into account the condition of body continuity the diffusion equation

can be written as

L0(z,t)J(z,t)=Ls(z,t)J(z,t) (8)

where Ls(z,t)≡Ls(z)=L0(z,t)−L(z,t)= (D1−D0)
∑n1
i=1ηi1(z)∂

2/∂z2.

Consider the nonhomogeneity of the body structure as inner sources. Then,

the solution of the initial-boundary value problem (8), (2)–(4) can be presented by

the sum of the solution of the homogeneous problem J0(z,t) and the convolution

of the Green function G(z,z′,t,t′) with the source. Namely,

J(z,t)= J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J(z′,t′)dz′dt′ (9)

The Green function has the form [16]:

G(z,z′,t,t′)=
θ(t− t′)

z0

∞
∑

k=1

e−D0y
2

k(t−t
′)
[

cos
(

yk(z−z
′)
)

−cos
(

yk(z+z
′)
)]

(10)

where θ(t− t′) is the unit step Heaviside function, yk = kπ/z0.

To find the solution of the homogeneous problem J0(z,t) we must determine

the values of the flow function on the boundary z= z0. For this purpose we solve

the initial-boundary value problem for the function of concentration c(z,t) and

apply the first Fick law.

At the condition of zero initial concentration c(z,t)|t=0=0 we obtain

J0(z,t)= J∗

(

1−
2

z0

∞
∑

n=1

1

ξn
e−D0ξ

2

nt sin(ξnz)

)

(11)

in particular, on the boundary z= z0

J0(z,t)|z=z0 ≡F (t)=J∗

(

1−
2

z0

∞
∑

n=1

1

ξn
(−1)n+1e−D0ξ

2

nt

)

(12)

In the case of the given constant nonzero initial distribution of admixture

concentration c(z,t)|t=0= c∗≡ const we have

J0(z,t)= J∗−
2

z0

∞
∑

n=1

e−D0ξ
2

nt

(

J∗
ξn
+D0c∗(−1)

n

)

sin(ξnz) (13)

and the expression for the flow on the boundary z= z0 is as follows

J0(z,t)|z=z0 ≡ F̃ (t)=J∗−
2

z0

∞
∑

n=1

(−1)n+1e−D0ξ
2

nt

(

J∗
ξn
+D0c∗(−1)

n

)

(14)

Here ξn=π(2n−1)/2z0.

Remark that there is discordance between initial and boundary conditions.

This statement of the problem with a non-zero initial condition for the admixture

concentration is not valid for very small times. For a correct physically justified

statement of the initial-boundary value problem it is necessary to introduce an

additional transient regime.
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We obtain the solution of the integro-differential Equation (9) in the form

of the Neumann series by the method of successive iterations [20], namely

J(z,t)= J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J0(z

′,t′)dz′dt′+

+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)

t′
∫

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′)J0(z

′′,t′′)dz′′dt′′dz′dt′+ .. .+

+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)





t′
∫

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′)×

×

t′′
∫

0

z0
∫

0

G(z′′,z′′′,t′′,t′′′)Ls(z
′′′)J0(z

′′′,t′′′)dz′′′dt′′′dz′′dt′′



dz′dt′+ .. .

(15)

The series (15) is absolutely and uniformly convergent, if the diffusion

coefficients are bounded [17] D0,D1 ≤ K <∞ and D0 6= 0. The first term of

the series determines the diffusion flow in the homogeneous layer with matrix

characteristics. The second term is the sum of flow disturbances arising when

we put inclusions with the characteristics different from the matrix parameters

in the body. The third summand describes the effects of pair mutual influence

of inclusions on the mass flow that arise when we put alternately pairwise

inclusions with another physical parameters in a homogeneous body with matrix

characteristics, and so on.

3. Diffusion flows of admixture particles in stratified

bodies with non-uniform distributions of inclusions

Consider different variants of inclusion dispositions in the body with

different partial cases of the probable β-distribution.

In a general case the function of density of β-distribution is of the form [21]

f(z)=

{

Γ(α+β)
Γ(α)Γ(β)

(

z
z0

)α−1(

1− z
z0

)β−1

, z ∈ [0;z0]

0, z /∈ [0;z0]
(16)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function [22], α, β are degrees of

freedom of the distribution.

3.1. Diffusion flow in the two-phase strip with the most

probable disposition of inclusions near the “bottom”

boundary

We obtain one of the partial cases of the β-distribution (16) if we assume

that α≥ 1, β=1. Then, the density of the distribution takes the form [21]

f1(z)=

{

α
(

z
z0

)α−1

, z ∈ [0;z0]

0, z /∈ [0;z0]
(17)
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We have taken into account that Γ(z+1)= zΓ(z) [22].

This distribution (Figure 1) is in accord with the structure of a stratified

body, in which inclusions dispose near the “bottom” body surface and the phase

j = 0 is situated with probability 1 on the boundary z = 0, but an inclusion

is located on the lower boundary z = z0. And the region of the most probable

location of inclusions occurs near this surface (Figures 1 and 2).

Figure 1. Density of distribution f1(z) for different degrees of freedom α

Figure 2. Possible structures of a multilayered strip with f1(z) distribution of inclusions

Figure 1 shows the dependence of the function of the distribution density

f1(z) on different values of the degree of freedom α = 1.1; 1.5; 2; 2.5 (curves

1–4, respectively). Figure 2 illustrates the structures of a multilayered strip

corresponding to these distributions. Remark that the probability of inclusion

standing near the surface z=0 drops with increasing the parameter α as well as

sublayers of the phase j = 1 are compacted in the neighborhood of the surface

z= z0 (Figure 2).

For the two-phase multilayered strip with the inner structure of the type

shown in Figure 2 the random flow of admixture J(z,t) is described by the

diffusion Equation (1). Assume that the constant diffusion flow J∗ is supported

on the upper body boundary, and the admixture concentration equals zero on the

lower body surface, i.e. the boundary conditions (3) are met. Regard, the diffusion

flow is absent in the body in the initial moment, then, the condition (2) that
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corresponds to both zero and nonzero constant initial conditions on the function

of concentration is fulfilled.

A solution of the formulated initial-boundary value problem of diffusion in

the two-phase multilayered strip with a region of the most probable disposition

of inclusions near the lower surface of the strip has been obtained in the form

of Neumann integral series (15). Perform the procedure of averaging over the

ensemble of phase configurations with the function of distribution of inclusions

f1(z) (17), for that we restrict ourselves by the two first terms of the series (15) and

take into account the fact that inclusions have characteristic (average) thickness

h1 as well as the random coordinate characterizing inclusion location is the

coordinate of the upper boundary of the sublayer zi1 (i= 1,n1). Then, we find

the averaged diffusion flow in the two-phase randomly nonhomogeneous strip by

the formula

〈J(z,t)〉conf =J0(z,t)+(D1−D0)

t
∫

0

z0
∫

0

G(z,z′,t,t′)
∂J0(z

′,t′)

∂z2
×

×

n1
∑

i=1

z0−h1
∫

0

ηi1(z
′)f1(zi1)dzi1dz

′dt′

(18)

Note that we have used the following relation

n1
∑

i=1

〈ηi1(z
′)〉=

n1
∑

i=1

∫

(V )

ηi1(z
′)f1(zi1)dzi1 (19)

Taking into consideration of properties of the function ηi1(z
′)

ηi1(z
′)=

{

1, z′ ∈ [zi1; zi1+h1]
0, z′ /∈ [zi1; zi1+h1]

=

{

1, z′−zi1 ∈ [0; h1]
0, z′−zi1 /∈ [0; h1]

= ηi1(z
′−zi1) (20)

and performing a change of the variable z′−zi1=x we can write

n1
∑

i=1

〈ηi1(z
′)〉=

n1
∑

i=1

z0−h1
∫

0

ηi1(z
′−zi1)f1(zi1)dzi1=

n1
∑

i=1

z′
∫

0

ηi1(x)f1(z
′−x)dx (21)

Substitute the function of distribution density (17) into (21). Then, we

obtain

n1
∑

i=1

〈ηi1(z
′)〉=α(z0)

1−α
n1
∑

i=1

z′
∫

0

ηi1(x)(z
′−x)α−1dx (22)

The integral in the obtained formula depends on the value of the variable

of exterior integration z′ in the expression (18). Therefore
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(1) if z′≤h1 then

n1
∑

i=1

z′
∫

0

ηi1(x)(z
′−x)α−1dx=

n1
∑

i=1

z′
∫

0

(z′−x)α−1dx=
n1(z

′)α

α
(23)

(2) if z′≥h1 then

n1
∑

i=1

z′
∫

0

ηi1(x)(z
′−x)α−1dx=

n1
∑

i=1

h1
∫

0

(z′−x)α−1dx=
n1
(

(z′)α−(z′−h1)
α
)

α
(24)

With provision for v1 = n1h1/z0 finally we obtain the expression for the

density of distribution f1(z)

n1
∑

i=1

〈ηi1(z
′)〉=

v1

h1z
α−2
0

{

z′α, z′≤h1
z′α−(z′−h1)

α, z′≥h1
(25)

Substituting (25) into the relation (18) we obtain the formula for finding the

flow of admixture particles in a two-phase strip with a region of the most probable

disposition of inclusions near the lower surface averaged over the ensemble of phase

configurations:

〈J(z,t)〉= J0(z,t)+
(D1−D0)v1

zα−20 h1

t
∫

0





h1
∫

0

z′αG(z,z′,t,t′)
∂2J0(z

′,t′)

∂z′2
dz′ +

+

z0
∫

h1

(z′α−(z′−h1)
α)G(z,z′,t,t′)

∂2J0(z
′,t′)

∂z′2
dz′



dt′

(26)

If we substitute the expressions for both the Green functionG(z,z′,t,t′) (10)

and the diffusion flow in the homogeneous body J0(z,t) (11) into the formula (26),

then we obtain the calculation formula for the diffusion flow averaged over the

ensemble of phase configurations at the zero initial concentration of admixture in

the body

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

1

ξn
e−D0ξ

2

nt sin(ξnz)+
2(D1−D0)v1
D0zα0 h1

×

×

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

e−D0ξ
2

nt−e−D0y
2

kt
)

A
(1)
kn sin(ykz)

(27)

where A
(1)
kn = f(0,x

−

kn)−f(0,x
+
kn)−f(h1,x

−

kn)+f(h1,x
+
kn), x

±

kn= yk±ξn, f(a,p)=
∫ z0

a
(z−a)α cos(pz)dz.

If a constant nonzero distribution of admixture concentration in the initial

moment is imposed, then we substitute the expression (13) for the flow in the
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homogeneous layer J0(z,t) into the formula (26). And the calculation formula for

the averaged mass flow at nonzero initial concentration takes the form

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

e−D0ξ
2

nt

(

1

ξn
+(−1)n

D0c∗
J∗

)

sin(ξnz)+

+
2(D1−D0)

D0zα0

v1
h1

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

1+(−1)n
D0c∗
J∗
ξn

)

(

e−D0ξ
2

nt−e−D0y
2

kt
)

×

×
(

f(0,yk−ξn)−f(0,yk+ξn)−f(h1,yk−ξn)+f(h1,yk+ξn)
)

sin(ykz)
(28)

Remark that the formulae (27) and (28) contain integral summands for

computation of the averaged diffusion flows at zero and nonzero initial concen-

tration and they require methods of numerical integration for numerical analysis.

Here we use the method of trapezoids [23].

3.2. Simulation of averaged diffusion flows in the strip with

the most probable disposition of inclusions near the

“bottom” boundary

On the basis on the formulae (27) and (28) software modules have been

designed for computation of the averaged diffusion flows of admixture in the two-

phase stratified strip with a region of the most probable disposions of inclusions

near the “bottom” boundary of the body. Numerical calculations are performed

in the dimensionless variables [24]

ς = z/z0 τ =D0t/z
2
0 (29)

We set the following basic parameters of the problem τ = 0.1; v1 = 0.2;

h1=0.01; α=2.5; c∗/J∗=0.1.

In Figure 3 distributions of the averaged mass flows are illustrated in

different dimensionless moments of time τ = 0.01; 0.03; 0.1; 0.5; 1 (curves 1–5).

Figure 4 shows distributions of mass flows in the strip for different values of the

ratio of diffusion coefficients D1/D0=0.01; 0.5; 2; 5; 10; 15; 20 (curves 1–7).

Figure 3. Distributions of mass flows in the strip in different moments of time at zero (a)

and nonzero (b) initial concentrations
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Figure 5 illustrates the behavior of averaged mass flows for different values

of the volume fraction of inclusions v1=0.05; 0.1; 0.2 (curves 1–3). Here curves a

are built for D1/D0 = 0.01, curves b for D1/D0 = 10. Figure 6 shows the

distributions of the flow function depending on both the degree of freedom of

the function f1(ς) α=1.5; 2.5; 3.5 (curves 1–3 in (a)) and the ratio c∗/J∗=0.01;

0.1; 0.2; 0.3; 0.4 (curves 1–5 in (b)) at the nonzero constant initial concentration

of admixture. Figures 3a–5a correspond to the case of zero initial concentration of

admixture in the body, Figures 3b–5b correspond to the case of nonzero constant

initial concentration. In Figures 3 and 6 curves a are used for D1/D0 = 0.01,

curves b for D1/D0 = 2. The dash lines mark the corresponding flows in the

homogeneous layer with the matrix characteristics.

Figure 4. Distributions of mass flows in the strip depending on values of the ratio of

diffusion coefficients D1/D0 at zero (a) and nonzero (b) initial concentrations

Figure 5. Distributions of mass flows in the strip for different values of the volume fraction

of inclusions v1 at zero (a) and nonzero (b) initial concentrations

Remark that as in the case of uniform distribution of inclusions in the

body [17] admixture flows are steadily decreasing functions for D1 < D0 (Fig-

ure 3a). For D1 >D0 the function 〈J(ς,τ)〉/J∗ is also decreasing on all intervals

for small differences of diffusion coefficients in inclusions and in the matrix, but an

increase in the averaged flow from the surface where a mass source acts (curve 7

in Figure 4b) is observed for large difference between these coefficients.
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Figure 6. Distributions of mass flows in the strip for different values of the degree of freedom

α (a) and the ratio c∗/J∗ (b)

At a nonzero constant initial concentration of admixture the diffusion flow

decreases from the boundary ς = 0, it is close to zero in the middle of the layer

and increases rapidly near the boundary ς = 1 (curves 1a and 1b in Figure 3b).

Moreover, the averaged mass flows from the body boundary, where the constant

flow is supported, coincide sensibly with the flow in the homogeneous strip

(curves 1 in Figure 3b) and begin to differ from each other from the middle of

the layer and from the flow in the strip without interlayers. With the increasing

time differences between the flows increase on the whole interval (curves 2 and 3

in Figure 3b), so, in particular, for D1/D0 = 2 the difference between the mass

flows in the nonhomogeneous strip and homogeneous layer can reach 60%. Then,

the difference between the flows decreases (curves 4 and 5 in Figure 3b) till they

get a steady-state regime.

In the case where the coefficient of admixture diffusion in sublayers is

greater than in the matrix, the flow in a nonhomogeneous body is always greater

than in a homogeneous one (Figure 4). In the opposite case the flow in the

multilayered strip is less than in the homogeneous layer (curves 1 and 2 in

Figure 4). Herewith, an increase in the diffusion coefficient in inclusions in relation

to the diffusion coefficient in the matrix leads to an increasing mass flow on all

intervals (Figure 4), in particular, at a nonzero initial concentration the values of

an averaged flow in the middle of the layer can be greater than its values on the

“upper” boundary of the layer (curve 7 in Figure 4b). This situation is explained

by a simultaneous increase in the flow through the “bottom” boundary of the

body.

For the case ofD1<D0 an increase in the volume fraction of inclusions leads

to decreasing mass flow values, and for D1>D0 the increasing v1 causes the flow

to grow, especially on the interval ς ∈ [0.3; 0.8] (Figure 5). Remark that a change

of the characteristic sublayer thickness almost does not affect the behavior of the

averaged flow (a difference in the third significant digit).

If D1 < D0, then increasing the degree of freedom α (consolidation of

inclusions to the lower surface) slightly affects the averaged flow values (curves a

in Figure 6a). If the diffusion coefficient in inclusions is greater than in the matrix,
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then increasing the parameter α leads to a change of the flow function behavior.

Hence, the flow function is convex upward at small values of α (curve 1b in

Figure 6a), with the decreasing growth of α value of the averaged flow decreases

and the function 〈J(ς,τ)〉/J∗ becomes concave in the interval ς ∈ [0; 0.6] (curve 3b

in Figure 6a). Note that the behavior of the averaged diffusion flow is the same

for different values of the degree of freedom α for both zero and nonzero initial

concentrations in the body.

The values of the initial concentration affect both the behavior and values of

the admixture flow function. For small values of the c∗/J∗ ratio the admixture flow

in both the homogeneous layer and the multilayered strip is steadily decreasing

(curve 1 in Figure 6b). Increasing the initial concentration c∗ leads to growth of

the flow near the layer surface ς = 1 that can lead to a local minimum in the

middle of the layer (curves 4 and 5 in Figure 6b).

3.3. Diffusion flow in the strip with the most probable

disposition of inclusions near the upper boundary

Consider another particular case of the β-distribution which will be ob-

tained if we substitute α=1, β≥ 1 into the formula (16). The function of density

of such distribution is as follows [21]

f2(z)=

{

β
(

1− z
z0

)β−1

, z ∈ [0;z0]

0, z /∈ [0;z0]
(30)

The case of distribution f2(z) is opposite to f1(z), namely on the upper

surface of the body the inclusion sublayer is located with the probability 1, the

region of the most probable disposition of inclusions is also lumped near this

boundary, but on the lower body surface the matrix is situated a priori (Figures 7

and 8).

Figure 7. Density of distribution f2(z) for different degrees of freedom β

Plots of density of distribution f2(z) for different degrees of freedom β=1.1;

1.5; 2; 2.5 (curves 1–4) are shown in Figure 7. In Figure 8 the corresponding
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Figure 8. Possible structures of a multilayered strip with f2(z) distribution of inclusions

characteristic structures of multilayered strip are given. Note that in this case an

increase in the value of the degree of freedom β leads to consolidation layered

inclusions to the boundary z = 0. At the same time the probability of inclusion

location near another body boundary decreases.

As in the previous case, the random diffusion flow of admixture J(z,t) in

the structures of type shown in Figure 8 is described by the diffusion Equation (1).

Assume that the conditions (2)–(4) are fulfilled and consider the case of zero and

nonzero constant initial concentrations.

A solution of the initial-boundary value problem of diffusion in the two-

phase multilayered strip with a region of the most probable disposition of

inclusions near the upper body surface, where the mass source acts, is found in

the form of the Neumann series (15). Restricted by two first terms of the series we

perform the procedure of averaging it over the ensemble of phase configurations

with the function of inclusion distribution f2(z) (30). As a result we obtain

〈J(z,t)〉conf =J0(z,t)+(D1−D0)

t
∫

0

z0
∫

0

G(z,z′,t,t′)
∂J0(z

′,t′)

∂z′2
×

×

n1
∑

i=1

∫

(V )

ηi1(z
′)f2(zi1)dzi1dz

′dt′

(31)

In accordance with (21) we have

n1
∑

i=1

〈ηi1(z
′)〉=

n1
∑

i=1

z′
∫

0

ηi1(x)f2(z
′−x)dx=β

n1
∑

i=1

z′
∫

0

ηi1(x)

(

1−
z′−x

z0

)β−1

dx (32)

In particular, the following two cases are possible

(1) if z′≤h1 then

n1
∑

i=1

z′
∫

0

ηi1(x)

(

1−
z′−x

z0

)β−1

dx=

n1
∑

i=1

z′
∫

0

(

1−
z′−x

z0

)β−1

dx=

=
v1

βh1z
β−2
0

[

zβ0 −(z0−z
′)β
]

(33)
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(2) if z′≥h1 then

n1
∑

i=1

h1
∫

0

ηi1(x)

(

1−
z′−x

z0

)β−1

dx=
v1

βh1z
β−2
0

[

(z0−z
′+h1)

β−(z0−z
′)β
]

(34)

Hence, for this inclusion distribution we obtain

n1
∑

i=1

〈ηi1(z
′)〉=

v1

h1z
β−2
0

{

zβ0 −(z0−z
′)β , z′≤h1

(z0+h1−z
′)β−(z0−z

′)β , z′≥h1
(35)

Taking into account the expression (35) the averaged function (31) takes

the form

〈J(z,t)〉=J0(z,t)+
(D1−D0)v1

zβ−20 h1

t
∫

0





h1
∫

0

(

zβ0 −(z0−z
′)β
)

G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z′2
dz′+

+

z0
∫

h1

(

(z0+h1−z
′)β−(z0−z

′)β
)

G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z′2
dz′



dt′

(36)

Thus, we have obtained a formula for determining the diffusion flow av-

eraged over the ensemble of phase configurations in a two-phase randomly non-

homogeneous multilayered strip with the most probable disposition of inclusions

near the upper body boundary.

Substituting the expressions for the Green function (10) and the diffusion

flow in a homogeneous strip at zero initial concentration (11) into the relation (36)

we obtain the calculation formula

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

1

ξn
e−D0ξ

2

nt sin(ξnz)+
2(D1−D0)v1

D0z
β
0 h1

×

×

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

e−D0ξ
2

nt−e−D0y
2

kt
)

(

aknz
β
0 +A

(2)
kn

)

sin(ykz)

(37)

where A
(2)
kn = f̄(h1,z0+h1,x

−

kn)− f̄(h1,z0+h1,x
+
kn)− f̄(0,z0,x

−

kn)+ f̄(0,z0,x
+
kn),

f̄(a,c,p)=
∫ z0

a
(c−z)β cos(pz)dzsa, akn=sin(x

−

knh1)/x
−

kn−sin(x
+
knh1)/x

+
kn.

In the case of nonzero constant initial concentration in the body the

calculation formula for the averaged diffusion flow is the following

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

e−D0ξ
2

nt

(

1

ξn
+(−1)n

D0c∗
J∗

)

sin(ξnz)+

+
2(D1−D0)

D0z
β
0

v1
h1

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

1+(−1)n
D0c∗
J∗
ξn

)

×

×
(

e−D0ξ
2

nt−e−D0y
2

kt
)

sin(ykz)
(

aknz
β
0 + f̄(h1,z0+h1,yk−ξn)−

−f̄(h1,z0+h1,yk+ξn)− f̄(0,z0,yk−ξn)+ f̄(0,z0,yk+ξn)
)

(38)
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We also calculate the integral summands in the expressions (37) and (38)

by the method of trapezoids [23]. Perform numerical analysis of the obtained

calculation formulae (36) and (37).

3.4. Simulation of averaged diffusion flows in the strip with

the most probable disposition of inclusions near

the “upper” boundary

On the basis of the formulae (37) and (38) modules of software have

been designed for a qualitative and quantitative analysis of the averaged flow in

a multilayered strip with a region of the most probable disposition of inclusions

near the upper surface of the body, where the mass source acts.

Numerical calculations have been carried out in the dimensionless variables

ς and τ (29). As numerical parameters of computation we have accepted τ =0.1;

v1 = 0.2; h1 = 0.01; β = 2.5; c∗/J∗ = 0.1. Figure 9 shows the distributions of

mass flows in a different moment of dimensionless time τ =0.01; 0.03; 0.1; 0.5; 1

(curves 1–5) at zero (a) and nonzero constant (b) initial concentrations. Figure 10

illustrates the distributions of averaged diffusion flows for different values of the

ratio D1/D0=0.01; 0.5; 2; 5; 10; 15; 20 (curves 1–7).

In Figure 11 the influence of the volume fraction of inclusions v1 on the

values of the averaged mass flow is shown, here curves 1–3 correspond to the

values v1=0.05; 0.1; 0.2. Figure 12 illustrates the dependence of the flow function

on both the degree of freedom of distribution f2(ς) β=1.5; 2.5; 3.5 (curves 1–3 in

Figure 12a) and the ratio c∗/J∗=0.01; 0.1; 0.2; 0.3; 0.4 (curves 1–5 in Figure 12b).

Figure 9. Distributions of mass flows in the strip in different moments of dimensionless time

at zero (a) and nonzero (b) initial concentrations

Graphs in Figures 9a–11a are built for the case of zero initial concentration

of admixture in the body; curves in Figures 9b–11b are calculated for nonzero

constant initial concentration. In Figure 9 curves a are presented forD1/D0=0.01

and curves b for D1/D0 = 2. In Figures 11 and 12 curves a are presented

for D1/D0 = 0.01 and D1/D0 = 10, respectively. Dash lines mark the flows in

a homogeneous layer with the matrix characteristics.
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Figure 10. Distributions of mass flows in the strip for different values of the ratio D1/D0 at

zero (a) and nonzero (b) initial concentrations

Figure 11. Distributions of mass flows in the strip for different values of the volume fraction

of inclusions v1 at zero (a) and nonzero (b) initial concentrations

Figure 12. Distributions of mass flows in the strip for different values of the degree of

freedom β (a) and the ratio c∗/J∗ (b)

Note that for both D1 <D0 and D1 >D0 in the case of small values of

derivation between diffusion coefficients in the matrix and inclusions the averaged

admixture flows for zero initial concentration are steadily decreasing functions

(curves 1–4 in Figure 10a). Here the values of the flows grow with time unless they
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get on the steady-state regime (Figure 9a). Where the inclusions are concentrated

near the mass source there is a derivation up to 20% between the averaged flows

in the nonhomogeneous strip and the homogeneous layer (curves 1a–3a and 1b–3b

in Figure 9a) as opposite to the case presented in Figure 3a, where an appreciable

difference is observed for moments of time τ > 0.5 (curves 3a, 4a and 3b, 4b in

Figure 3a).

The occurrence of a diffusing substance in the initial moment affects

substantially the distributions of mass flows for small times of the running process

of diffusion. Thus, for τ =0.01 the diffusion flow drops from the boundary ς =0,

it is close to zero in the middle of the layer and grows rapidly near the boundary

ς = 1 (curves 1a and 1b in Figure 9b). With that the flows in homogeneous

and nonhomogeneous strips differ substantially near the “upper” boundary, and

almost the same for ς > 0.45 (curves 1 in Figure 9b). With the increasing time

difference between flows is first increasing over all the interval (curves 2 and 3 in

Figure 9b) and then decreasing (curves 4 and 5 in Figure 9b) until flows get on

the steady-state regime.

Increasing the ratio of diffusion coefficients D1/D0 leads to growth of the

averaged diffusion flow at both zero and nonzero constant initial concentrations

(Figure 10). In this case it is possible to form a global maximum in the middle of

the layer which is greater by 15% at the nonzero initial concentration than at the

zero one (curves 5–7 in Figure 10).

Note that for D1/D0< 1 increasing the volume fraction of inclusions causes

a decreasing value of the mass flow, but for D1/D0 > 1 the flow grows at both

zero and nonzero initial concentrations (Figure 11). Moreover, for large values v1
the averaged flow in the middle of the layer can become greater than its value on

the upper body boundary (curves 3b in Figure 11).

There is practically no effect of change of the inclusion thickness h1 on

the value of the averaged diffusion flow at both zero and nonzero initial concen-

trations.

If the diffusion coefficient in inclusions is less than in the matrix, then

increasing the degree of freedom β (consolidation of inclusions to the upper body

surface) affects slightly the averaged flow value (curves a in Figure 12a). In the

case of D1>D0 increasing the value of the parameter β causes increasing values

of the diffusion flow near the upper boundary of the strip, but does not change

its behavior (curves b in Figure 12a). Remark that the behavior of the averaged

diffusion flow for different values of the degree of freedom β is the same for both

zero and nonzero initial concentrations in the body. A change of the ratio c∗/J∗
influences both the behavior and values of the admixture flow function. Increasing

the initial concentration c∗ leads to growth of the flow near the layer surface ς =1

that can cause formation of a local minimum in the middle of the layer (curves 4

and 5 in Figure 12b).
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3.5. Diffusion flow in the strip with the most probable

disposition of inclusions in the middle of the body

Another particular case of the β-distribution is the distribution with the

following function of density [21]

f3(z)=

{

Γ(2α)
Γ2(α)

(

z
z0

)α−1(

1− z
z0

)α−1

, z ∈ [0;z0]

0, z /∈ [0;z0]
(39)

which we obtain from the formula (17) for the values of the degrees of freedom

α=β > 1 [21].

Remark that under α = β = 1 the distribution (39) coincides with the

uniform one.

The distribution f3(z) describes a random stratified structure where the

region of the most probable disposition of inclusions is situated in the middle of

the body (Figures 13 and 14), herewith the matrix stands with probability 1 on

the layer boundaries z=0 and z= z0.

Figure 13. Density of distribution f3(z) for different degrees of freedom α

Figure 14. Possible structures of a multilayered strip with f3(z) distribution of inclusions

In Figure 13 peculiar densities of distribution f3(z) are illustrated for such

values of the degree of freedom as α=β=1.5; 2; 2.5; 2.7 (curves 1–4). In Figure 14

characteristic structures of the multilayered strip are shown. Note that an increase
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in the parameter α leads to consolidation of inclusions to the middle of the

body, and the region of the most probable disposition of inclusion is narrowed

(Figure 14).

The flow of the admixture substance through the two-phase strip with an

inner structure of the type shown in Figure 14, as in previous cases, is described

by the diffusion Equation (1). Accept that the initial and boundary conditions on

the flow function (2)–(4) are true. Here we shall also consider the cases of zero

and nonzero constant initial concentrations of admixture particles.

We construct the solution of the initial-boundary value problem of diffu-

sion (1)–(4) in the form of the Neumann series (15). Average the first two sum-

mands of the series over the ensemble of phase configurations with the function

of inclusion distribution f3(z) (39):

〈J(z,t)〉conf =J0(z,t)+(D1−D0)

t
∫

0

z0
∫

0

G(z,z′,t,t′)
∂J0(z

′,t′)

∂z′2
×

×

n1
∑

i=1

∫

(V )

ηi1(z
′)f3(zi1)dzi1dz

′dt′

(40)

Similarly to (21) we have

n1
∑

i=1

〈ηi1(z
′)〉=

n1
∑

i=1

z′
∫

0

ηi1(x)f3(z
′−x)dx=

=
Γ(2α)

Γ2(α)

n1
∑

i=1

z′
∫

0

ηi1(x)

[(

z′−x

z0

)(

1−
z′−x

z0

)]α−1

dx

(41)

Consider two following cases

(1) if z′≤h1 then

n1
∑

i=1

z′
∫

0

ηi1(x)

[(

z′−x

z0

)(

1−
z′−x

z0

)]α−1

dx=n1

z′
∫

0

[

z0(z
′−x)−(z′−x)2

]α−1
dx

(42)

(2) if z′≥h1 then

n1
∑

i=1

h1
∫

0

ηi1(x)

[(

z′−x

z0

)(

1−
z′−x

z0

)]α−1

dx=n1

h1
∫

0

[

z0(z
′−x)−(z′−x)2

]α−1
dx

(43)

By calculating the corresponding integrals [22] the averaged “function of

structure” with distribution f3(z) takes the form

n1
∑

i=1

〈ηi1(z
′)〉=

Bv1

h1z
α−2
0

{

z′α2F̄1(z
′/z0), z′≤h1

z′α2F̄1(z
′/z0)−(z

′−h1)
α
2F̄1
(

(z′−h1)/z0
)

, z′≥h1

(44)
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where B= Γ(2α)
αΓ2 (α), 2F̄1(z)= 2F1(α,1−α;1+α;z), 2F1(a,b;c;z)=

∞
∑

m=0

(a)m(b)m
(c)m

zm

m!

is a hypergeometric function [22], (a)m= a(a+1). ..(a+m−1), (a)0=1.

Substitute the expression (44) into the relation (40), then we obtain

a formula for determining the averaged diffusion flow of admixture particles in

the two-phase strip with inclusions lumped in the middle of the body. Namely

〈J(z,t)〉= J0(z,t)+
(D1−D0)Bv1

zα−20 h1

t
∫

0





z0
∫

0

z′α2F̄1

(

z′

z0

)

G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z′2
dz′−

−

z0
∫

h1

(z′−h1)
α
2F̄

(

z′−h1
z0

)

G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z′2
dz′



dt′

(45)

If we substitute the expressions for the Green function G(z,z′,t,t′) (10) and

the diffusion flow in the homogeneous layer J0(z,t) (11) into (45), then we obtain

the calculation formula for the diffusion flow averaged over the ensemble of phase

configurations at the zero initial concentration of admixture in the body

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

1

ξn
e−D0ξ

2

nt sin(ξnz)+
2(D1−D0)v1B

D0z
β
0 h1

×

×

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

e−D0ξ
2

nt−e−D0y
2

kt
)

Ākn sin(ykz),

(46)

where Ākn= f(0,0,x
−

kn)−f(0,0,x
+
kn)−f(h1,0,x

−

kn)+f(h1,0,x
+
kn)+

+
∑∞

m=1
α(1−α)...(m−α)
zm
0
m!(m+α)

[

f(0,m,x−kn)−f(0,m,x
+
kn)−f(h1,m,x

−

kn)+f(h1,m,x
+
kn)
]

,

f(a,b,p)=
∫ z0

a
(z−a)α+b cos(pz)dz.

If a nonzero initial concentration of admixture is imposed, then we use the

formula (13) for J0(z,t) and the calculation formula for the averaged diffusion

flow is as follows

〈J(z,t)〉

J∗
=1−

2

z0

∞
∑

n=1

e−D0ξ
2

nt

(

1

ξn
+(−1)n

D0c∗
J∗

)

sin(ξnz)+
2(D1−D0)v1B

D0zα0 h1
×

×

∞
∑

k=1

∞
∑

n=1

ξn
y2k−ξ

2
n

(

e−D0ξ
2

nt−e−D0y
2

kt
)

(

1+(−1)n
D0c∗
J∗
ξn

)

Ākn sin(ykz)

(47)

Note that we shall also compute the integral summands in (46) and (47)

by the method of trapezoids [23].

3.6. Flows in the strip with the most probable disposition

of inclusions in the middle of the body

Let us analyze the dependence of the averaged diffusion flow in the two-

phase multilayered strip with inclusions disposed after the distribution f3(ς) on

the input parameters of the problem at both zero and nonzero constant initial

concentrations. In this case we also carry out numerical calculations in the

dimensionless variables (29) by the formulae (46) and (47). We set the following



342 Y. Chaplya, O. Chernukha and A. Davydok

values of coefficients as basic parameters of numerical investigation: τ = 0.1;

v1=0.2; h1=0.01; α=2.5; c∗/J∗=0.1. In Figure 15 the behavior of the averaged

diffusion flow in different moments of dimensionless time τ =0.01; 0.03; 0.1; 0.5;

1 is shown (curves 1–5). Figure 16 presents distributions of the mass flows in the

strip under different values of the ratio of diffusion coefficients D1/D0=0.01; 0.5;

2; 5; 10; 15 (curves 1–6). Figure 17 illustrates the dependence of the flow function

on different values of the volume fraction of inclusions, curves 1–3 correspond

to v1 = 0.05; 0.1; 0.2. Figure 18 shows distributions of the function 〈J(ς,τ)〉/J∗
depending on the degree of freedom of the function f3(ς) α=1.5; 2.5; 3.5 (curves

1–3). In Figures 15, 17 and 18 curves a are used for D1/D0 = 0.01, curves b for

D1/D0=10. Figures 15a–18a correspond to the case of the zero initial admixture

concentration in the body, Figures 15b–18b correspond to the nonzero constant

initial concentration. The dash lines mark diffusion flows in the homogeneous

layer.

Figure 15. Distributions of mass flows in the strip in different moments of time at zero (a)

and nonzero (b) initial concentrations

Figure 16. Distributions of mass flows in the strip for different values of the ratio D1/D0 at

zero (a) and nonzero (b) initial concentrations

For the case of D1 < D0 the behavior of the averaged flow function is

similar to the flow distributions in the stratified bodies with a subsurface region

of the most probable disposition of inclusions. Note that at the zero initial



Simulation of Diffusion Flows in Two-Phase Multilayered Stochastically. . . 343

Figure 17. Distributions of mass flows in the strip for different values of the volume fraction

of inclusions v1 at zero (a) and nonzero (b) initial concentrations

Figure 18. Distributions of mass flows in the strip for different values of the degree of

freedom α at zero (a) and nonzero (b) initial concentrations

concentration if the diffusion coefficient is smaller than in the matrix, then the

function 〈J(ς,τ)〉/J∗ is always steadily decreasing (curves a in Figure 15).

At the nonzero constant initial concentration for small times (τ < 0.02) the

diffusion flow drops from the boundary ς =0, it is close to zero in the middle of

the layer and increases rapidly near the boundary ς =1 (curves 1 in Figure 15b).

With the increasing time of the process of diffusion, in the case of D1 > D0,

the averaged flow increases significantly, exceeding the values that are supported

on the boundary ς = 0 (curve 3b in Figure 15). Later the flow function remains

convex upwards (curves 4b and 5b in Figure 15) and next its maximum decreases

and vanishes while approaching the steady-state regime. Remark that unlike in

previous cases, numerical calculations in this problem for curves b have been

carried out for D1/D0=10. For the value D1/D0=2 we obtain the values of the

averaged flow that are situated between the corresponding values for the structures

with inclusion concentrations near one or another of the surfaces (Figures 3b

and 9b).

By increasing the reduced diffusion coefficient the averaged mass flow

increases on all intervals (Figure 16). The behavior of the function 〈J(ς,τ)〉/J∗ for

zero and nonzero initial concentrations is similar (Figures 16a and 16b). Herewith
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for the nonzero initial concentration the averaged flow values are greater, differing

by 24% at a maximum for D1/D0=15, ς =0.38 (curves 6 in Figures 16a and 16b).

An increase in the volume fraction of inclusions for D1/D0 < 1 causes

decreasing values of the mass flow, but increasing the function 〈J(ς,τ)〉/J∗ for

D1/D0 > 1 (Figure 17). In particular, at the nonzero initial concentration for

large values of v1 the averaged flow can be greater than its values on the upper

body boundary (curves 3b in Figure 17b).

Consolidation of inclusions to the middle of the body for D1<D0 influences

neither the mass flow values nor the behavior (curves a in Figure 18). If the dif-

fusion coefficient in inclusions is larger than in the matrix, then the consolidation

of inclusions leads to an increase in the averaged flow at both zero and nonzero

constant initial concentrations (curves b in Figure 18), mostly in the middle of

the body.

Note that for the distribution f3(ς) the dependence of the averaged diffusion

flow on the value of the ratio c∗/J∗ is similar to the cases of the inclusion

distributions f1(ς) and f2(ς). For small values of the ratio c∗/J∗ the admixture flow

in both the homogeneous layer and the multilayered strip is a steadily decreasing

function. With the increasing initial concentration c∗ the flow grows near the

body boundary ς = 1, and it is possible to form a local minimum in the middle

of the layer. As in previous cases, a change of the sublayer thickness h1 does not

practically affect the values of the averaged diffusion flow (difference in the third

significant digit).

4. Comparison of the averaged flows for different model

variants of inclusion disposition

Compare the behavior of the averaged diffusion flows in two-phase struc-

tures for the cases of uninform distribution of phases in the body [17] and par-

ticular variants of the β-distribution of sublayers (17), (30) and (39), where the

region of the most probable disposition of inclusions occurs near one of the body

surfaces (Figures 2 and 8) or in the middle of the strip (Figure 14).

Figures 19–23 illustrate comparative graphs of distributions of the averaged

diffusion flows in the strip with uniform distribution of phases [17] (curves 1),

the layers with regions of the most probable disposition of inclusions near the

lower body surface (curves 2) and upper boundary (curves 3) calculated by the

expressions (27), (28) and (37), (38), respectively as well as in the middle of the

body (curves 4), calculated by the formulae (46) and (47). We set the following

basic parameters of the problem: τ =0.1; v1=0.2; h1=0.01; α=2.5; β=2.5 and

c∗/J∗ = 0.1. The dash lines mark the diffusion flows in the homogeneous body

with the matrix characteristics. Figures 19 and 20 show the averaged diffusion

flows at zero and nonzero initial concentration, respectively in different moments

of dimensionless time τ = 0.01 (a), τ = 0.03 (b), τ = 0.1 (c) and τ = 0.5 (d)

for D1/D0 = 0.01 (curves a) and D1/D0 = 10 (curves b). Figure 21 presents

comparative distributions of the mass flows at zero (a) and nonzero constant (b)
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Figure 19. Distributions of mass flows at zero initial concentration for different model cases

in moments τ =0.01 (a), τ =0.03 (b), τ =0.1 (c) and τ =0.5 (d)

initial concentrations for small and large volume fractions of inclusions v1.

Here curves a (dash-and-dot lines) describe the corresponding distributions for

v1=0.05, and curves b (full lines) for v1=0.1.

Figure 22 shows comparative distributions of averaged diffusion flows at

zero (a) and nonzero constant (b) initial concentrations depending on the ratio of

diffusion coefficients in inclusions and in the matrix. Here curves a (dash-and-dot

lines) are calculated for D1/D0=5, and curves b (full lines) for D1/D0=15.

Figure 23 illustrates comparative distributions of the admixture flows at

the nonzero constant initial concentration depending on the ratio c∗/J∗ values

for D1/D0 = 0.01 (a) and D1/D0 = 10 (b). Here curves a (dash-and-dot lines)

correspond to the distributions for c∗/J∗=0.01, curves b (full lines) are calculated

for c∗/J∗=0.4 and curves 5 (dash lines) correspond to flows in the homogeneous

body with matrix characteristics.

In the case of smaller values of the diffusion coefficient in the inclusion

than in the matrix, for small times (τ < 0.1) at the zero initial concentration the

averaged diffusion flow in the structure with inclusions disposed near the upper

body boundary is smaller up to 70% in the interval ς ∈ [0.1;0.45] than the flows in

the other three structures (curves 3a in Figures 19a and 19b). With the increasing

time τ the difference between the flows drops (curves a in Figure 19c), and for

τ =0.5 the averaged flows for different cases of dispositions of inclusions practically
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Figure 20. Distributions of mass flows at nonzero initial concentration for different model

cases in moments τ =0.01 (a), τ =0.03 (b), τ =0.1 (c) and τ =0.5 (d)

Figure 21. Distributions of mass flows at zero (a) and nonzero (b) initial concentrations for

different model variants in dependence on the volume fraction of inclusions v1

coincide (curves a in Figure 19d). If the coefficient of admixture diffusion in

inclusions is larger than in the matrix, then for small times the diffusion flow

in the strip with sublayers concentrated near the upper body boundary is the

largest of the considered variants of the nonhomogeneity distributions and it

forms the subsurface maximum (curves 3b in Figures 19a–19c), while for the other

distributions of inclusions in the body the decreasing behavior of the averaged

flows is characteristic (curves 1b, 2b and 4b in Figures 19a–19c). However, with
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Figure 22. Distributions of mass flows at zero (a) and nonzero (b) initial concentrations for

different model variants in dependence on the D1/D0 ratio

Figure 23. Distributions of mass flows at nonzero initial concentration for different model

variants at D1/D0=0.01 (a) and D1/D0=10 (b) in dependence on the c∗/J∗ ratio

increasing time the flow in the strip with a region of the most probable disposition

of inclusions near the boundary ς = 0 decreases and takes the smallest values of

the three other flows (curve 3b in Figure 19d), and the averaged flow in the strip

with sublayers located in the middle of the body becomes the greatest (curve

4b in Figure 19d). In the case of inclusion concentration near the lower body

surface the function 〈J(ς,τ)〉/J∗ for τ < 0.1 is convex downwards (curves 2b in

Figures 19a and 19b), but for τ ≥ 0.5 it becomes convex upwards (curve 2b in

Figure 19d). With a time increase the differences between flows in different model

variants decrease until they reach a steady-state regime, where values of the flows

coincide.

Note that at a nonzero constant initial concentration for τ < 0.03 the

admixture flows coincide from the boundary ς =0, except for flows in the structure

where inclusions disposed near the upper surface of the body and the coefficient

of admixture diffusion in inclusions is larger than in the matrix. Then, the

diffusion flow increases sharply, and next it also becomes subsiding (curve 3b in

Figure 20a). The admixture flows in all kinds of the structures begin to increase

again from the middle of the strip (Figure 20a), but near the boundary ς = 1

under D1/D0< 1 the flow begins to decrease again for the body with the uniform
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distribution of inclusions, with probable dispositions near the lower boundary or

in the middle of the strip (curves 1b, 2b and 4b in Figure 20a), i.e. the local

maximum of the function 〈J(ς,τ)〉/J∗ occurs near the “bottom” body boundary.

In the case of D1 <D0 for τ = 0.01 the values of averaged flows coincide about

in the structures with the uniform distribution of inclusions and their probable

subsurface location in the interval ς ∈ [0;0.5] (curves 1a–3a in Figure 20a). The

flow values in the strip with the most probable disposition of inclusions in the

middle of the body are the smallest in this interval (curve 4a in Figure 20a).

But in the interval ς ∈ [0.5;1] the flow in the strip with a probable disposition

of inclusions near the lower body boundary takes the smallest values. Remark

that in the case of D1 > D0 in the structures with the subsurface location of

inclusions the presence of maximums of the diffusion flows near the surfaces where

inclusions are concentrated is also observed (curves 2b and 3b in Figure 20a).

With a time increase these maximums decrease and shift to the middle of the

body (curves 2b and 3b in Figure 20b), and next the functions become steadily

decreasing (curves 2b and 3b in Figure 20d). Moreover, for small times, the

diffusion flow in the strip with the uniform distribution of phases is larger than

in the strip with sublayers concentrated the middle of the body (curves 1b and

4b in Figure 20a), but for τ ≥ 0.1 the situation is reversed, namely the values of

〈J(ς,τ)〉/J∗ in the strip with the most probable distribution of inclusions in the

middle of the body become larger than the flow values in the strip with uniform

distribution of sublayers (curves 1b and 4b in Figure 20c). With increasing time

τ of a process running distinction between the functions 〈J(ς,τ)〉/J∗ for different

structures decreases and the flows reach a steady-state regime.

For the case where the diffusion coefficient in inclusions is greater than in the

matrix, changes of the volume fraction of inclusions at zero and nonzero constant

initial concentrations affect equally the behavior of the averaged flows for all kinds

of the considered structures (Figure 21), slightly differing in the numerical results.

In the case where the coefficient of admixture diffusion in inclusions is smaller than

in the matrix, the averaged flows in stratified bodies are greater than the flow in

the homogeneous body, and flow in the strip with sublayers concentrated near

the lower boundary is the smallest of all cases considered (curves 2 in Figure 21).

The growth of the value v1 from 0.05 to 0.1 leads to an increase in the functions

〈J(ς,τ)〉/J∗ in all interval (curves b in Figure 21), and the difference between the

flows in the strip with inclusions lumped near the upper and lower boundaries

increases to 35% (curves 2b and 3b in Figure 21).

Note that forD1/D0≤ 5 the averaged flows are decreasing functions (curves

a in Figure 22). Growth of the ratio D1/D0 leads to increasing the flow, and its

values can exceed the flow value on the “top” body boundary. Herewith the flow

in the structure with probable distribution of inclusions near the surface where

the mass source act, reaches the greatest values (curves 3b in Figure 22). For the

considered values of input parameters of the problem, the maximums that the

flows reach at zero initial concentration, are smaller to 19% than the maximums
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at nonzero a constant initial concentration of admixture (curves 1b, 3b and 4b in

Figure 22).

If the coefficient of admixture diffusion in the matrix is larger than in

inclusions, then an increase in the value of the initial admixture concentration

reduced to the flow on the upper boundary of the strip c∗/J∗ leads to the formation

of a local minimum in the middle of the body for all the considered distributions

of sublayers (curves b in Figure 23a). Moreover, the smaller the value c∗/J∗,

the smaller the difference between the averaged diffusion flows for different kinds

of stratified structures (Figure 23a). If the diffusion coefficient of the admixture

substance in inclusions gets greater values than in the matrix, an increase in the

c∗/J∗ ratio causes an increase in the averaged admixture flow and formatting

maximum of the functions 〈J(ς,τ)〉/J∗ in the middle of a two-phase strip for

all the considered variants of inclusion dispositions (curves b in Figure 23b). In

this case the greatest difference between the values of the flows, in particular, for

structures with inclusions near the lower boundary and in the middle of the body

can reach 30% (curves 2b and 4b in Figure 23b).

5. Conclusion

On the basis of the developed original approach we studied flows of the

admixture substance in two-phase stochastically nonhomogeneous multilayered

strips with non-uniform distributions of nonhomogeneities in the body domain.

Within the scope of this approach the initial-boundary value problems were

directly formulated for the functions of mass flow, the boundary conditions on one

of the body surfaces were imposed for the function of mass flow and the conditions

on admixture concentration were given on another boundary. Herewith the

methods of constructing the solutions were adapted to the formulated problem.

In particular, having considered the presence of stochastic nonhomogeneities as

internal sources, the initial-boundary value problem with random coefficients was

reduced to the equivalent integro-differential equation, the solution of which was

constructed by the method of successive iterations in the form of absolutely and

uniformly convergent Neumann series.

For the cases, where the region of the most probable disposition of inclusions

crowds near the surface, where the mass source acts in the neighborhood of

another body boundary and in the middle of the strip, we averaged the admixture

flow over the ensemble of phase configurations at the zero initial condition for the

function of diffusion flow that meant absence of admixture particles in the body

in the initial moment or imposition of their nonzero constant initial distribution.

For different kinds of two-phase stratified structures we worked up the

program modules for qualitative and quantitative analysis of dependence of the

averaged diffusion flow on such medium characteristics as the ratio of diffusion

coefficients, the volume fraction of inclusions, the specific (average) thickness

of sublayers, etc. On this basis, simulation of the averaged diffusion flows of

admixture in the multilayered strip was performed for different model variants
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of a probable disposition of phases in the body domain and their comparative

analysis was made. In particular, it was shown that if the admixture diffusion

coefficient in inclusions was smaller than in the matrix, then the location of

inclusions in the body had almost no effect on the behavior of the averaged mass

flows as on their values in most of the considered cases. Thus, we had to take into

account the probable distribution of layered inclusions only as it was necessary

to determine exact values of the mass flow function for small times. Instead,

when the coefficient of admixture diffusion in inclusions took larger values than

the diffusion coefficient in the matrix, the difference between the mass flows in

different structures was significant and, for example, could reach 70% in the strip

with inclusions concentrated near the upper boundary and in the strip with the

most probable disposition of inclusions near the lower boundary. Herewith, for

small times in the case of greater values of the diffusion coefficient of admixture

in inclusions, the subsurface maximum was observed in the vicinity of the mass

source for structures with inclusions located near the upper body boundary at

both zero and nonzero constant initial concentrations. Nonetheless, the maximum

of the averaged flow occurred near another body boundary for structures with

uniform distribution of phases, with the inclusion concentrated in the middle of

the body and near the lower boundary in the case of nonzero initial concentration.

If inclusions were located after one of the partial case of beta-distribution, then

for larger diffusion coefficient of admixture in inclusions there was a local that

could be a global maximum of the flow in the middle of two-phase strip. At the

same time, for the case of greater diffusion coefficient in the matrix, the global

minimum of the averaged flow formed in the middle of the strip for large values

of constant initial concentration for all the considered distributions of inclusions.
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