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Abstract: An approach for studying stochastical diffusion flows of admixture particles in bodies

of multiphase randomly nonhomogeneous structures is proposed, according to which initial-

boundary value problems of diffusion are formulated for flow functions and methods of solution

construction are adapted for the formulated problems. By this approach the admixture diffusion

flow is investigated in a two-phase multilayered strip for the uniform distribution of phases

under conditions of constant flow on the upper surface and zero concentration of admixture

on the lower surface. An integro-differential equation equivalent to the original initial-boundary

value problem is constructed. Its solution is found in terms of the Neumann series. Calculation

formulae are obtained for the diffusion flow averaged over the ensemble of phase configurations

under both zero and constant nonzero initial concentrations. Software is developed, a dependence

of averaged diffusion flows on the medium characteristics is studied and general regularities of

this process are established.

Keywords: diffusion process, mass flow, random structure, Neumann series, averaging over the

ensemble of phase configurations

1. Introduction

In the study of mass transfer processes in porous media, complex geological

structures, composite materials, nanostructures, etc., an important characteristic
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of the process, in addition to the concentration of migrating substance and

chemical potentials, is the diffusion flux. Diffusion fluxes have an important

value at the investigation of parameters of membranes and filters, material

diagnostics (diffusion-structural analysis), determining the structure of metal

growth during the solidification of alloys, etc. [1–5]. In the existent industrial

systems of treatment of drinkable water and polluted drains multilayered filters

with different porosity of layers are widely used. Their efficiency depends strongly

on the porosity as well as the corresponding geometrical parameters. As a rule,

in the engineering practice simulation to calculate such filters is used [6] solving

non-linear problems of filtration of sewage by numerical methods.

On modeling admixture mass fluxes in multiphase bodies of a randomly

nonhomogeneous structure there are significant difficulties during averaging over

an ensemble of phase configurations because the correlation functions between

the gradient of the stochastic field of the concentration and random diffusion

coefficient are unknown. To solve this problem some authors [7, 8] propose

balance equations for porous bodies to construct homogenized media, the physical

characteristics of which are the averaged magnitudes taking into account the

difference between coefficients of the phases and herewith interaction of phases

is neglected. In the works [9, 10] the processes of heat transfer and diffusion

in one-dimensional periodical stratified structures are studied on the basis of

the method of homogenization. Here the micro-macro approach to description of

physical processes is used, wherefore they impose a constraint of admissibility of

description for the specific heterogeneous material by an equivalent homogeneous

medium. In the paper [11] the random flow is determined after the Darcy low with

the filtration coefficient being a function of spatial coordinate. The methods of

both small perturbations and smoothing (with the corresponding constraints) are

applied to construct the problem solution. And also they impose the condition

of normal distribution of phases, which makes it impossible to determine the

averaged mass flow, so the author defines the two-point function of covariation

only.

In the work [12] the original approach is proposed, according to which the

diffusion equation for the function of mass flux is constructed and initial-boundary

value problems are formulated directly to the flux. However, within the scope

of such approach it is necessary to formulate reasonable initial and boundary

conditions, as in the case where values of the flux on the “top” body boundary

are much greater than on the “bottom” one, an unlimited amount of the diffusing

substance can enter into a limited body, which is a certain contradiction. Similarly,

while maintaining a much larger flux through the “bottom” layer boundary we

also come to certain collisions. In this regard, we propose to set the value of mass

flux on one body surface, the value of the substance concentration on another and

further determine the corresponding condition for the flux.

In the present work we investigate stochastic flows of an admixture sub-

stance in two-phase randomly nonhomogeneous stratified bodies under uniform
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distribution of phases for the cases of both zero and non-zero constant initial ad-

mixture concentration on the basis of constructing solutions of initial-boundary

value problems with stochastical coefficients in the form of Neumann series, which

is useful for the procedure of averaging over the ensemble of phase configurations.

Herewith series expansion is carried out in the neighborhood of a solution of the

corresponding initial-boundary value problem for a homogeneous body.

2. Mathematical model of diffusion fluxes of admixture
particles in stratified bodies

2.1. Diffusion equation for the function of mass flux

Let the process of admixture diffusion occur in a medium. In the general

case the equation of mass balance has the form [13]

∂c(~r,t)

∂t
=−~∇· ~J(~r,t) (1)

where c(~r,t) is the concentration of admixture particles, ~J(~r,t) is the mass flux of

the diffusing substance, ~∇ is the Hamilton nabla-operator, ~r is a radius-vector of
the running point, t is time, the operation of scalar multiplication is marked by

a point.

Let us act left on Equation (1) by the operator (−~∇):
∂

∂t

(

−~∇c(~r,t)
)

= ~∇⊗ ~∇· ~J(~r,t) (2)

Here “⊗” is the tensor multiplication and besides ~∇⊗ ~∇=∇i∇j~ii⊗~ij (i,j=1,3),
where ∇i is the symbol of the partial derivative, ~ii is the base vector (in the case
of the Cartesian coordinate system ∇1 = ∂/∂x, ∇2 = ∂/∂y, ∇3 = ∂/∂z; ~i1 =~i,
~i2=~j, ~i3=~k).

Let us multiply Equation (2) on the diffusion coefficient D(~r), which is

accepted as time-independent, however it can be a function of space coordinates.

Then we have
∂

∂t

(

−D(~r)~∇c(~r,t)
)

=D(~r)~∇⊗ ~∇· ~J(~r,t) (3)

Taking into account the relation between the mass flux and the particle

concentration (the first Fick low) [14]

~J(~r,t)=−D(~r)~∇c(~r,t) (4)

Equation (3) is written as

∂ ~J(~r,t)

∂t
=D(~r)~∇⊗ ~∇· ~J(~r,t) (5)

Thus, we obtain the admixture diffusion equation represented by mass fluxes. In

particular, in a one-dimensional case Equation (5) is reduced to the following:

∂J(z,t)

∂t
=D(z)

∂2J(z,t)

∂z2
(6)

Note that since we have acted on the differential equation by an operator,

then its solution can be determined up to an arbitrary function f , which satisfies
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the condition ~∇f = 0. Remark also that Equation (5) is valid for bodies with
both deterministic and randomly nonhomogeneous multiphase structures. In

particular, Equation (6) in the one-dimensional case describes the flow function

in a stochastically nonhomogeneous stratified medium.

Moreover, not all formally admissible mathematical statements of initial-

boundary value problems for Equations (5) and (6) are admissible from a physical

point of view. Hence, we have to consider “mixed” statements of initial-boundary

value problems which are presented below.

2.2. Initial and boundary conditions of the first kind

in problems of mass flux for a layer

Consider the process of admixture substance diffusion in a layer of thickness

z0 that contains sublayers, the location of which in the area of the body, generally

speaking, is unknown.

Accept that the initial and boundary conditions of the first kind are satisfied

for the flow function J(z,t). In the initial moment of time there is no diffusion

flow in the body. The admixture flow on the “upper” surface of the layer z=0 is

constant, and particle concentration equals zero on the “lower” boundary of the

strip z= z0, namely

J(z,t)|t=0=0 (7)

J(z,t)|z=0= J∗≡ const, c(z,t)|z=z0 =0 (8)

In this case the diffusion flow on the “lower” boundary is a function of time

F (t) and we need to define additionally

J(z,t)|z=z0 =F (t) (9)

We shall determine the diffusion flow on the boundary z = z0, i.e. the

function F (t), from the corresponding initial-boundary value problem for the

migrating substance concentration.

Let us set the initial condition for the admixture particle concentration,

equivalent to the initial condition for the flow of the substance (7), using a chemical

potential, which is a continuous function on the inner boundaries of contact.

The first Fick low (4) with the use of the chemical potential µ(z,t) is [15]

J(z,t)=−L̃(z)∂µ(z,t)
∂z

(10)

where L̃(z) is the kinetic coefficient of mass transfer.

Taking into account relation (10) we represent the condition on the flow (7)

as
∂µ(z,t)

∂z

∣

∣

∣

∣

t=0

=0 (11)

whence we obtain

µ(z,t)|t=0=µ∗≡ const (12)
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It follows from sufficient physical generals that the relation between the

chemical potential and concentration is of a logarithmic nature [15, 16]

µ(z,t)=µ0+Alnγ(z)c(z,t) (13)

where µ0 is the chemical potential for pure substance in the state deter-

mined by the values of absolute temperature T and pressure P ; A = RT/M is

the coefficient, where R is the absolute gas constant, M is the atomic weight of

admixture particles; γ(z) is the activity coefficient which can be presented for

a two-phase body as

γ(z)=

{

γ0 z ∈Ω0
γ1 z ∈Ω1 (14)

here Ωj is the domain of phase j (j=0;1),
∑

jΩj =Ω, where Ω is the domain of

the whole body.

If we linearize the relation (13) then we obtain the linear dependence of the

chemical potential on the concentration in the form

µ(z,t)=µ0−A(1−γ(z)c(z,t)) (15)

The limits of satisfiability of the relation (15) are determined from compar-

ison with experimental data.

From (15) we find the expression for the admixture concentration function

c(z,t)=
1

γ(z)

[

1+
1

A
(µ(z,t)−µ0)

]

(16)

Then, in the initial time moment for the concentration we obtain

c(z,t)|t=0=
1

γ(z)

[

1+
1

A
(µ(z,t)−µ0)|t=0

]

(17)

In particular, accepting the condition (12) we have

c(z,t)|t=0=
1

γ(z)

[

1+
1

A
(µ∗−µ0)

]

(18)

Taking into account the representation (14), we write the condition (18) in

the form

c(z,t)|t=0=
{
[

1+(µ∗−µ0)/A
]

/γ0 z ∈Ω0
[

1+(µ∗−µ0)/A
]

/γ1 z ∈Ω1
(19)

Denote c∗j =
[

1+(µ∗−µ0)/A
]

/γj (j = 0, 1). Then, c(z,t)|t=0 = {c∗j ≡
const, z ∈Ωj}. Thus, we have obtained a piecewise-constant function of the initial
concentration, a schematic drawing of which is shown in Figure 1. In this graph

the y-axis represents the function c(z,t)|t=0, the x-axis represents the spatial co-
ordinate z. Note that there are jumps discontinuities of admixture concentration

in the initial time on the boundaries of contact of the domains Ωj (Figure 1).

Note that the quantity c(z,t)|t=0 can be both random and deterministic
depending on stochasticity or determinacy of the domain Ω. Henceforth, suppose

that the disposition of the domain Ωj is unknown, i.e. the coordinates of sublayer

locations are random.
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Figure 1. Schematic distribution of initial concentration in a two-phase stratified body

If the activity coefficients are close in different phases, i.e. we can assume

that γ0≈ γ1≡ γ∗, then c∗0≈ c∗1≡ c∗ and the condition (19) is as follows
c(z,t)|t=0= c∗≡ const (20)

Henceforth, we shall consider the initial condition on the function of

admixture concentration in the form (20), and singling out the separate case

of absence of the admixture substance in the initial moment of time in a body

c(z,t)|t=0=0 (21)

Remark that in the case of diffusion in stochastically nonhomogeneous

bodies the initial condition (19) is random, and to construct solutions of initial-

boundary value problems, in which the coefficients of differential equations and

initial and boundary conditions are stochastic, it is required to develop an

individual theory of mathematical physics using the theory of random fields.

3. Mathematical modeling diffusion flows of admixture
in a randomly nonhomogeneous multilayered strip with

uniform distribution of phases

3.1. Subject of inquiry and statement of the problem

Consider the admixture diffusion in a two-phase multilayered strip consist-

ing of n0 sublayers of the phase j = 0 (matrix) and n1 sublayers of the phase

j =1 (inclusions). Here the coordinates of location of inclusions and the matrix,

respectively, are unknown. Accept that phases in the body are disposed by the

uniform law of distribution. We regard that the volume fraction of the matrix

v0 is much larger than the volume fraction of inclusions, i.e. v0≫ v1, and the
coefficients of admixture diffusion are constant within the scope of each phase.

One of the possible realizations of a two-phase multilayered structure is shown in

Figure 2.

The diffusion coefficients in Equation (6) that is a random function of the

spatial coordinate can be presented as

D(z)=

{

D0 z ∈Ω0
D1 z ∈Ω1

(22)

where Ωj =
⋃nj
i=1Ωij (j=0, 1, i=1,nj), Ωij is the i-th simply connected domain

of the kind j.
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Figure 2. Possible realization of a two-phase multilayered strip with uniform distribution

of inclusions

The random flow of admixture particles J(z,t) in a multilayered strip is

described by Equation (6). The constant diffusion flow J∗ is supported on the

body surface z = 0. And we assume that the concentration equals zero on the

boundary z = z0 (Figure 2), i.e. the boundary conditions (8) are met. Let us

consider the zero initial condition on the admixture flow (7) under zero (21) and

nonzero constant (20) initial concentrations.

To construct a solution of the initial-boundary value problem (6)–(8) with

the random diffusion coefficient we present it in terms of the random “function of

structure” [17] ηij(z)=

{

1 z ∈Ωij
0 z /∈Ωij , where i=1, nj , j=0; 1. Then, the admixture

diffusion coefficient D(z) takes the form

D(z)=

n0
∑

i=1

D0ηi0(z)+

n1
∑

i=1

D1ηi1(z) (23)

Herewith
∑n0
i=1ηi0(z)+

∑n1
i=1ηi1(z)= 1 (the condition of body continuity).

Note that the choice of a number of simply connected domains of both the matrix

and the inclusion i is conventional.

Substituting such representation of coefficient D(z) in Equation (6) we

obtain
∂J(z,t)

∂t
−
(

n0
∑

i=1

D0ηi0(z)+

n1
∑

i=1

D1ηi1(z)

)

∂2J(z,t)

∂z2
=0 (24)

In Equation (24) add and deduct the deterministic operator L0(z,t)

L0(z,t)≡
∂

∂t
−D0

∂2

∂z2
(25)

Then denoting the operators of Equation (24)

L(z,t)≡ ∂
∂t
−
(

n0
∑

i=1

D0ηi0(z)+

n1
∑

i=1

D1ηi1(z)

)

∂2

∂z2
, L0(z,t)≡

∂

∂t
−D0

∂2

∂z2
(26)
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and accounting for the body continuity condition we obtain

L0(z,t)J(z,t)=Ls(z,t)J(z,t) (27)

where Ls(z,t)≡Ls(z)= (D1−D0)
∑n1
i=1ηi1(z) ∂

2/∂z2.

We shall find the solution of the initial-boundary value problem (27), (7), (8)

in the form of the Neumann series.

3.2. The integro-differential equation equivalent to the original

initial-boundary value problem

Considering the nonhomogeneity of a body structure as inner sources the

solution of the initial-boundary value problem (27), (7), (8) can be presented by

the sum of the solution of the homogeneous problem and the convolution of the

Green function with the source [18]

J(z,t)= J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J(z′,t′)dz′dt′ (28)

where J0(z,t) is the solution of the homogeneous initial-boundary value problem,

G(z,z′,t,t′) is the Green function of the problem (27), (7), (8), a deterministic

function.

To find the solution of the homogeneous initial-boundary value problem

∂J0(z,t)

∂t
=D0

∂2J0(z,t)

∂z2
(29)

J0(z,t)|t=0=0; J0(z,t)|z=0= J∗≡ const, J0(z,t)|z=z0 =F (t) (30)

we must first determine the boundary condition for the flow function on the

boundary z = z0. For this purpose, we solve the initial-boundary value problem

formulated for the function of migrating particle concentration c(z,t). If the

distribution of the concentration equals zero in the initial moment of time, the

initial-boundary problem is as follows

∂c(z,t)

∂t
=D0

∂2c(z,t)

∂z2
(31)

∂c(z,t)/∂z|z=0=−J∗/D0≡ const, c(z,t)|z=z0 =0 (32)

c(z,t)|t=0=0 (33)

If the constant nonzero distribution of concentration in the strip is known

in the initial moment, then the condition (33) takes the form

c(z,t)|t=0= c∗≡ const (34)

The solution of the problem with zero initial concentration is obtained in

the form

c(z,t)=
J∗
D0

(

z0−z−
2

z0

∞
∑

n=1

e−D0ξ
2
ntcos(ξnz)

ξ2n

)

(35)

And for the nonzero constant initial concentration it is found as follows

c(z,t)=
J∗
D0
(z0−z)−

2

z0

∞
∑

n=1

e−D0ξ
2
nt

(

J∗
D0ξ2n

+
c∗(−1)n
ξn

)

cos(ξnz) (36)

where ξn=π(2n−1)/2z0.
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Taking into account the relation between the mass flow and the particle con-

centration (4), from the solution (35) of the initial-boundary value problem (31)–

(33) we obtain the expression in the homogeneous layer

J0(z,t)=J∗

(

1− 2
z0

∞
∑

n=1

1

ξn
e−D0ξ

2
nt sin(ξnz)

)

(37)

In particular, we have z= z0 on the boundary

J0(z,t)|z=z0 ≡F (t)= J∗
(

1− 2
z0

∞
∑

n=1

ξ−1n (−1)n+1e−D0ξ
2
nt

)

(38)

Similarly, for the initial-boundary value problem (31), (32), (34) we find

J0(z,t)= J∗−
2

z0

∞
∑

n=1

e−D0ξ
2
nt

(

J∗
ξn
+D0c∗(−1)n

)

sin(ξnz) (39)

And for z= z0 we obtain the following boundary condition for the function

of diffusion flow

J0(z,t)|z=z0 ≡ F̃ (t)=J∗−
2

z0

∞
∑

n=1

(−1)n+1e−D0ξ2nt
(

J∗
ξn
+D0c∗(−1)n

)

(40)

In Figure 3 the behavior of functions F (t) at zero (a) and F̃ (t) at nonzero (b)

concentrations in the initial moment under different values of c∗/J∗ = 0.1; 0.2;

0.3; 0.4; 0.5 (curves 1–5 in Figure 3b) for the dimensionless time τ =D0t/z
2
0 is

shown. It should be remarked that in the case of the zero initial concentration,

F (t) is a steadily increasing function. However, at certain constant nonzero initial

concentration, the function F̃ (t) slumps and after reaching a local minimum begins

to grow. In addition, the higher the value of ratio c∗/J∗, the faster the function

F (t) goes on the steady-state regime.

Figure 3. Functions F (τ)/J∗ for zero (a) and F̃ (τ)/J∗ for nonzero initial conditions

at different values of ratio c∗/J∗ (b)
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Numerical calculations are performed in the dimensionless variables [19]

ς = z/z0, τ =D0t/z
2
0 (41)

Figure 4 illustrates the peculiar distributions of admixture concentrations

at nonzero constant initial concentration in the homogeneous layer according to

the formula (36) in different time moments τ =0.01; 0.05; 0.1; 0.5; 1 (curves 1–5)

under c∗/J∗ = 0.01 (a) and c∗/J∗ = 1 (b). The condition c∗/J∗ = 1 means that

the case under consideration is maintenance of small admixture flows on the layer

boundary J∗ so long as it follows 0≤ J∗≤ 1 from the definition of concentration;
moreover we have J∗≪ 1 from the definition of admixture concentration. Figure 5
shows the dependence of mass flows in the homogeneous strip on the value of

ratio c∗/J∗=0.1; 0.2; 0.3; 0.4; 0.5 (curves 1–5) in time moments τ =0.01 (a) and

τ =0.1 (b).

Figure 4. Distributions of concentration in a layer at nonzero initial condition in different

moments for c∗/J∗=0.01 (a) and c∗/J∗=1 (b)

With increasing time for the diffusion process at the ratio c∗/J∗ = 0.01

the admixture concentration increases in the body (Figure 4a) till it gets the

steady-state regime (curve 5 in Figure 4a). In the case c∗/J∗ = 1 for small

times, in particular τ = 0.01, the area of approximately constant concentration

ς ∈ [0.15;0.65] persists (curve 1 in Figure 4b). Moreover in the near-surface regions
(ς = 0), where the mass source acts, an increase in the admixture concentration

is observed with increasing time in the interval τ ∈ (0; 0.1] (curves 1–3 in
Figure 4b), with a further increase in time the concentration decreases (curves

4, 5 in Figure 4b). Raising the ratio c∗/J∗ leads to an increase in the admixture

concentration as well as the diffusion flow in the homogeneous strip (Figure 5),

but for small times, namely for τ =0.01, formation of a maximum (global) of the

diffusion flow is observed near the surface ς =1 (Figure 5a).

The Green function is a solution of the initial-boundary value problem of

diffusion from a point source under zero initial and boundary conditions, i.e. it is

the solution of the following initial-boundary value problem

∂G(z,z′,t,t′)

∂t
−D0

∂2G(z,z′,t,t′)

∂z2
= δ(t− t′)δ(z−z′) (42)
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Figure 5. Dependence of mass flows in a layer on the value of ratio c∗/J∗ in the moments

τ =0.01 (a) and τ =0.1 (b)

G(z,z′,t,t′)|t=0=0, G(z,z′,t,t′)|z=0=0, G(z,z′,t,t′)|z=z0 =0 (43)

We obtain it in the form

G(z,z′,t,t′)=
θ(t− t′)
z0

∞
∑

k=1

e−D0y
2
k(t−t

′)
[

cos
(

yk(z−z′)
)

−cos
(

yk(z+z
′)
)]

(44)

where θ(t− t′) is the unit step Heaviside function, yk = kπ/z0.
Examples of surfaces formed by the Green function, are built in the dimen-

sionless variables (41) and shown in Figure 6 in points (ς,τ)= (0.0125;0.125) (a),

Figure 6. The Green function in points (ς,τ)= (0.0125;0.125) (a), (ς,τ)= (0.6875;0.625) (b),

(ς,τ)= (0.6875;1.375) (c), (ς,τ)= (0.6875;3.875) (d)
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(ς,τ) = (0.6875;0.625) (b), (ς,τ) = (0.6875;1.375) (c) and (ς,τ) = (0.6875;3.875)

(d). The spatial coordinate ς ′ is set along the abscise axis and the time variable

τ ′ is set along the axis of ordinates.

Thus, the original initial-boundary value problem has been reduced to the

equivalent integro-differential equation (28) with random kernel. This equation is

the Volterra equation of the second kind in time and the Hammerstein equation in

the spatial variable [20] and contains the diffusion flow in a homogeneous layer (37)

or (39) and the deterministic Green function (44).

3.3. Neumann series

The solution of the integro-differential equation (28) with random kernel

is found by the method of successive iterations. We accept the solution of the

homogeneous problem as an initial approximation J (0)(z,t) = J0(z,t). Then, we

obtain the following recurrence relations

J (1)(z,t)=J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J (0)(z′,t′)dz′dt′

J (2)(z,t)=J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J (1)(z′,t′)dz′dt′

. . .

J (n)(z,t)=J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J (n−1)(z′,t′)dz′dt′

. . .

(45)

The general term of the constructed sequence of functions J (0),J (1), .. . ,

J (n), .. . can be represented as

J (n)(z,t)=J0(z,t)+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J0(z

′,t′)dz′dt′+ .. .+

+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)





t′
∫

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′)× . ..×

×
t(n−2)
∫

0

z0
∫

0

G(z(n−2),z(n−1),t(n−2),t(n−1))Ls(z
(n−1))×

×J0(z(n−1),t(n−1))dz(n−1)dt(n−1) .. .



dz′dt′+Rn(z,t)

(46)
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where Rn(z,t) is difference between the n-th and (n−1)-th terms of the sequence,
namely

Rn(z,t)=

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)

∫ t′

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′) .. .×

×
t(n−1)
∫

0

z0
∫

0

G(z(n−1),z(n),t(n−1),t(n))Ls(z
(n))J0(z

(n),t(n))dz(n)dt(n) . ..dz′dt′

(47)

Assign such series

J(z,t)≡J0(z,t)+
∞
∑

n=1

Rn(z,t) (48)

to the constructed sequence of functions. This series is an integral Neumann series.

Remark that, so far as the function J0(z,t) is continuously differentiable

then acting on it by the operator Ls(z) we obtain the expression

Ls(z)J0(z,t)= (D1−D0)
n1
∑

i=1

ηi1(z)
∂2J0(z,t)

∂z2
(49)

Statement. If the diffusion coefficients D0, D1 are bounded and D0 6= 0,
then such conditions are satisfied for the Green function G(z,z′,t,t′) and the

diffusion flow in the homogeneous body J0(z,t)

(1) |G(z,z′,t,t′)| ≤K1<∞, ∀z,z′ ∈ [0,z0], ∀t′ ∈ [0,t], ∀t∈ [0, τ̄ ] (τ̄ <∞)
(2) |Ls(z)G(z,z′,t,t′)| ≤K2<∞, ∀z,z′ ∈ [0,z0], ∀t′ ∈ [0,t], ∀t∈ [0, τ̄ ]
(3) |Ls(z)J0(z,t)| ≤K3<∞, ∀z ∈ [0,z0], ∀t∈ [0, τ̄ ]

(50)

Remark that as the condition of zero initial concentration is the partial case

of the nonzero constant initial concentration condition, then the Statement is true

in the absence of an admixture substance in the body in the initial moment, too.

Theorem 1. When the conditions of the Statement are satisfied, the

Neumann series (48) is absolutely and uniformly convergent.

Proof. Taking into account the relations (50) we obtain the following

estimate for the general term of the Neumann series

|Rn| ≤K1Kn−12 K3
(z0t)

n

n!
(51)

Whereas a majorant series with the positive general term K1K
n−1
2 K3(z0t)

n/n!

converges at n→∞ for arbitrary values K1, K2, K3, z0, t, then the sequence of
partial sums of the series (48)

{

J (n)(z,t)
}

is absolutely and uniformely convergent

at n→∞ after the Weierstrass creterion, namely
lim
n→∞
J (n)(z,t)= J(z,t) (52)

Theorem 1 is proved.
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Theorem 2. The function J(z,t)≡J0(z,t)+
∑∞
n=1Rn(z,t) is a solution of

the integro-differential equation (28).

Proof. Substitute the series (48) into Equation (28), then we obtain

J0(z,t)+
∞
∑

n=1

Rn(z,t)= J0(z,t)+

+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)

[

J0(z,t)+

∞
∑

n=1

Rn(z,t)

]

dz′dt′

(53)

Use the definition of function Rn (z,t)

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J0(z,t)dz

′dt′+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)×

×
t′
∫

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′)J0(z

′′,t′′)dz′′dt′′dz′dt′+ .. .=

=

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)J0(z,t)dz

′dt′+

+

t
∫

0

z0
∫

0

G(z,z′,t,t′)Ls(z
′)

t′
∫

0

z0
∫

0

G(z′,z′′,t′,t′′)Ls(z
′′)J0(z

′′,t′′)dz′′dt′′dz′dt′+ . . .

(54)

The obtained identity proves Theorem 2.

Let us find an estimate for the sum of the remainders of the series (48)

Sn=
∑∞
k=n+1Rk(z,t). As long as the inequality (51) takes place, then performing

summation of both right- and left-hand sides of this relation, we obtain

|Sn| ≤
K1K3
K2
exp(K2z0τ̄)

[

1− 1
n!
Γ(n+1,K2z0τ̄)

]

(55)

where Γ(n+1,K2z0τ̄) =
∫∞

K2z0τ̄
xne−xdx is the additional incomplete Gamma-

function.

Remark that in previous investigations [21, 17] for convergence of the

Neumann series the condition of boundedness of the of inclusion disposition

domain is imposed. As follows from the Statement and Theorem 1 this condition

is not necessary for a nonstationary case.

3.4. Averaging the diffusion flow over the ensemble of phase

configurations

To find the averaged diffusion flow we restrict ourselves by two first terms

of the Neumann series (48)

J(z,t)≈ J0(z,t)+(D1−D0)
t
∫

0

z0
∫

0

G(z,z′,t,t′)

n1
∑

i=1

ηi1(z
′)
∂J0(z

′,t′)

∂z2
dz′dt′ (56)
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Average the expression (56) over the ensemble of phase configurations with

uniform distribution of sublayers in the body taking into account the fact that all

sublayers of the inclusion phase have the same characteristic (average) thickness

h1 (Figure 2, and the random coordinate characterizing the inclusion location is

the coordinate of the “upper” boundary of the inclusion zi1 (i=1,n1). Then using

the relation (49) we have

〈J0(z,t)〉conf = J0(z,t), 〈Ls(z′)〉conf =(D1−D0)
n1
∑

i=1

〈ηi1(z′)〉conf
∂2

∂z2
(57)

Take into account that

ηi1(z
′)=

{

1, z′ ∈ [zi1;zi1+h1]
0, z′ /∈ [zi1;zi1+h1]

=

{

1, z′−zi1 ∈ [0;h1]
0, z′−zi1 /∈ [0;h1]

= ηi1(z
′−zi1) (58)

Then

n1
∑

i=1

〈ηi1(z′)〉=
n1
∑

i=1

〈ηi1(z′−zi1)〉=
n1
∑

i=1

1

V

z0−h1
∫

0

ηi1(z
′−zi1)dzi1=

n1
∑

i=1

1

V

z′
∫

0

ηi1(x)dx

(59)

where x= z′−zi1. Therefore we have

n1
∑

i=1

1

V

z′
∫

0

ηi1(x)dx=
n1
V

z′
∫

0

dx=
z′n1
V
=
z′n1
V
· h1
h1
=
v1z
′

h1
(60)

for z′≤h1 and
n1
∑

i=1

1

V

z′
∫

0

ηi1(x)dx=
n1
V

h1
∫

0

dx=
h1n1
V
= v1 (61)

for z′≥h1. Then finally we obtain
n1
∑

i=1

〈

ηi1(z
′)
〉

=

{

v1z
′/h1, z

′≤h1
v1, z′≥h1

(62)

Substituting the expressions (57) and (62) into (56) we obtain the formula

for determination of the flow of admixture particles in a multilayered strip

averaged over the ensemble of phase configurations with the uniform distribution

function

〈

J(z,t)
〉

conf
=J0(z,t)+(D1−D0)

t
∫

0





v1
h1

h1
∫

0

z′G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z2
dz′+

+v1

z0
∫

h1

G(z,z′,t,t′)
∂2J0(z

′,t′)

∂z2
dz′



dt′

(63)
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If in the relation (63) we substitute the expressions for the Green func-

tion (44) and the diffusion flow in the homogeneous layer under zero initial con-

centration (37), then we obtain

1

J∗

〈

J(z,t)
〉

conf
=1− 2

z0

∞
∑

n=1

1

ξn
e−D0ξ

2
nt sin(ξnz)+

+
2v1(D1−D0)
z20D0

∞
∑

k=1

∞
∑

n=1

ξnĀkn
y2k−ξ2n

[

e−D0ξ
2
nt−e−D0y2kt

]

sin(ykz)

(64)

In the case of nonzero constant initial concentration of the admixture we

substitute the expression (39) into the formula (63) and we have

1

J∗

〈

J(z,t)
〉

conf
=1− 2

z0

∞
∑

n=1

e−D0ξ
2
nt

(

1

ξn
+(−1)nD0

c∗
J∗

)

sin(ξnz)+

+
2v1(D1−D0)
z20D0

∞
∑

k=1

∞
∑

n=1

ξnĀkn
y2k−ξ2n

(

1+(−1)nD0
c∗
J∗
ξn

)

(

e−D0ξ
2
nt−e−D0y2kt

)

sin(ykz)

(65)

Here Ākn=
cos
[

(yk−ξn)h1

]

h1(yk−ξn)2
− cos

[

(yk+ξn)h1

]

h1(yk+ξn)2
− 4ykξn
h1(y2k−ξ

2
n)
2 +(−1)k+n 2yk

y2
k
−ξ2n
.

Note that we have not considered the specific form of initial and boundary

conditions in the formula (63), which makes it possible to apply it for different

kinds of initial and boundary conditions.

3.5. Numerical analysis of averaged diffusion flows

This section is devoted to the numerical analysis of averaged diffusion flows

according to the found calculation formulae (64) and (65). These calculations

were carried out in the dimensionless variables (41). We set the following basic

parameters of the problem: τ =0.1; v1=0.2; h1=0.01; c∗/J∗=0.1.

Figure 7 shows the mass flow distributions in the strip at zero (a) and

nonzero constant (b) initial conditions on the concentration. Curves 1–5 corre-

spond to different moments of the dimensionless time τ = 0.01; 0.03; 0.1; 0.5; 1.

Figure 8 illustrates the behavior of the averaged diffusion flow at zero (a) and

nonzero (b) initial admixture concentrations for different values of the volume

fraction of inclusions v1 = 0.05; 0.1; 0.2 (curves 1–3 respectively). In Figures 7

and 8 the curves ‘a’ are used for D1/D0=0.01, the curves ‘b’ for D1/D0=2. The

dashed lines mark the corresponding flows in the homogeneous layer with matrix

characteristics.

Figure 9a shows the distributions of averaged mass flows at zero initial

concentration for different values of the ratio of diffusion coefficients D1/D0 =

0.01; 0.5; 2; 5; 10; 15 (curves 1–6 respectively), and Figure 9b illustrates diffusion

flows at nonzero constant initial admixture concentration for different values of

the ratio c∗/J∗=0.01; 0.1; 0.2; 0.3; 0.4 (curves 1–5 respectively).

At the zero initial concentration of admixture particles the averaged flows

are always steadily decreasing functions for D1 <D0 (Figure 7a), which time-
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Figure 7. Distributions of mass flows in the strip in different moments of time at zero (a)

and nonzero (b) initial concentrations

Figure 8. Distributions of mass flows in the strip depending on different values of volume

fraction of inclusions at zero (a) and nonzero (b) initial concentrations

Figure 9. Distributions of mass flows in the strip at zero initial concentration for different

values of D1/D0 (a) and at nonzero initial concentration for different values of c∗/J∗ (b)

increase in the whole body till they get a steady-state regime. In the case of

nonzero constant initial concentration (Figure 7b) the behavior of the averaged

diffusion flows for small times differs substantially from those with the zero

initial concentration. With increasing time for the diffusion process at the ratio
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c∗/J∗ = 0.01 the admixture concentration increases in the body (Figure 4a) till

it gets a steady state regime (curve 5 in Figure 4a). The diffusion flow decreases

from the boundary ς =0, it is close to zero in the middle of the layer and increases

rapidly near the boundary ς =1 (curves 1a and 1b in Figure 7b), this explains the

necessity to provide the condition of equality of zero admixture concentration on

the boundary ς =1.

If the coefficient of admixture diffusion in the sublayers is less than in

the matrix, the flow in a nonhomogeneous body is always smaller than in

a homogeneous one. In an opposite case the flow in the multilayered strip is larger

than in the homogeneous layer (Figure 7). In addition, flows in homogeneous and

nonhomogeneous strips coincide on the layer boundary.

It should be remarked that with the growth of the volume fraction of

inclusions the values of mass flow decrease for D1<D0 and increase for D1>D0
at both zero and nonzero initial concentration (Figure 8). In particular, increasing

the volume fraction of inclusions from 0.1 to 0.2 leads to decreasing the averaged

flow to 9% in the middle of the layer forD1<D0 and increasing to 9% forD1>D0.

Raising the ratio of diffusion coefficients D1/D0 at the zero initial concen-

tration of admixture in the body leads to an increase in the averaged diffusion

flow (Figure 9a), in addition to that, for large values of the ratio, the flow growth

from the surface is observed, where the mass source acts (curve 6 in Figure 9a).

The dependence of the function 〈J(ς,τ)〉/J∗ at the nonzero initial concentration
on the values of the ratio D1/D0 is similar to the case of zero initial concentration.

The occurrence of admixture particles in the body in the initial moment

significantly affects both the behavior and values of the admixture flow function.

For small ratios c∗/J∗ the admixture flow in both the homogeneous layer and the

multilayered strip is a steadily decreasing function (curve 1a in Figure 9b). With

the growth of initial concentration c∗ the flow increases near the surface of the

layer ς =1 which can cause a local minimum in the middle of the body (curves 4a

and 5a in Figure 9b). Changing the characteristic thickness of sublayers at the

same volume fraction of inclusions, i.e. a change of the number of inclusions, has

little effect on the values of the averaged diffusion flow for both zero and nonzero

constant initial concentration (difference in the third significant digit).

4. Conclusion

Summing up, in this paper we have proposed a new approach to the math-

ematical description of admixture diffusion fluxes in bodies with a randomly non-

homogeneous multiphase structure under which initial-boundary value problems

are formulated directly for the function of mass flux. The diffusion equation for

the flux of migration particles has been obtained on the basis of the equation of

mass balance. We have justified the initial and boundary conditions for the flow

in a layer for the avoidance of contradictions, for example, to prevent a case of an

unlimited amount of substance in a limited body. The integro-differential equation
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for the diffusion flow has been constructed that is equivalent to the original initial-

boundary value problem. The solution of the equation has been found in the form

of the integral Neumann series. We have formulated and proved a theorem on

the absolute and uniform convergence of the Neumann series. Such a theorem has

been proved for the first time for models of diffusion processes in stochastically

nonhomogeneous bodies where a random structure is taken into account in the

coefficients of the problem. The theorem of the existence of a solution for the

corresponding integro-differential equation has been proved. We emphasize that

we have proved the existence of a solution of the integro-differential equation and

convergence of the corresponding integral series when the kernel of operator con-

tains a random function of coordinates as a multiplier. With that it is not limited

by any restrictions on the density of the distribution function of phases in the

body. That is to say that the proposed methodology for study of such a class of

diffusion problems is valid for arbitrary configuration of phases.

The stochastic admixture flow has been averaged over the ensemble of phase

configurations in cases where the admixture is absent in the body in the initial

moment or its constant nonzero initial distribution is known. Calculation formulae

have been found for the averaged mass flow in a multilayered strip with a uniform

distribution of phases. On this basis we have created software containing program

modules for computation of admixture concentration and diffusion flow in the

homogeneous body at zero and nonzero constant initial concentration of the

migrating substance; The Green function; the diffusion flow averaged over the

ensemble of phase configurations in three- and multilayered strip where phases

distribute by the uniform low at zero and nonzero constant initial concentration

of admixture particles. Simulation of the averaged diffusion flows in two-phase

stratified bodies has been carried out. We have established that the ratio of the

admixture diffusion coefficients in the inclusions and in the matrix affect most

the behavior and values of the averaged mass flow, while the diffusion flow almost

does not depend on the characteristic thickness of sublayers. It is shown that

independently from the kind of the inclusion, the distribution of the diffusion flow

in the nonhomogeneous body is always smaller than the flow in the body without

sublayers, if the admixture diffusion coefficient in the inclusions is greater than

the coefficient in the basic phase, and vice versa.

The designed software was applied to estimate on-stream time and efficiency

of filters of cleaning urban municipal wastewaters, sewage from recreation on the

beach and sewage brought by cesspoolage trucks from unducted territories. Here

the results are used in the technique segment for cleaning urban runoff in biological

reactors. In particular, an algorithm is developed and established for the relation

between the costs of production of these arrangements and the level of their

modern processibility in provision of the set indicators and parameters of water

cleaning.

Finally, in the present paper we have considered the case of uniform

distribution of layered inclusions only. In the next paper we shall propose a study
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of averaging flows of admixture in two-phase stratified bodies under non-uniform

distributions of inclusions, where the region of the most probable disposition of

inclusions is located near the layer surface on which a mass source acts, in the

vicinity of another body boundary and in the middle of the strip.

Appendix. Proof of statement on function

boundedness (50)

1. First show satisfaction of the inequality (1) in the formulae (50). The

general term of the series (44) in the domain [0,z0]∪
[

[0, τ̄ ]∩{t = t′}
]

can be

estimated as
∣

∣

∣
e−D0y

2
k(t−t

′) sinykz
′ sinykz

∣

∣

∣
≤ e−D0y2k(t−t′) (66)

The series
∑∞
k=0e

−D0y
2
k(t−t

′) is absolutely convergent by the D’Alembert

criterion. Then, by the Weierstrass criterion, the series
∑∞
k=0e

−D0y
2
k(t−t

′) sinykz
′

sinykz is absolutely and uniformly convergent, and therefore the sequence of its

partial sums is also absolutely and uniformly convergent. Moreover, the series is

bounded so long as a convergent sequence in the metric space is bounded. That

is, the function g(z,z′,t,t′) =
∑∞
k=1e

−D0y
2
k(t−t

′)
[

cos
(

yk(z−z′)
)

−cos
(

yk(z+z
′)
)]

is bounded for ∀z, z′ ∈ [0,z0], ∀t, t′ ∈ [0, τ̄ ] except the point t= t′. Since θ(t−t′)≤ 1
for ∀t, t′ then the function G(z,z′,t,t′) is also bounded for ∀z, z′ ∈ [0,z0],
∀t, t′ ∈ [0, τ̄ ] except for the point t= t′.

Let us show the boundedness of the function g(z,z′,t,t′) in the point t= t′.

For this aim we use the property that a continuous function is bounded on a closed

interval and show that the function g(z,z′,t,t′) in the domain [0,z0]∪
[

[0, τ̄ ]∩{t=
t′}
]

is a continuous function of its arguments.

From the definition of the function continuity in a point we have that for

∀ε> 0, ∀δ > 0 such that from the condition ∀t, |t− t′|<δ it follows
∣

∣g(z,z′,t,t′)−
g(z,z′,t′,t′)

∣

∣<ε.

Use the known series [22]

∞
∑

k=1

k

k2+a2
sinkx=

π

2

sh(π−x)a
shπa

(67)

Differentiating this expression with respect to the variable x we obtain

∞
∑

k=1

k2

k2+a2
coskx=−πa

2

ch(π−x)a
shπa

(68)

Taking into account (68) and following the inequality [23]

ez < (1−z)−1 (z < 1) (69)
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we have

∣

∣g(z,z′,t,t′)−g(z,z′,t′,t′)
∣

∣<
1

z0

∣

∣

∣

∣

∣

∞
∑

k=1

cosyk(z−z′)
[

1

1+D0y2kδ
−1
]

∣

∣

∣

∣

∣

+

+
1

z0

∣

∣

∣

∣

∣

∞
∑

k=1

cosyk(z+z
′)

[

1

1+D0y2kδ
−1
]

∣

∣

∣

∣

∣

=
1

z0

∣

∣

∣

∣

∣

∞
∑

k=1

cosk
π(z−z′)
z0

[

− k2

k2+z20/D0π
2δ

]

∣

∣

∣

∣

∣

+

+
1

z0

∣

∣

∣

∣

∣

∞
∑

k=1

cosk
π(z+z′)

z0

[

− k2

k2+z20/D0π
2δ

]

∣

∣

∣

∣

∣

=
1

z0

∣

∣

∣

∣

∣

ch
(

z0/
√
D0δ−(z−z′)/

√
D0δ

)

2
√
D0δ sh

(

z0/
√
D0δ

)

∣

∣

∣

∣

∣

+

+
1

z0

∣

∣

∣

∣

∣

ch
(

z0/
√
D0δ−(z+z′)/

√
D0δ

)

2
√
D0δ sh

(

z0/
√
D0δ

)

∣

∣

∣

∣

∣

≤ 1√
D0δ
ch

(

z0√
D0δ

)

cth

(

z0√
D0δ

)

= ε

(70)

That is, for arbitrarily given ε there is such value δ that is a solution of the

following equation

1√
D0δ
ch

(

z0√
D0δ

)

cth

(

z0√
D0δ

)

= ε (71)

Thus, the function g(z,z′,t,t′) is continuous, and hence bounded, in the

point t= t′.

So far as G(z,z′,t,t′)≤ g(z,z′,t,t′) then there is such constant K1 that as
∣

∣G(z,z′,t,t′)
∣

∣≤K1 for ∀z, z′ ∈ [0,z0], ∀t′ ∈ [0,t], ∀t∈ [0, τ̄ ] (τ̄ <∞).
2. First we show boundedness of the function

∣

∣Ls(z)G(z,z
′,t,t′)

∣

∣ in all the

domain of definition except for the point t= t′. Taking into account the expression

for the Green function (44) and the operator Ls(z) we obtain

Ls(z)G(z,z
′,t,t′)= (D0−D1)

2θ(t− t′)
z0

n1
∑

i=1

ηi1(z)
∞
∑

k=1

y2ke
−D0y

2
k(t−t

′) sinykz sinykz
′

(72)

Consider that 0≤ θ(t− t′)≤ 1 for ∀t, t′ and θ(t− t′) = 1 for ∀t, t′ ∈ [0, τ̄ ]∩{t= t′}
as well as

n1
∑

i=1

ηi1(x)≤ 1 for ∀x (73)

Then

∣

∣Ls(z)G(z,z
′,t,t′)

∣

∣≤
∣

∣ḡ(z,z′,t,t′)
∣

∣=(D0−D1)
2

z0

∞
∑

k=1

y2ke
−D0y

2
k(t−t

′) sinykz sinykz
′

(74)

As long as the following inequalities are true

|D0−D1| ≤ dm, |sinx| ≤ 1 (75)

where dm=max{D0;D1}, then we have
∣

∣ḡ(z,z′,t,t′)| ≤ 2dm
z0

∞
∑

k=1

y2ke
−D0y

2
k(t−t

′)≤ 2dmπ
2

z30

∞
∑

k=1

k2e−D0π
2|t−t′|k/z20 (76)
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With provision for
∑∞
k=1k

2xk = x(x+1)(1−x)3 for ∀x, |x|< 1 [22] and e−x < 1 for
∀x> 0 and also D0π2|t− t′|z−20 > 0 for ∀t, t′ ∈ [0; τ̄ ]∩{t= t′}, we obtain

∣

∣ḡ(z,z′,t,t′)
∣

∣≤ 2dmπ
2e−d̄(t−t

′)
(

1+e−d̄|t−t
′|
)

z30
(

1−e−d̄|t−t′|
)3 ≤ 2dmπ

2

z30

1+e−d̄|t−t
′|

(

1−e−d̄|t−t′|
)3 (77)

where d̄=D0π
2/z20 .

Since the relation |t− t′|=σ > 0 is true then

∣

∣ḡ(z,z′,t,t′)
∣

∣≤ 2dmπ
2

z30

1+e−d̄σ
(

1−e−d̄σ
)3 =K2 (78)

To show the boundedness of the function ḡ(z,z′,t,t′) in the point t′= t, we

use the property of the boundedness of a continuous function on a closed interval.

By the definition the function ḡ(z,z′,t,t′) is continuous with respect to time in

the point t′ = t, if for ∀ε > 0 ∃δ > 0 such that from the condition ∀t, |t− t′|< δ
results in the inequality

∣

∣ḡ(z,z′,t,t′)− ḡ(z,z′,t′,t′)
∣

∣<ε.

From the relation (68) we obtain

∞
∑

k=1

k4

k2+a2
coskx=

πa3

2

ch(π−x)a
shπa

(79)

Taking into account (79) and the inequalities (69) and (75) we have

∣

∣ḡ(z,z′,t,t′)− ḡ(z,z′,t,t)
∣

∣<
dm
z0

∣

∣

∣

∣

∣

∞
∑

k=1

y2k cosyk(z−z′)
[

1

1+D0y2k
−1
]

∣

∣

∣

∣

∣

+

+
dm
z0

∣

∣

∣

∣

∣

∞
∑

k=1

y2k cosyk(z+z
′)

[

1

1+D0y2k
−1
]

∣

∣

∣

∣

∣

≤ dm

2
(√
D0δ

)3 ch

(

z0√
D0δ

)

×

×cth
(

z0√
D0δ

)

= ε

(80)

That is, for the arbitrary number ε given beforehand there is such δ that

is determined from the equation (80). Therefore, by definition, the function

ḡ(z,z′,t,t′) is continuous in the point t′= t and thus bounded. Then, the function

Ls(z)G(z,z
′,t,t′) is also bounded on any interval from the domain of definition.

3. Show that the action of the operator Ls(z) on the solution of the

homogeneous initial-boundary value problem J0(z,t) gives the function bounded

in whole domain of definition. With a provision for the expressions Ls(z)J0(z,t)=

(D1−D0)
∑n1
i=1ηi1(z)

∂2J0(z,t)
∂z2 and (39) we have

Ls(z)J0(z,t)= (D1−D0)
2J∗
z0

n1
∑

i=1

ηi1(z)

∞
∑

n=1

e−D0ξ
2
nt

(

ξn+
(−1)nc∗D0ξ2n

J∗

)

sinξnz

(81)
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Taking into account (73) and (75) we obtain

∣

∣Ls(z)J0(z,t)
∣

∣≤ 2J∗dm
z0

∣

∣

∣

∣

∣

∞
∑

n=1

e−D0ξ
2
nt

(

ξn+
(−1)nc∗D0ξ2n

J∗

)

sinξnz

∣

∣

∣

∣

∣

≤

≤ 2J∗dm
z0

(
∣

∣

∣

∣

∣

∞
∑

n=1

e−D0ξ
2
ntξn sinξnz

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∑

n=1

e−D0ξ
2
nt
(−1)nc∗D0ξ2n

J∗
sinξnz

∣

∣

∣

∣

∣

) (82)

As long as the following equality is true [22]

∞
∑

k=0

2k+1

(2k+1)2+a2
sin(2k+1)x=

π

4
ch(π−2x)asech aπ

2
(83)

as well as the known limit [23]

lim
|z|→∞

zαe−z =0 under α≡ const (84)

then, by the Cauchy criterion, the series
∑∞
n=1 ξ

2
ne
−D0ξ

2
nt is absolutely con-

vergent. By the Weierstrass criterion of uniform convergence of series, the se-

ries
∑∞
n=1(−1)nξ2ne−D0ξ

2
nt sinξnz is absolutely and uniformly convergent, and

hence the sequence of its partial sums is also absolutely and uniformly con-

vergent. A convergent sequence is bounded in metric space, then, the series
∑∞
n=1(−1)nξ2ne−D0ξ

2
nt sinξnz≤U <∞ is bounded. With a provision for (69) and

the equality ch2 t−sh2 t=1 [23] the following estimation is true
∣

∣Ls(z)J0(z,t)
∣

∣≤2J∗dm
z0

(

z0
2D0t

sech
z0√
D0t
+
c∗D0
J∗

∞
∑

n=1

∣

∣

∣
(−1)nξ2ne−D0ξ

2
nt
∣

∣

∣

)

≤

≤2J∗dm
z0

(

z0
2D0t

sech
z0√
D0t
+
c∗D0
J∗

∞
∑

n=1

ξ2ne
−D0ξ

2
nt

)

≤

≤2J∗dm
z0

(

z0
2D0t

sech
z0√
D0t
+
c∗D0
J∗
U

)

=K3

(85)

Thus the Statement is proved.

References

[1] Aslanov A M, Gerega A N and Lozovsky T L 2006 J. Appl. Phys. 76 (6) 142 (in Russian)

[2] Beckman I N, Romanovskii I P, Balek V, Sedlazek B and Kohovec J 1987 Synthetic

Polymer Membranes, Walter de Gruyter

[3] Chen Z, Wu Y and Sun X 2015 J. Wind Engineering and Industrial Aerodynamics

137 100

[4] Saeed A, Vuthaluru R and Vuthaluru B 2015 Chemical Engineering Research and Design

93 812

[5] Winegard W C 1964 An introduction to the solidification of metals, The Institute of

Metals

[6] Gjennestad M A and Munkejord S T 2015 Energy Procedia 64 160

[7] Bergins C, Crone S and Strauss K 2005 Transport in Porous Media 60 (3) 370

[8] Schulenberg T and Muller U 1987 Int. J. Multiphase Flow 13 (1) 861

[9] Lidzba D 1998 J. Theor. and Appl. Mech. 36 (3) 1042

[10] Matysiak S J and Mieszkowski R 1999 Int. Com. in Heat and Mass Trans. 26 (4) 1198



320 Y. Chaplya, O. Chernukha and A. Davydok

[11] Keller J 2001 Transport in Porous Media 43 (3) 605

[12] Chaplya Y Y, Chernukha O Y and Davydok A Y 2012 Reports of the National Academy

of Sciences of Ukraine 11 203 (in Ukrainian)

[13] Chaplya Y and Chernukha O 2009 Mathematical modeling of diffusion processes in

random and regular structures, Naukova Dumka (in Ukrainian)

[14] Crank J C 1975 The Mathematics of Diffusion, Clarendon Press

[15] Munster A 1971 Chemical Thermodynamics, Wiley

[16] Gibbs W J 1956 Thermodynamics and Statistical, Academic Press INC

[17] Rytov S M, Kravtsov Y A and Tatarsky V I 1978 Introduction to Statistical Radiophysic.

Part II: Random fields, Nauka (in Russian)

[18] Tikhonov A N and Samarskii A A 1963 Equations of Mathematical Physics, Pergamon

Press Ltd.

[19] Lykov A V 1978 Theory of Heat Conduction, Higher School (in Russian)

[20] Krasnov M L 1975 Integral Equations, Nauka (in Russian)

[21] Tatarsky V I 1967 Wave propagation through the turbulent atmosphere, Nauka (in

Russian)

[22] Prudnikov A P, Brychkov Yu A and Marichev O I 1986 Integrals and Series, Vol. 1:

Elementary Functions, Gordon and Breach

[23] Abramowitz M and Stegun I 1964 Handbook of Mathematical Functions with Formulas,

Graphs and Mathematical Tables, National Bureau of Standards (Applied Mathematics

Series)


