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1. Preliminaries

Symbols |E|, χE , intE, clE, frE denote the Lebesgue outer measure, the char-

acteristic function, the interior, the closure, and the boundary of a set E ⊂
�
,

respectively. If f : E →
�
and A ⊂ E is nonvoid, then ωf (A), f � A denote the

oscillation of f on A and the restriction of f to A, respectively. We write Df for

the set of points at which f is discontinuous. We say that f is Baire∗1 if for every

set A ⊂ E, closed in E, there is a portion I ∩ A 6= ∅ of A such that f � (I ∩ A) is

continuous. A figure means a union of finitely many intervals.

Let 〈a, b〉 be a nondegenerate compact interval. By a division in 〈a, b〉 we under-

stand any finite collection P of pairs (I, x) (so-called tagged intervals), where I is

a compact subinterval of 〈a, b〉 and its tag x ∈ I , such that for all (I, x), (J, y) ∈ P ,

if (I, x) 6= (J, y), then the intervals I and J are nonoverlapping. (In papers [8], [12]

we used the name partial tagged partition instead.) If δ is a gauge on 〈a, b〉, i.e.,

δ : 〈a, b〉 → (0,∞), then we say that P is δ-fine, if I ⊂ (x− δ(x), x+ δ(x)) for every

(I, x) ∈ P . We say that P is anchored (contained) in a set E if x ∈ E (I ⊂ E

respectively) for every (I, x) ∈ P . If
⋃

(I,x)∈P

I = 〈a, b〉, then the divisionP is called
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a partition of 〈a, b〉. It will be very useful to write for two divisions: P w R, if for

each (I, x) ∈ P one has I ⊂ J for some (J, y) ∈ R.

Let G : 〈a, b〉 →
�
. When I = 〈c, d〉 ⊂ 〈a, b〉, by ∆G(I) we mean the increment

G(d) − G(c). Let P be any collection of pairs (I, x), I ⊂ 〈a, b〉, x ∈ 〈a, b〉. For

f : 〈a, b〉 →
�
we write

σG(P , f) =
∑

(I,x)∈P

f(x) · ∆G(I), |σG|(P , f) =
∑

(I,x)∈P

|f(x) · ∆G(I)|.

Also, ∆G(P) = σG(P , 1), |∆|G(P) = |σG|(P , 1).

By |E|G we mean the variational measure of E ⊂
�
induced by G, see [15]; i.e.,

|E|G = inf
δ

sup
P

|∆|G(P),

where sup is taken over all δ-fine divisions P anchored in E, and inf is taken over

all gauges δ. The family IG of subsets of 〈a, b〉 is defined as follows

E ∈ IG if there exists an A ∈ Fσ , |A|G = 0, E ⊂ A;

Iid = I, id(x) = x. We will write that a condition holds G-almost everywhere if the

exceptional set E has |E|G = 0.

Assume that G is of bounded variation. Then the variational measure | · |G co-

incides with the outer measure induced by the ordinary variation of G on open

intervals. In this case, a set is called G-measurable if it is measurable with respect

to this outer measure.

For notions of AC∗, VB∗, VBG∗, Lusin’s N condition, and their main properties,

we refer the reader to [10].

2. The H1-integral

Notion of the H1-integral was introduced by Garces, Lee and Zhao in [6]. This

concept was based on a modification of the Kurzweil-Henstock integral.

Definition 2.1. We say that f is H1-integrable to I, if there exists a gauge δ

with the following property: for every ε > 0 one can divide 〈a, b〉 into nonoverlap-

ping intervals I1, . . . , In such that for any δ-fine partitions π1, . . . , πn of I1, . . . , In
respectively, we have

∣

∣

∣

∣

n
∑

i=1

σid(πi, f) − I

∣

∣

∣

∣

< ε.
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After the original paper [6], a few further publications appeared [4], [5], [7], [8],

[12], [13], and the H1-integral is already quite thoroughly investigated. Since the

H1-integral is in fact a gauge integral (with the only difference in defining the limit

of integral sums in slightly stronger terms), its theory helps to understand better the

influence of gauges on Riemann-type integration. Let us sketch the main properties

of the H1-integral. First, every Riemann integrable function is H1-integrable, and

every H1-integrable function is Kurzweil-Henstock integrable, but the converse state-

ments are not true [6], [12]. There are Lebesgue integrable functions not integrable

in the H1 sense [12], and there are H1-integrable functions not integrable in the sense

of Lebesgue (this is so because the H1-integral is not absolute) [4], [12]. There is a

Kurzweil-Henstock integrable function equal almost everywhere to no H1-integrable

one [8], but every Kurzweil-Henstock integrable function can be written as the sum

of a Lebesgue integrable one and an H1-integrable one [13]. A controlled convergence

theorem for the H1-integral was proved in [5]. However, it is the only convergence the-

orem which is known for this integral. The Beppo Levi (montone convergence) [12],

the Lebesgue (dominated convergence) [12], and even the uniform convergence [7]

theorems do not hold. Not every derivative is H1-integrable, but every derivative is

the limit of a uniformly convergent sequence of H1-integrable functions [8].

A substantial advance was made in the paper [8], where the following Riemann-

Lebesgue type theorem for the H1-integral was obtained, cf. Corollary 3.5 there.

Theorem 2.2. A function f : 〈a, b〉 →
�
is H1-integrable if and only if it is

Kurzweil-Henstock integrable and

(1) there exists an E ∈ I such that f � (〈a, b〉 \E) is Baire∗1 in its domain.

In the present paper we generalize this result, giving a characterization for Stieltjes

H1-integrable functions. This is a strong generalization, given in terms of Thomson’s

variational measure. It is not our purpose to present a complete theory of the

Stieltjes H1-integral, which imitates (at least for integrators that are continuous and

of bounded variation) the theory already known. The way we lead the reader in the

third section, seems to be the shortest way to the R-L type Theorem 3.17. This

theorem is not the only goal of our work. We will use it to indicate examples of

adjoint classes of functions in the H1 sense (the fourth section).
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3. The main result

Let f,G : 〈a, b〉 →
�
.

Definition 3.1. We say that f is Kurzweil-Henstock integrable to I with respect

to G, if for every ε > 0 one can find a gauge δ such that for any δ-fine partition π of

〈a, b〉 we have

|σG(π, f) − I| < ε.

Definition 3.2. We say that f is H1-integrable to I with respect to G, if there

exists a gauge δ with the following property: for every ε > 0 one can divide 〈a, b〉

into nonoverlapping intervals I1, . . . , In such that for any δ-fine partitions π1, . . . , πn

of I1, . . . , In respectively, we have

∣

∣

∣

∣

n
∑

i=1

σG(πi, f) − I

∣

∣

∣

∣

< ε.

Integrals I will be denoted by (H)
∫ b

a f dG and (H1)
∫ b

a f dG respectively, or briefly

by
∫ b

a
f dG. Infinite (±∞) values of

∫ b

a
f dG are defined in a standard way. The

property in Definition 3.2 can be reformulated using the relation w as follows: for

every ε > 0 one can find a partition πε of 〈a, b〉 such that for any δ-fine partition

π w πε, we have |σG(π, f) − I| < ε.

Lemma 3.3 (Saks-Henstock lemma). Let f be Kurzweil-Henstock integrable

with respect to G, and let F be the indefinite integral of f . Assume that the gauge δ

is appropriate for ε in the sense of Definition 3.1. Then, for any δ-fine division P in

〈a, b〉, we have

|σG(P , f) − ∆F (P)| 6 ε.

For the H1-integral the following version of the Saks-Henstock lemma holds.

Lemma 3.4. Let f be H1-integrable with respect to G using gauge δ, and let

F be the indefinite integral of f . Assume that intervals I1, . . . , In are appropriate

for ε in the sense of Definition 3.2. Then, for any δ-fine divisions P1, . . . ,Pn in

I1, . . . , In respectively, we have

∣

∣

∣

∣

n
∑

i=1

(σG(Pi, f) − ∆F (Pi))

∣

∣

∣

∣

6 ε.

The next lemma is a corollary of Theorem 43.1 in [15].
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Lemma 3.5. For each E ⊂ 〈a, b〉 one has |G(E)| 6 |E|G.

Lemma 3.6. Let a set D be closed. Suppose that G is AC∗ on D and |D|G = 0.

Then for each ε > 0 there is a partition πε such that for every division P w πε

anchored in D, one has |∆|G(P) < ε.

���������
. We can assume that D is nowhere dense and that a, b ∈ D. First, let

|D| = 0. Let (ai, bi), i = 1, 2, 3, . . ., be intervals contiguous to D in 〈a, b〉. Take an

ε > 0. Since D ∩ DG = ∅, there are intervals 〈ci, di〉 ⊂ (ai, bi) such that

(2)

∞
∑

i=1

(ωG(〈ai, ci〉) + ωG(〈di, bi〉)) <
ε

2
.

Also, there is an η > 0 such that

(3)
∑

j

|Jj | < η ⇒
∑

j

ωG(Jj) <
ε

4

for each family {Jj}j of nonoverlapping intervals with endpoints in D. One can find

an N such that

(4)

∣

∣

∣

∣

〈a, b〉 \
N
⋃

i=1

(ai, bi)

∣

∣

∣

∣

< η.

Complete the division {(〈ai, ci〉, ai), (〈di, bi〉, bi)}N
i=1 to any partition πε of 〈a, b〉. Con-

sider a division P w πε anchored in D. Let

P
′ = {(I, x) ∈ P : I ⊂ 〈ai, ci〉 ∪ 〈di, bi〉, i = 1, . . . , N}.

By (2), |∆|G(P ′) < ε/2, by (3) and (4), |∆|G(P \P ′) < ε/2. Thus, |∆|G(P) < ε.

Now, let |D| be arbitrary. Take a homeomorphism T of
�
onto

�
such that

D = T (P ), |P | = 0. Since ∆G((T (I)) = ∆(GT )(I) for each interval I , we have

|P |GT = |T (P )|G = 0. So, by Lemma 3.5, the composition GT satisfies N on P .

Since the set P is closed and GT is VB∗ on P , it is AC∗ on P . We can apply the first

part of the proof to find a partition πε = {(Ii, xi)}n
i=1 such that |∆|GT (P) < ε for

every divisionP w πε anchored in P . One sees that the partition {(T (Ii), T (xi))}n
i=1

satisfies the requirement. �
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Lemma 3.7. Let G be VBG∗ and E ∈ IG. Then every function f is H1-

integrable with respect to G on E.

���������
. Let E =

∞
⋃

n=1
En, where G is VB∗ on En and |clEn|G = 0, n = 1, 2, 3, . . ..

We can assume that En’s are pairwise disjoint and that every restriction f � En

is bounded. G is continuous at each point of clEn and satisfies N on this set

(Lemma 3.5). So, G is AC∗ on clEn. Fix an ε > 0. By Lemma 3.6 we can find a

partition π
(n)
ε of 〈a, b〉 such that for all divisions P w π

(n)
ε , anchored in clEn, one

has |∆|G(P) < ε/M , where M is an upper bound of |f | � En. Thus, for such a P ,

(5) |σG|(P , fχEn
) 6 |σG|(P ,M) 6 M

ε

M
= ε.

This means that f is H1-integrable with respect to G on En.

For each n there exists a gauge δn such that for all δn-fine divisions P ,

(6) |σG(P , fχEn
)| <

1

2n
;

this comes from the Kurzweil-Henstock integrability of fχEn
with respect to G, and

from Lemma 3.3. Put δ(x) = δn(x) for x ∈ En, arbitrary outside of E. There is

an N such that 1/2N < ε/2. Let a partition π0 be finer than partitions

π
(1)
ε/2N , π

(2)
ε/2N , . . . , π

(N)
ε/2N .

Consider a δ-fine partition π w π0 and denote Pn = {(I, x) ∈ π : x ∈ En}, n ∈ 	 .
By (5) and (6),

|σG(π, fχE)| 6

N
∑

n=1

|σG|(Pn, fχEn
) +

∞
∑

n=N+1

|σG(Pn, fχEn
)|

< N
ε

2N
+

∞
∑

n=N+1

1

2n
=
ε

2
+

1

2N
< ε.

�

Lemma 3.8 (Cauchy extension). Suppose that f is Kurzweil-Henstock inte-

grable with respect to G on 〈a, b〉, and H1-integrable with respect to G on every

〈c, d〉 ⊂ (a, b). Then it is H1-integrable with respect to G on 〈a, b〉.

���������
. Similar to that of Lemma 5.3 in [12]. �
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Lemma 3.9 (Harnack extension). Suppose that a set D ⊂ 〈a, b〉 is perfect and

• f is Kurzweil-Henstock integrable with respect to G on 〈a, b〉,

• f is H1-integrable with respect to G on every 〈c, d〉 ⊂ 〈a, b〉 \D,

• G is VB∗ on D,

• F is VB∗ on D, where F is the indefinite integral of f ,

• f � D is bounded and G-almost everywhere continuous.

Then f is H1-integrable with respect to G on 〈a, b〉.
���������

. Let I1, I2, . . . be closed intervals contiguous to D in 〈a, b〉. Define a

gauge δ on 〈a, b〉 so that (x − δ(x), x + δ(x)) ⊂ Ii if x ∈ int Ii, and so that f is

H1-integrable on Ii’s using δ (Lemma 3.8). We can assume that for every δ-fine

division P in Ii one has

(7) |σG(P , f) − ∆F (P)| <
1

2i
.

Take arbitrary ε > 0. Consider the set

Eε = {x ∈ D : ω(x) > ε},

ω(x) being the oscillation of f � D at x. The set Eε ⊂ D is closed. Since |Eε|G = 0,

the integrator G is continuous at each point of Eε and satisfies the condition N

on Eε. Thus, G is AC∗ on Eε. In virtue of Lemma 3.6 we can find a closed figure
m
⋃

j=1

Jj ⊃ Eε such that for each divisionP , anchored in Eε and contained in
m
⋃

j=1

Jj , we

have |∆|G(P) < ε. Of course, we may assume that Eε is contained in O = int
m
⋃

j=1

Jj .

As G is VB∗ on D, if necessary one can shrink Jj ’s so that |∆|G(P) < ε will hold for

each divison P conatined in
m
⋃

j=1

Jj and anchored D. We can split the set 〈a, b〉 \O

into closed intervals K1, . . . ,Kp such that ωf (Kk ∩D) < ε for each k.

There exists an N such that

(8)
∞
∑

i=N+1

(

ωG(Ii) + ωF (Ii) +
1

2i

)

< ε.

For i 6 N let πi be a partition of Ii such that for all δ-fine partitions π w πi of Ii

one has

(9) |σG(π, f) − ∆F (Ii)| <
ε

N
.

Let a partition π0 of 〈a, b〉 contain some partitions π(i) w πi, i = 1 . . . , N , and

partitions of all intervals Jj and Kk.
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Now, consider two arbitrary δ-fine partitions π1, π2 w π0. (We assume that all

tags are at endpoints.) Let P i
s = {(I, x) ∈ πs : x ∈ Ii, I ⊂ Ii}, s = 1, 2, i 6 N .

Notice that P i
s is a partition of Ii. Now, divisions Qs = πs \

N
⋃

i=1

P i
s, s = 1, 2, will

be replaced by some families Rs according to the recipe that follows.

Denote Q̃s = {(I, x) ∈ Qs : D ∩ int I 6= ∅}. If (I, x) ∈ Qs \ Q̃s, the pair (I, x)

is included into Rs. Let (I, x) ∈ Q̃s. Notice that x ∈ D. If fr I ⊂ D, i.e., if

both endpoints of I are in D, we include (I, x) into an auxiliary division Os. In the

opposite case, one of the endpoints of I = 〈c, d〉, say the left one, belongs to some

int Ii = (ai, bi); of course i > N . Then we include the pair (〈c, bi〉, bi) into Rs, and

the pair (〈bi, d〉, d) into Os. Similarly for the right endpoint situation. Notice that

for all (I, x) ∈ Os we have fr I ⊂ D. Define

K = {I ∩ J : (I, x) ∈ O1, (J, y) ∈ O2},

where only nondegenerate intervals I ∩ J are considered, and include collections

{(I ∩ J, x) : I ∩ J ∈ K} and {(I ∩ J, y) : I ∩ J ∈ K} into R1 and R2 respectively.

Now, let J be the closure of a compound interval of the set

⋃

(I,x)∈Os

I \
⋃

(I,x)∈O3−s

I.

Notice that, since D is perfect, int J must miss D. Hence J = Il = 〈al, bl〉 for some

l > N . Choose any c ∈ (al, bl) and include into Rs the tagged intervals (〈al, c〉, al)

and (〈c, bl〉, bl). We have accomplished the construction of Rs. Clearly, Rs need not

be a division. Notice that the intervals from Rs and Qs form partitions of the same

figure. Notice also that

{I : (I, x) ∈ S1} = {I : (I, x) ∈ S2},

where Ss = {(I, x) ∈ Rs : fr I ⊂ D}, and that if (I, x) ∈ Rs \Ss then D∩ int I = ∅.

From the construction of Rs, we obtain by (8) that

|σG(Qs, f) − σG(Rs, f)| < 4M
∞
∑

i=N+1

ωG(Ii) < 4Mε,

where M is an upper bound of |f | � D. Denoting Ts = {(I, x) ∈ Ss : I ⊂ O,

we have |σG(Ts, f)| < Mε. Also, |σG(S1 \ T1, f) − σG(S2 \ T2, f)| < εW , where

W comes from the VB∗ property of G on D (notice that the divisions S1 \ T1 and

S2 \T2 are partitions of the same figure; we use ωf (Kk∩D) < ε here). Moreover, let
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U i
s = {(I, x) ∈ Rs \ Ss : I ⊂ Ii, x ∈ D}, V i

s = {(I, x) ∈ Rs \ Ss : I ⊂ Ii, x /∈ D}.

Notice that

Rs \ Ss =

∞
⋃

i=N+1

(U i
s ∪ V

i
s ).

Every V i
s is a δ-fine partition of a subinterval of Ii. Thus, by (7) and (8),

|σG(Rs \ Ss, f)| 6

∞
∑

i=N+1

(|σG(U i
s , f)| + |σG(V i

s , f) − ∆F (V i
s )| + |∆F (V i

s )|)

6

∞
∑

i=N+1

(

2MωG(Ii) +
1

2i
+ ωF (Ii)

)

< (2M + 1)ε.

By (9),

|σG(π1 \ Q1, f) − σG(π2 \ Q2, f)|

6

∣

∣

∣

∣

σG(π1 \ Q1, f) −
N

∑

i=1

∆F (Ii)

∣

∣

∣

∣

+

∣

∣

∣

∣

σG(π2 \ Q2, f) −
N

∑

i=1

∆F (Ii)

∣

∣

∣

∣

6

2
∑

s=1

N
∑

i=1

|σG(P i
s, f) − ∆F (Ii)| < 2N

ε

N
= 2ε.

Summing these estimates, we obtain

|σG(π1, f) − σG(π2, f)|

6

2
∑

s=1

(|σG(Qs, f) − σG(Rs, f)| + |σG(Ts, f)| + |σG(Rs \ Ss, f)|)

+ |σG(S1 \ T1, f) − σG(S2 \ T2, f)| + |σG(π1 \ Q1, f) − σG(π2 \ Q2, f)|

< 8Mε+ 2Mε+ 2(2M + 1)ε+Wε+ 2ε.

Thus, the Cauchy Criterion for the H1-integral is fulfilled for f . �

The following lemma was proved in [8], Lemma 3.1.

Lemma 3.10. Let E =
∞
⋃

n=1
En be a Gδ set and f : E →

�
. If the sequence (En)n

is ascending and the restriction f � En is continuous for each n, then there exists an

open interval J such that E ∩ J 6= ∅ and the restriction f � (E ∩ J) is continuous.

Remark 3.11. Let E ⊂
�
and assume that f : E →

�
is bounded and continu-

ous. Define

g(x) =

{

f(x) if x ∈ E,

lim inf
t→x, t∈E

f(t) if x ∈ clE \E.

Then g is bounded and Dg ⊂ clE \E.
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Lemma 3.12. Let G : 〈a, b〉 →
�
be VBG∗. Suppose that a function f is

Kurzweil-Henstock integrable with respect to G. Then the indefinite integral F ,

given by

F (x) = (H)

∫ x

a

f dG,

has the VBG∗ property as well.

���������
. We will use a condition which is equivalent to the VBG∗ property:

“the variational measure is σ-finite on a co-countable subset of 〈a, b〉”. Suppose that

|D|G < ∞. Denote En = {x ∈ 〈a, b〉 : |f(x)| 6 n}, n = 1, 2, . . .. We will show that

|D ∩En|F <∞ for each n and this will complete the proof.

Let a gauge δ be suitable for ε = 1 in the sense of Definition 3.1. We may suppose

that

|∆|G(P) < |D ∩En|G + 1

for each δ-fine division P anchored in D ∩ En. Then, by Lemma 3.3, for such a P

one has

|∆|F (P) 6
∑

(I,x)∈P

|f(x) · ∆G(I) − ∆F (I)| +
∑

(I,x)∈P

|f(x)| · |∆G(I)|

6 2 + n|D ∩ En|G + n.

It means that |D ∩En|F <∞. �

Theorem 3.13. Let f,G : 〈a, b〉 →
�
and let G ∈ VBG∗. Consider the following

two assertions:

(i) f is Kurzweil-Henstock integrable with respect to G, and

for each nonempty closed set D ⊂ 〈a, b〉 one can find an A ∈ IG and(10)

an interval I with I ∩D \A 6= ∅ such that f � (I ∩D \A) is continuous;

(ii) f is H1-integrable with respect to G.

One has (i) ⇒ (ii). The converse holds if G is continuous.
���������

. (i) ⇐ (ii) Suppose that f does not satisfy the condition (10). We will

show that f is not H1-integrable with respect to G. Consider an arbitrary gauge δ

on 〈a, b〉. Let D be a closed subset of 〈a, b〉 such that for each A ∈ IG, the set of

discontinuity points of f � (D \ A) is dense in D \ A 6= ∅. Of course D /∈ IG. Put

Dn = {x ∈ D : δ(x) > 1/n}, n ∈ 	 . In virtue of Lemma 3.10, there exists an n such
that

C = {x ∈ Dn : f � Dn is discontinuous at x} /∈ IG.

514



For x ∈ C, denote by ω(x) the oscillation of f � Dn at x; one has ω(x) > 0. Since

C /∈ IG, for some m the set Cm = {x ∈ C : ω(x) > 1/m} satisfies |clCm|G > M > 0.

Take any π. One can cover clCm by a family A of nonoverlapping intervals, all of

length less than 1/n, to satisfy

∑

I∈A

|∆G(I)| > M.

If G is continuous we can assume that Cm ∩ int I 6= ∅ for each I ∈ A . We can

also assume that I ⊂ J for some (J, y) ∈ π. For each I ∈ A one can pick an

xI ∈ Cm ∩ int I and a yI ∈ Dn ∩ I such that |f(xI ) − f(yI)| > 1/m. Both divisions

P1 = {(I, xI)}I∈A , P2 = {(I, yI)}I∈A

are δ-fine, moreoverP1,P2 w π. We get

∑

I∈A

|f(xI ) − f(yI)||∆G(I)| >
M

m
.

M andm were found independently of π, whence Lemma 3.4 is not valid for f using δ.

Thus, f is not H1-integrable with respect to G. (We notice that the (i) ⇐ (ii) part

of this reasoning follows for any continuous G.)

(i)⇒(ii) Suppose that f is Kurzweil-Henstock but not H1-integrable with respect

to G. Let P 6= ∅ be the set of all points x ∈ 〈a, b〉 such that f is integrable on

no neighbourhood of x. Lemma 3.8 implies that P is perfect and that f is inte-

grable on the closure of every interval contiguous to P . Assume that f satisfies

the condition (10). There exists a portion I ∩ P of P such that for some A ∈ IG

the restriction f � (I ∩ P \ A) is continuous and bounded, and both the integra-

tor G and the Kurzweil-Henstock Stieltjes indefined integral of f are VB∗ on I ∩ P

(Lemma 3.12). Extend the restriction f � (I ∩P \A) to a g on I ∩P , as is described

in Remark 3.11. Put f̃ = g on I ∩P , f̃ = f otherwise. Since Dg ⊂ A, by Lemma 3.9,

f̃ is H1-integrable on I with respect to G. Hence by Lemma 3.7, f is H1-integrable

with respect to G on I , a contradiction. �

Remark 3.14. The (i) ⇐ (ii) part of Theorem 3.13 holds also if G is normalized,

i.e., if at each x ∈ (a, b) there are finite G(x+), G(x−) with 2G(x) = G(x+)+G(x−).

In this case, one can get
∑

I∈A ′

|∆G(I)| > M/2, where A ′ ⊂ A contains these I which

do not miss Cm. The rest of the proof follows with M replaced by M/2.

Example 3.15. Let 
 be the Cantor ternary set. Define f,G : 〈0, 1〉 →
�
as

follows. Put f = 0 on closure of each interval contiguous to 
 in 〈0, 1〉, 1 otherwise.
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Enumerate endpoints of these contiguous intervals as {xn}∞n=1 and define G(x) =
∑

n : xn<x
2−n for each x /∈ {xn}

∞
n=1, G(xn) = G(xn−) if xn is right-isolated in 
 ,

G(xn) = G(xn+) if xn is left-isolated in 
 . It is a matter of routine to show that
f is Darboux integrable (so H1-integrable) to 0 with respect to G. Each closed

subset E ⊂ 
 with |E|G = 0 is nowhere dense in 
 (since E ∩ {xn}∞n=1 = ∅).

Hence each A ∈ IG, A ⊂ 
 , is of 1st category in 
 . From Baire Category Theorem

 \ ({xn}∞n=1 ∪ A) is dense in 
 and so f � ( 
 \ A) is everywhere discontinuous.

The condition (10) is not fulfilled. (i) ⇐ (ii) of Theorem 3.13 fails to hold for all

G ∈ VBG∗, in contrary to what we have announced in [14].

The set A ∈ IG from Theorem 3.13 can be chosen independently of D.

Lemma 3.16. The condition (10) is equivalent to the following one:

there exists a B ∈ IG such that(11)

the restriction f � (〈a, b〉 \B) is Baire∗1 in its domain;

i.e., there exists a B ∈ IG with the property that for every closed set P ⊂ 〈a, b〉 with

P \B 6= ∅ we can find an open interval J with P ∩J \B 6= ∅ such that the restriction

f � (P ∩ J \B) is continuous.

���������
. Repetition of the proof of Lemma 3.4 in [8]. �

By Theorem 3.13 and Lemma 3.16 we obtain the following Riemann-Lebesgue

type theorem for the Stieltjes H1-integral.

Theorem 3.17. Let f,G : 〈a, b〉 →
�
, and let G be continuous and VBG∗. The

following assertions are equivalent:

• the function f is H1-integrable with respect to G;

• the function f is Kurzweil-Henstock integrable with respect to G and there is a

B ∈ IG such that f � (〈a, b〉 \B) is Baire∗1 in its domain.

We notice that the above theorem reveals some advantage of the H1-integral over

the Riemann integral. If the integrator G is of bounded variation, then one may give

the following Riemann-Lebesgue type theorem (roughly formulated).

Observation 3.18. An f is Riemann integrable with respect to G iff it is

G-almost everywhere continuous and bounded outside a closed subfigure of the open

figure on which G is interval-wise constant.
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Nevertheless, if G is taken from the class VBG∗, a simple R-L type theorem for

the Riemann integral seems to be unavailable. One may easily find two continuous

VBG∗-functions f and G such that f is Kurzweil-Henstock integrable with respect

to G, but not Riemann integrable with respect to G. The H1-integral allows a quite

simple R-L theorem, even for VBG∗ integrators.

Problem 3.19. Is Theorem 3.17 true for every continuous integrator G?

4. Adjoint classes

We use the following symbols to denote classes of functions on 〈a, b〉: C: continuous

functions; ACq : absolutely continuous functions G with |G′|q summable, AC1 = AC,

AC∞: Lipschitz functions; VB: functions with bounded variation; B∗
1 : Baire

∗1

functions; R: Riemann integrable functions; H1: H1-integrable functions, |H1|q: H1-

integrable functions f with |f |q also H1-integrable, |H1|1 = |H1|, |H1|∞: essentially

bounded H1-integrable functions; B: bounded functions; C̃: bounded functions f

with countable set Df ; C̄: interval-wise constant functions (f ∈ C̄ if 〈a, b〉 can be

divided into finite number of intervals I1, . . . , In, such that the restriction f � (int Ii)

is constant for each i).

Let T be a Stieltjes integration process on an interval. We say that classes A (of

integrands) and B (of integrators) are adjoint [1] in the T sense (abbr. A
T
∗ B), if

• for each f ∈ A and G ∈ B, the function f is T-integrable with respect to G;

• for each f /∈ A (each G /∈ B), there is a G ∈ B (an f ∈ A respectively) such

that f is T-nonintegrable with respect to G.

Hanxiang Chen in his papers [1], [2], [3] gave several pairs of adjoint classes. He

considered the Riemann integral [1], [2], the Young (Ross-Riemann) integral [2], see

also [9], [11], and the Lebesgue integral [3]. We mention below only Riemann pairs:

(i) C
R
∗ VB (a well known one), (ii) R

R
∗ AC, (iii) C̃

R
∗ VB ∩ C.

Using the above proved Riemann-Lebesgue type theorem, we point two pairs of

adjoint classes in the H1 sense (Theorems 4.3 and 4.5). We start with simple lemmas.

Lemma 4.1. Suppose that G ∈ AC. Then the Kurzweil-Henstock Stieltjes

integral (H)
∫ b

a
f dG exists if and only if the Kurzweil-Henstock integral (H)

∫ b

a
fG′

exists. Moreover, these two integrals are equal.

���������
. Let E be the set of points of 〈a, b〉 at which G is not differentiable,

|E| = 0; we may assume that G′ = 0 on E. Denote Dn = {x ∈ 〈a, b〉 : n − 1 6
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|f(x)| < n},
∞
⋃

n=1
Dn = 〈a, b〉. Fix an ε > 0. Since G is absolutely continuous, there is

a gauge δ on E such that for each δ-fine divisionP anchored in E∩Dn the inequality

|∆|G(P) < ε/n2n holds. For an x ∈ Dn \ E there is a number δ(x) > 0 such that

for every interval I 3 x, |I | < δ(x), one has |∆G(I) −G′(x)|I || 6 ε|I |/n. Consider

a δ-fine partition π of 〈a, b〉. Denote PE = {(I, x) ∈ π : x ∈ E}, Pn = {(I, x) ∈

π : x ∈ Dn}, n = 1, 2, . . .. The following estimate completes the proof.

|σG(π, f) − σid(π, fG′)| 6

∞
∑

n=1

∑

(I,x)∈Pn\PE

|f(x)| · |∆G(I) −G′(x)|I ||

+

∞
∑

n=1

|σG(PE ∩ Pn, f)|

6

∞
∑

n=1

∑

(I,x)∈Pn\PE

n ·
ε

n
|I | +

∞
∑

n=1

n · |∆|G(PE ∩ Pn)

< ε(b− a) +

∞
∑

n=1

n
ε

n2n
= ε(b− a+ 1).

�

Lemma 4.2. Suppose that a function G : 〈a, b〉 →
�
is continuous and of

bounded variation, a set E ⊂ 〈a, b〉 is closed. There exists a set E1 such that

both E1 and E \ E1 have positive measure | · |G in every portion of E, which has

positive measure | · |G.

���������
. We may assume that c = |E|G > 0. Define

F (x) = |〈a, x〉 ∩ E|G, x ∈ 〈a, b〉.

F is continuous, because G is so. Let C1 be a perfect nowhere dense subset of

the interval 〈0, c〉 with measure c/2. We proceed by induction. Having defined a

perfect nowhere dense set Cn, let {I
(n)
i }∞i=1 be intervals contiguous to Cn in 〈0, c〉.

In every I
(n)
i choose a closed nowhere dense subset C

(n)
i with |C

(n)
i | = |I

(n)
i |/2n.

Define Cn+1 = Cn∪
∞
⋃

i=1

C
(n)
i and C =

∞
⋃

n=1
Cn. The sets C and 〈0, c〉\C have positive

measure in every subinterval of 〈0, c〉. Put E1 = F−1(C)∩E. It is seen that E1 fulfils

the requirement. �
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Theorem 4.3. Let 1/p+ 1/q = 1, ∞ > p, q > 1. Then

|H1|
p H1

∗ (ACq + C).

���������
. (a) Consider any f ∈ |H1|p. Let G ∈ ACq. Since fG′ is Kurzweil-

Henstock integrable, from Lemma 4.1 we get

(H)

∫ b

a

fG′ = (H)

∫ b

a

f dG,

so f is Kurzweil-Henstock integrable with respect to G. Since f fulfils the condi-

tion (1), from Theorem 3.17 we see that f is H1-integrable with respect to G.

(b) Assume first that G ∈ VB ∩ C \ AC. Since G does not satisfy condition N ,

there exists a closed set E ⊂ 〈a, b〉 with |E| = 0 and |G(E)| > 0. From Lemma 3.5 we

have |G(E)| 6 |E|G, so |E|G > 0. Using Lemma 4.2, divide E into two sets having

positive variational measure | · |G in each portion of E, E = E1∪E2. Define f = χE1
.

The function f belongs to |H1|p, but for any A ∈ IG, f � (E \ A) is discontinuous

everywhere. By Theorem 3.17, f is not H1-integrable with respect to G. So, assume

that G ∈ AC \ ACq . There are two cases to consider.

(1 < q < ∞) We have (H)
∫ b

a |G′|q = ∞. There exists a point ξ ∈ 〈a, b〉 in whose

every neighborhood |G′|q is nonintegrable. One can find disjoint tagged intervals

{(In, xn)}∞n=1, with xn’s converging to ξ, such that

∞
∑

n=1

|G′(xn)|q |In| = ∞.

(We can assume that |∆G(In) − G′(xn)|In|| < |In|/2
n.) There exists a sequence

(an)∞n=1 of positive numbers such that

(12)

∞
∑

n=1

ap
n <∞

and
∞
∑

n=1

|G′(xn)|an
q
√

|In| = ∞.

Put f(x) = an|In|−1/p for x ∈ In, 0 otherwise. Then

∣

∣

∣

∣

(H)

∫ b

a

f dG

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=1

an

p
√

|In|
∆G(In)

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=1

an
q
√

|In|
∆G(In)

|In|

∣

∣

∣

∣

>

∞
∑

n=1

|G′(xn)|an
q
√

|In| −
∞
∑

n=1

q
√

|In|
an

2n
= ∞.
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Thus f is Kurzweil-Henstock- and, in consequence, H1-nonintegrable with respect

to G. One sees this f is Baire∗1, hence by (12) it belongs to the class |H1|
p.

(q = ∞) There is a point ξ ∈ 〈a, b〉 in whose every neighborhood G′ is un-

bounded. One can find disjoint tagged intervals {(In, xn)}∞n=1, with xn → ξ, such

that |∆G(In) − G′(xn)|In|| 6 |In|. Put f(x) = 1/2n|In| for x ∈ In, 0 otherwise.

Then
∣

∣

∣

∣

(H)

∫ b

a

f dG

∣

∣

∣

∣

=

∣

∣

∣

∣

∞
∑

n=1

∆G(In)

2n|In|

∣

∣

∣

∣

>

∞
∑

n=1

|G′(xn)|

2n
−

∞
∑

n=1

1

2n
= ∞.

On the other hand, f is Baire∗1 and

(H)

∫ b

a

|f | =

∞
∑

n=1

1

2n|In|
|In| <∞,

whence by Theorem 3.17, f ∈ |H1|.

Suppose now that the jump part of G ∈ VB does not belong to the class C. Then,

there exists a countable set S ⊂ 〈a, b〉 such that |{x}|G > 0 for each x ∈ S. We may

assume that G(x+) 6= G(x−) for all x ∈ S. Put

f(x) =

{

1/(G(x+) −G(x−)) if x ∈ S,

0 otherwise.

f ∈ |H1|
p and it is an easy exercise to show that f is not Kurzweil-Henstock integrable

with respect to G; see Example 2.1 in [11].

(c) Let f /∈ |H1|
p. If f /∈ H1, then take G = id. If f ∈ H1 \ |H1|

p, then |f | is

Kurzweil-Henstock nonintegrable with the pth power. From the Riesz theorem we

find a function g, absolutely integrable with the qth power, such that

(H)

∫ b

a

fg = (H)

∫ b

a

fG′ = ∞,

where G(x) = (H)
∫ x

a g. Since G is ACq, by Lemma 4.1 we conclude∞ = (H)
∫ b

a fG
′ =

(H)
∫ b

a
f dG. Let us remark that Theorem 4.3 is the correction to the pair (8) from [14].

�

Remark 4.4. Let f : E →
�
be discontinuous at every point of E. Then there

exists a countable set C ⊂ E, dense in E, such that f � C is discontinuous at every

point of C.
���������

. For each interval (u, v) with rational endpoints with (u, v) ∩ E 6= ∅,

choose ξ, ψ ∈ (u, v)∩E such that |f(ξ)− f(ψ)| > 1
2ωf ((u, v)∩E). Collecting such ξ

and ψ for all (u, v), we obtain the desired set C. �
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Theorem 4.5. B∗
1 ∩ B

H1

∗ VB.

���������
. (a) First, we need to check that for a given bounded Baire∗1 function f

and a VB-function G, the integral (H1)
∫ b

a f dG exists. This is immediate, since

(H)
∫ b

a
f dG exists (f is bounded and G-measurable since Borel) and f is Baire∗1

(Theorem 3.13).

(b) Let G be of unbounded variation. There are nonoverlapping intervals I1, . . .

such that
∞
∑

n=1
∆G(In) = ±∞. Put f(x) = 1 on

∞
⋃

n=1
In, 0 otherwise. Of course,

f ∈ B∗
1 ∩ B and (H)

∫ b

a f dG = ±∞.

(c) Suppose f is unbounded. Then there are points xn ∈ 〈a, b〉, n ∈ 	 , such that
|f(xn)| > 2n. Put

(13) G(x) =
∑

n : xn<x

sgn f(xn)

2n
.

G is of bounded variation and f is not H1-integrable with respect to G. Suppose

f is not Baire∗1. Then there is a closed set E ⊂ 〈a, b〉 such that Df�E is dense in E.

Applying Remark 4.4 to Df�E (as one can check, f � (Df�E) is discontinuous at each

point of Df�E), we get points x1, x2, x3, . . . ∈ E such that S = {xn}∞n=1 is dense in E

and f � S is discontinuous everywhere. Define an integrator G by the formula (13)

for x 6= xn, n ∈ 	 , and assume G is normalized; i.e., 2G(xn) = G(xn+) +G(xn−).

Since for all X ∈ IG we have X ∩ S = ∅, the restriction f � (E \X) has a dense set

of discontinuity points, and thus f � (E \X) is not Baire∗1. By Remark 3.14, f is

not H1-integrable with respect to the G ∈ VB. �

The adjoint pairs from Theorems 4.3 and 4.5 resemble the pairs (ii) and (i),

page 13, respectively. We have not been able to find an analogue of the pair (iii).

Problem 4.6. Find a pair of adjoint classes for the H1-integral, similar to the

pair (iii).
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